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Abstract: In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plas-
modium falciparum (Pf) are proposed using structure-based and computer-aided molecular design.
Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional
(3D) models of FP3-PEPx complexes with known activities (ICg,") were prepared by in situ modi-
fication, based on molecular mechanics and implicit solvation to compute Gibbs free energies
(GFE) of inhibitor-FP3 complex formation. This resulted in a quantitative structure-activity rela-
tionships (QSAR) model based on a linear correlation between computed GFE (AAG¢oy,) and the

experimentally measured 1Cg;"

. Apart from the structure-based relationship, a ligand-based
quantitative pharmacophore model (PH4) of novel PEP analogues where substitutions were di-
rected by comparative analysis of the active site interactions was derived using the proposed
bound conformations of the PEPx. This provided structural information useful for the design of virtual
combinatorial libraries (VL), which was virtually screened based on the 3D-QSAR PH4. The end results

were predictive inhibitory activities falling within the low nanomolar concentration range.

Keywords: drug design; falcipain; malaria; peptidomimetics; Plasmodium falciparum;
virtual screening; pharmacophore

1. Introduction

Malaria is a widespread disease, with causative agent Plasmodium falciparum (Pf),
transmitted mainly by female Anopheles mosquito bites [1]. The disease has been de-
clared a public health concern by the World Health Organization (WHO) in many de-
veloping countries [2,3]. Additionally, since the implementation of artemisinin-combined
therapy (ACT) in 2006, resistance cases have been recorded [4-7]. Meanwhile, the treat-
ment of malaria mainly depends on ACT, despite resistance to this combination. This
suggests the need for industry-academia partnerships for the search of new antimalarials
which act via alternative modes of action. Two strategic approaches have been suggested
in the search for new remedies against malaria; one focused on eliminating the parasite
or preventing its contact with potential human hosts, and a second aimed at developing
efficacious drugs to treat infected patients [1]. The latter is often aimed at the inhibition of
a therapeutic target, often a vital enzyme involved in the parasite’s life cycle. This often
requires the search for or the design of new molecules capable of binding in a specific
manner to known parasite vital enzymes.
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During the last two decades, the identification of drug targets against Pf has in-
creased tremendously [4-7], thus favouring the second approach. This is known as “ra-
tional drug design and discovery”. As an example, the parasite breaks down a large
amount of haemoglobin (Hb) from human red blood cells in order to obtain the required
nutrients for its growth during the blood stage [8]. This involves several proteases,
known as validated drug targets in [9]. These drug targets could be divided into two
major groups:

(i) those which are directly involved in the invasion and rupture of the red blood
cells, and

(ii) those dedicated to the breakdown of Hb [10].

Two protease families are involved in Hb breakdown by hydrolysis. These include
aspartic proteases (plasmepsins) and cysteine proteases (falcipains, FPs) [10]. One met-
alloprotease called falcilysin [11], and one dipeptidyl aminopeptidase [12] are also in-
volved.

Previous studies have focused on the search for inhibitors of falcipains 2 and 3 (FP2
and FP3), respectively [13], even though FP3, shown to be expressed later in the parasite
life cycle, appeared to be a more efficient haemoglobinase than FP2 [14]. This indicates
that FP3 inhibition is lethal to the parasite and, therefore, constitutes an attractive target
in Pf drug discovery. Several FP3 inhibitors have been identified and described in the
literature, which are capable of blocking the enzyme’s activity by forming reversible or
irreversible covalent bonds within the enzyme active site [12]. These inhibitors could be
sub-classified into three categories: peptide-based, non-peptidic, and peptidomimetic
inhibitors [15,16], although preference has been given to those known to be reversible
and, hence, considered to be potentially more effective than irreversible ones [17,18]. The
most promising inhibitors so far are those discovered by chemical synthesis [19-24], by
molecular docking [25] and virtual screening studies [18,26-29], particularly from the
peptidomimetics class of compounds.

Weldon et al. recently designed, synthesised and evaluated a series of pep-
tidomimetic pseudo-prolyl-homophenylalanyl ketones for their inhibition of the Pf cys-
teine proteases FP2 and FP3 [24]. One of these compounds showed nanomolar range ac-
tivities against both enzymes (i.e., 80 nM against FP2 and 60 nM against FP3 [24]. These
interesting results have been improved by the presence of the crystal structures of the
FP3 apo structure co-crystallised with the inhibitor within the protein data bank [30,31].
These have constituted the foundation of this work, which involves the design of PEP2
peptidomimetic analogues with the goal of identifying even more potent candidates via
quantitative structure-activity relationship (QSAR) with FP3 inhibition pharmacophores.
This is intended to further orientate the design of more potent non-peptidic FP3 inhibitors.

In the present work, we have built and validated a Hansch-type “complexation”FP3
inhibition QSAR models based on the in vitro activities of twelve (12) selected PEP de-
rivatives against FP3. As a starting point, we chosethe experimental (X-ray crystal)
structure of the protein-ligand complex of the enzyme and the potent inhibitor K11017
(PDB ID:3BWK) to build each selected inhibitor by in situ modifying of the native ligand.
[24,30]. This consisted of computing the Gibbs free energies for the formation of the lig-
and-receptor complexes (AAG,m) based on Molecular Mechanics Poisson-Boltzmann
(MM-PB) approach for the training set molecules, followed by the correlation with the
experimentally tested biological activities pICgy”. The established QSAR equation was
then used to predict the activities of newly designed analogues based on the initial
compound scaffold. Additionally, a FP3 inhibition pharmacophore model (PH4) from the
bound conformation of the training set of PEPs was used to screen the virtual library of
proposed PEP analogues to identify the best candidates, which have predicted ADMET
profiles within the acceptable range for 95% of known drugs.
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2. Materials and Methods

Scheme 1 displays the workflow of different steps involved for the computer-aided
drug design of the new peptidomimetics analogues.

pfFP-3::PEPxx Complexes built by in sifu modifications from: 3BBWK.pdb

.

MM-PB Complexation QSAR
model:

,

3D-QSAR pharmacophore (PH4) model based on active conformations of peptidomimetics

HYPOGEN, CATALYST

inhibitors

v

Knowledge-based Virtual Library (VL) design of 130,321 peptidomimetics analogues

(PEPA)
]

v

3D-QSAR PH4-based Virtual Screening (VS) of:
130,321 * 1000 conformations

-

21 best fit hits

-

21 Novel PEP analogues with complexation predicted
(Complexation MM-PB prediction)

Scheme 1. Novel peptidomimetic analogues design methodology workflow.

2.1. Biological Activities of Compounds Included in the Training and Validation Sets

The biological activities (IC5y") of the compounds included in training and valida-

tion sets of PEP PfFP3 inhibitors were found in the literature, covering a range of activi-
ties from 60 nM to about 47,230 nM [24]. Weldon and co-workers synthesised 22 mole-
cules, but not all showed detected biological activities against FP3 to be included in a
QSAR study (e.g., activities recorded as >50 uM would not be included in our study).
Finally, 12 compounds (almost the threshold for an acceptable QSAR study) have been
used in our study.

2.2. Molecular Modeling

3D models of the enzyme-inhibitor (E:I) complexes were built starting from the free
enzyme (E) and the free inhibitors (I), both derived from a well -refined X-ray crystal
structure (PDB ID: 3BWK) of the co-crystallised potent inhibitor K11017 (or
Mu-Leu-Hph-VSPh, where VSPh: phenyl vinyl sulfone;
Hph:homophenylalanyl;Mu:morpholino urea) retrieved from the PDB [32]. Chain A was
employed in all computations and modellingwas carried out on the graphical user in-
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terface of Discovery Studio 2.5 [33], using a previously well described protocol [34-48].
Thus, the pH values were kept at 7.0, while all N- and C-terminal residues were kept
neutral. All water molecules originally in the crystal structure were deleted. Finally,
protonated and ionised amino acid residues were charged. Each inhibitor was built into
the crystal reference structure by modifying the original K11017 inhibitor in situ. During
this process, all rotatable bonds of the replacing residues underwent an exhaustive con-
formational search by a careful and gradual energy minimisation of each modified in-
hibitor within the active site residues of FP3 within 5A of the inhibitor, leading to the
identification of low-energy bound conformations of each modified inhibitor. The vari-
ous low-energy structures of the E:I complexes were then carefully refined by energy
minimisation of the whole complex.

2.3. Molecular Mechanics

The simulation of each inhibitor, FP3 and E:I complex were carried out by molecular
mechanics (MM) as implemented in the CHARMm forcefield [49]. All MM calculations
used a dielectric constant of 4 for representing dielectric shielding effects in the proteins.
The optimisation (energy minimisation process) of the free enzymes E, free inhibitors I
and enzyme-inhibitor complexes E:I were carried out by a gradual relaxation of the
structures, beginning by adding H-atoms, then the residue side chain heavy atoms, and
ending up with the relaxation of the protein backbone. A large number of the steepest
descent, followed by conjugate gradient iterative cycles were employed. A convergence
criterion for the average gradient was set to of 0.01kcal. mol~*A~* in each geometry op-
timisation procedure.

2.4. Conformational Search

The conformation of each free inhibitor was obtained from its bound conformation
in the E:I complex, which had been previously obtained by the gradual relaxation to the
nearest local energy minimum (see Section 2.3). Next, low energy structures of the free
inhibitors were found by the quenching dynamics protocol available in the module For-
cite Plus of Accelrys Materials Studio 4.4 [50]. Quench molecular dynamics performs a
standard molecular dynamics calculation with an additional geometry optimisation step,
in which a geometry optimisation is performed on every frame in the trajectory file. For-
cite Plus calculations were carried out using Compass forcefield [49], ultra-fine quality
options and nonbond cut-off distance equal to 30 A.For each free inhibitor, 5000 steps
(time step is 1 fs, total simulation time equal 5 ps) are used to run dynamics simulation at
350 K. A quench, or geometry optimisation, is performed every 25 steps. On completion
of the quench dynamics calculation, 200 unique conformations are generated per inhibi-
tor. Finally, the lowest energy conformer of each inhibitor is selected and minimised
again using CHARMm forcefield of Discovery Studio. During this minimisation, the in-
hibitor’s dielectric constant was kept at ¢ = 4.

2.5. Solvation Gibbs Free Energy

The electrostatic component of solvation Gibbs free energy was computed using the
DelPhi package in Discovery Studio [33]. This incorporates the effects of ionic strength by
solving the nonlinear Poisson-Boltzmann equation [51,52]. This DelPhi program treats
the solvent as a continuous medium of high dielectric constant (g, = 80) while the solute
is treated as a cavity with low dielectric (¢; = 4). Boundaries are linked to the solute’s
molecular surface, which enclose the solute’s atomic charges. The molecular electrostatic
potential and reaction field around the solute are solved by a finite difference method on
a (235 x 235 x 235) cubic lattice grid for the complexes and free enzyme and (65 X

65 X 65) grid for the free inhibitors, implementing the full Coulombic boundary condi-
tions. In both cases, two (02) subsequent focusing steps led to a similar final resolution of
about 0.3 A per grid unit at 70 % filling of the grid by the solute. Physiological ionic
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strength of 0.145 mol - dm™3, atomic partial charges and radii defined in the CHARMm
parameter set (Biovia DS) and a probe sphere radius of 1.4 A were used. In this imple-
mentation, the electrostatic component of the solvation Gibbs free energy was calculated
as the reaction field energy [53-55].

2.6. Calculation of the Entropic Term

During the simulation, the vibrational entropy change which occurs as the inhibitor
binds to the enzyme was computed by normal mode analysis of the inhibitor vibrations,
by using a simplified method previously described by Fischer and co-workers [56,57].
This approach involves the vibrational analyses of the inhibitor bound at the active site of
a “frozen” enzyme, while the low-energy conformers of the free inhibitor were computed
for fully minimised structures. This was carried out using the Discover module of Mate-
rials Studio 4.4 [50] and the formula:

TASyip, = TSyvib{Dbonded — TSvib{T} free )

The method has previously provided a good approximation of the vibrational en-
tropy change in the fully flexible system for small and relatively stiff ligands, i.e., in-
cluding the degrees of freedom of the protein receptor [55,56]. In this calculation, the
TSyib{I}free term can explain vibrational motions of the free inhibitor and the conforma-
tional flexibility of the molecule, i.e., low frequency vibrations, which correspond to col-
lective motions of atoms with larger amplitudes (conformational changes contribute
mostly to this term). The relative values of AATS,;;,, with respect to the reference inhibi-
tor, were used to compensate partially for the restricted flexibility of the E. In this respect,
the entropy term is also recognised as an important factor for drug optimisation, even
though an enthalpy contribution to binding affinity is known to be more essential [58].

2.7. Binding Affinity Calculations

It has been previously proven that the concentration of a competitive tight binding
inhibitor that causes a 50% reduction in the rate of catalytic substrate conversion (ICgy"

of a reversible inhibitor depends on the enzyme-inhibition constant K; as follows:

Ki)_l_ﬂ

ICe,” = K; + [s].(K—M 5

@)
where [S] and [E] are the substrate and enzyme concentrations, respectively, while Ky
represents the Michaelis constant [59]. The ICE§ value can thus be predicted from the
standard Gibbs free energy (GFE) change during the enzyme:inhibitor complex for-
mation:

AGeom = —RT x In(K;) 3)

assuming that there is equilibrium in solution between the solvated protein (or enzyme)
{E}.q, the solvated inhibitor{I},qand the solvated protein-ligand complex {E:I},q:

{E}aq + {I}aq < {E: I}aq 4)
the standard Gibbs free energy change in the above equilibrium (4) can be written as:
AGeom = G{E: 1} — G{E} — G{I} (5)

in our calculations, the exact values of standard Gibbs free energies for larger systems
such as enzyme: inhibitor complexes were approximated by the derived expressions
from the works of Frecer and Miertus [36,60,61]:

G{E: 1} = Eym{E: I} 4+ RT — TSy {E: I} + Ggo {E: I} (6)

where Eyyv{E:I} stands for the molecular mechanics total energy of the complex (in-
cluding bonding and non-bonding contributions), Ggo{E:I} is the solvation GFE and
TS {E: I} is the entropic term:
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TSy AE: I} = TSprans{E: I} + TSpoe{E: I} + TS {E: I} ()

composed of a sum of contributions arising from translational, rotational and vibrational
motions of the complex E:I. Assuming that the translational and rotational terms for the
complex E:I and free enzyme E are approximately equal, we obtain:

AGeom = [Emm{E: 1} — Emm{E} = EMm{D}] + [Gso1{E: I} — GsoifE} — Gsoi{I}]
+TStran{l} + TSroe{l} — [TSyin{E: I} — TSyin{E} — TSyin{1}] 8)

= AHMM + Tstran{l} + Tsrot{l} - ATSvib + AC‘sol

with TSians{I} and TS, {I} describing the translational and rotational entropy terms of
the free inhibitor, respectively, and ATS,;, representing the vibrational entropy change
during the formation of the enzyme-inhibitor complex ATS;, = TSyip{l}g — TSyip{l}. By
comparing between different inhibitors via relative changes in their respective complex-
ation Gibbs free energies, with respect to a reference inhibitor, I..¢(in this case PEP23),
and by assuming the ideal gas behaviour for the rotational and translational motions of
the inhibitors, it can be shown that:

AAGeom = AAGeom (1) — AGeom (Irer) = AAHpy — AATSyip, + AAGg )

The advantage of such an approach is that the evaluation of relative changes is
preferable, since it results in the partial cancellation of errors caused by the approximate
nature of the MM method. Additionally, solvent and entropic effects are included in the
description.

2.8. Interaction Energy Calculations

Interaction energy values were computed using Discovery Studio 2.5 [33]. The MM
interaction energy (Ej,;) protocol available in this program computes the (non-bonded)
van der Waals and electrostatic interactions between enzyme residues and each inhibitor.
The CHARMmM force field [49] was used during the calculations, with a dielectric con-
stant set at 4. The breakdown of Ej,; into the contributions by active site residues reveals
the significance of individual interactions and permits us to carry out a comparative
analysis. The approach leads to the identification of affinity values which would enhance
the prediction of favourable and unfavourable PEP substitutions.

2.9. Pharmacophore (PH4) Modeling

By definition, a pharmacophore is often regarded as a set of features arranged in 3D
space which are essential for a molecule to exert a certain biological activity. The percep-
tion of a pharmacophore is essential for understanding the interaction between a ligand
and its receptor. The PH4 concept is based on the assumption that a set of structural
features in a molecule is recognised at the receptor site and is responsible for the mole-
cule’s biological activity. Bound conformations of inhibitors taken from E:I complexes
were used to construct 3D-QSAR pharmacophore models using the Catalyst HypoGen
algorithm implemented in Discovery Studio 2.5 [33]. This consisted of building a top
scoring pharmacophore hypothesis from the most active inhibitor. Three stages (con-
struction, subtraction and optimisation) are involved, meanwhile the inactive ones were
used to define the excluded volumes. A maximum number of five excluded volumes and
five features were selected according to the PEP scaffold and substituents, i.e., hydro-
phobic aliphatic (HYd), hydrophobic aromatic (HYdAr), hydrogen-bond acceptor (HBA)
hydrogen-bond donor (HBD) and ring aromatic (Ar). As per the adjustable parameters in
the HypoGen protocol, all were kept by default except for the uncertainty on the activity
and the minimum inter-feature distance, which were set to 1.1 A and 2.5 A (instead of 3),
respectively. These parameters were carefully chosen in order to bring the uncertainty
interval of experimental activity from a wide span [IC5,"/3,3 X IC5,"] to a relatively
narrow one[ICgs”/1.1, 1.1 x IC53P]. This is important because the accuracy and homoge-
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neity of the measured inhibitory activities based on the fact that the experimental bio-
logical activities were derived from the same laboratory must be taken into account [24].
During the generation of 10 pharmacophores, 0 was set as the number of missing features
and the best pharmacophore models were selected.

2.10. Generation of the Virtual Library

Molecular models of new analogues were generated using the Molecular Operating
Environment (MOE) program [62]. This was carried out by attaching the R-groups
(fragments, building blocks) onto the PEP scaffolds using the Quasar CombiDesign
module of the MOE program. Chemical reagents considered in this study were taken
from the directories of chemicals available from the commercial suppliers of chemicals
[63]. Each analogue was built as a neutral molecule in the MOE program and its molec-
ular geometry has been refined by the MM optimisation, implemented in the Discovery
Studio 2.5 smart minimiser. Convergence criteria (energy difference of 10~* kcal. mol™?,
root-mean-square displacement (RMSD) of 105 A and a dielectric constant of 4 using the
CHARMmM force field were set, as described in Section 2.3.

2.11. In Silico Screening

The conformers with the best mapping on PH4 pharmacophores in each cluster was
selected for virtual screening using the complexation QSAR model. For each E:I complex,
the relative complexation Gibbs free energies AAG.,, was calculated. This was then
used to compute the predicted activities (pICE)) of each of the newly designed ana-
logues against FP3. The ICE;° values were then calculated using the formula ICE;° =

100-PICE),

3. Results and Discussion
3.1. Selection of Training and Validation (or Test) Data Sets

A data set of ten (10) FP3 inhibitors with a broad range of in vitro activities (ICg,"),
obtained from the same laboratory, with a sufficiently broad range of activities
(60-47,230nM) [24] were used to generate a 3D-QSAR model. This was divided into a
training set of nine (9) inhibitors used to build the QSAR model and a validation set of
three (3) inhibitors for evaluating the model (Table 1 and Figure 1).

Table 1. Training and validation sets of PEP inhibitors obtained from the literature [24].

Training Set!! My ! (g.mol™) IC£ e (nM)

PEP23 (Ref) 482.61 36,360
PEP27 452.56 910
PEP29 438.53 23,900
PEP32 466.54 47,230
PEP34 470.60 8220
PEP38 462.55 25,440
PEP39 440.50 60
PEP40 574.75 520
PEP41 498.61 3560

Validation Set ! Myy ! (g.mol?) Iz d(nM)
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PEP26 452.56 540
PEP28 450.54 20,180
PEP36 488.59 11,910

lal See Figure 1 for chemical structures of training and validation. [l Molecular weight. Il This is

ICE’Sp expressed in nanomolar concentration [24].
g o s. (;L\mn/n OH %/n of
h ) s (s) ® (s)
O/\O/Ko o \ﬂ/ O\/OTNH o O\/OTNH o
o o
PEP26 PEP27
e}

o o
(R) H
(R H N o
N OH
S o © ) H
(s) (s) : N OH
OTNH o O\H/ A ° )
o
S)
o

I

HN
/& (S)
o
o
° o

PEP29

o

PEP28
PEP32

s
]
H R R’
HN N OH [} 3 OH
( (S H B4 (s)
/& o HN N OH 0. NH o
o ° (s) \[(
o o o

PEP34 PEP38

PEP36

HO

R
(R) (R)

b

HO
(R)
o o
(S H (s) H .
N : H s H
H N
N 2 N S N s
o) () 3 ) \ﬂ/
2 o o o o ° o
o ) o

PEP39 PEP40 PEP4L

Figure 1. Chemical structures of training and validation sets of FP3 inhibitors obtained from literature [24].

3.2. Obtained QSAR Model

The relative Gibbs free energy of the non-covalent enzyme-inhibitor (E:I) complex
formation from free enzyme (E) and free inhibitor (I), shown in the Experimental Section,
were computed for each FP3-PEPx prepared complex. This was carried out by modifying
in situ of the inhibitor K11017 within the binding site of FP3 of the refined crystal struc-
ture, with PDB ID: 3BWK [30,31]. Table 2 provides the computed values of complexes
formation GFE (AAGg,y) and its components (see Experimental Section). Since the
AAGgoy, values were computed in an approximate way, the relevance of the binding
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model is evaluated by correlating it with the experimental activity data (IC5y") using

linear regression; see Table 3.

For this training set, a plot of the linear correlation is shown in Figure 2 and the sta-
tistical data of the regression are provided in Table 3. For the correlation involving
AAGom, the relatively high regression coefficient on the values, together with the statis-
tical significance Fischer F-test, suggest that there is no chance correlation between the
binding mode and the observed inhibitory potencies of the training set.

Table 2. Energy contributions towards AAG,n, for a dataset of PEP analogues against FP3 com-
plexation Gibbs free energy and its components for the training and validation set of FP3 inhibitors.

Training Set!  AAHyy ® AAGgg, I AATS 41 AAGeop 1

u p]cg’él’ £l
(kcal. mol™!) (kcal.mol™!) (kcal.mol™!) (kcal. mol~!)

PEP23 (Ref) 0.00 0.00 0.00 0.00 444
PEP27 3.81 ~0.04 -0.16 -3.69 6.04
PEP29 ~0.39 0.13 145 171 462
PEP32 6.21 777 -0.60 -0.95 433
PEP34 5.97 -9.92 -0.51 -3.44 5.09
PEP38 0.21 0.77 213 -1.15 459
PEP39 207 0.12 3.98 -5.92 7.22
PEP40 -6.33 1.64 0.26 -4.95 6.28
PEP41 3.24 1.16 0.42 250 5.45

Validation  \,\py = n) AAG, 1 AATS, 3 11 MGeom™ o

Sett  jcalmol!) (kcal.mol!) (kcal.mol™!) (kcal. mol-!)

PEP26 7,67 1.39 ~0.78 5,50 1.07
PEP28 413 0.61 ~0.41 -3.12 1.18
PEP36 6.51 -10.30 -0.15 -3.64 1.18

[l For the chemical structures of the training/validation set of inhibitors see Figure 1. 1 AAHyy
represents the relative enthalpic contribution to the Gibbs free energy change related to the inter-
molecular interactions in the enzyme-inhibitor complex derived by molecular mechanics (PEP23
(Ref) is the reference inhibitorl,ef):AAHym = [Emm{E: Iy} — Emm{Ix}] — [Emm{E: Lrer} —
Emm{lrer}](10). (1 AAGs,, represents the relative solvation GFE contribution to the GFE of EI com-
plex formation: AAGse = [Gsol{E: Iy} — Gsor{lx}] — [Gsol{E: Iref} — Gsol{lrer}1(11).141 AATS 5, repre-
sents the relative entropic contribution of the inhibitor to the GFE related to the E:I com-
pleX:AATSVib = [AATSvib{IX}E - AATsvib{lx}] - [AATSvib{Iref}E - AATsvib{lref}] (12). 1 AAGeom rep-
resents the relative GFE change related to the enzyme-inhibitor complex formation: (see Equation
(9)). M ICSP [24] represents the inhibitor concentration that causes 50% decrease in the rate of sub-

> (o . .
~oo~ 8 This is the ratio of

the predicted activity on the experimental activity, pICE;°/pICgiF. This ratio is close to 1, indicating
the predictivity of the QSAR model.

strate conversion by FP3 measured in the enzyme assay: pICqy’ = —logyg
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exXp _

pICcy = f(AAGeom)

7.5

0] °© y =-0.4794x + 4.0455
Fg R2=0.8933
=
o 6.5 © Training set

© Validation set

6.0 1 e Trend line

55

5.0 4

4.5 o)

4.0 " T T T T r

-6.5 5.5 4.5 -3.5 -2.5 -1.5 -0.5 0.5

AAG g, (keal. mol™)

Figure 2. Correlation plot between pICg;” and relative complexation Gibbs free energies AAGeom
of the training set of nine FP3 inhibitors.

Table 3. Statistical data of correlation between computed AAGomand experimental activity 1Cgy"
of the training set.pICgy” = —log;o(IC5y" x 107°) = —0.4794 X AAGop, + 4.0455

Statistical Data of Linear Regression

Number of compounds n 9
Squared correlation coefficient of regression R? 0.89
Leave-one-out cross-validated squared correlation Coefficient R2, 0.81
Standard error of the regression o 0.34
Statistical significance of regression, Fisher F-test 58.58
Level of statistical significance o > 95%
Range of activities of ICg P (nM) 60-47,230

The ratio of the predicted and observed inhibition constants pICE,®/pICey for the
validation set of three PEPs (not included in the training set) were closed to 1. This proves
the predictive power of the QSAR model, suggesting that the regression equation (A)
(Table 3), and the computed AAG.,,, quantities of the newly designed PEP analogues can
be used to predict their inhibitory potencies (IC2;°) against FP3, on condition that the
binding modes of the designed analogues and those of the training set compounds are
the same relative to the receptor site. Such an approach could reduce the required num-
ber of molecules to be synthesised in a rational drug development project quite consid-
erably. The above procedure has been previously applied by our team in several drug
design projects [34,36,38—47].

3.3. Inhibitor Binding Modes

The predicted binding mode of the best active PEP39 coming from the complexation
model is illustrated in 3D depiction in Figure 3. The main interactions with the active site
residues, namely the H-Bond with the catalytic residue Cys51, are in line with the dock-
ing study and WaterMap calculations [24] which, unfortunately, did not provide any
statistical correlation between binding affinity and activity (results not shown). The
bound conformation of PEP sheds light on the structural features for binding affinity,
which are vital for the design of novel potent non-peptidic FP3 inhibitors by exploiting
the S1” to S3 pockets (Figure 4) [30]. In order to verify whether other interesting interac-
tions not displayed have to be taken into account in the description of PEP binding mode
at the FP3 active site for the rational design of new analogues, the interaction energy (IE)
between each active site residue and PEPx was computed. The breakdown of the inter-
action energy diagram into each 51'-S3 subsite residue contribution of FP3 for PEPs, dis-
played in Figure 3, indicates the highest interacting residues of the overall active site of
FP3. Moreover, the predicted binding mode of PEP inhibitors highlights three main fa-
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vourable non-bond interactions (Figure 4): conventional hydrogen bonds with residues
GLN 45, GLY 92, TYR 93, ASN 182 and HIS 183; carbon hydrogen bonds involving resi-
dues GLY 91, GLY 92 and SER 158; GLY 91 and GLY 92 are still interacting through hy-
drophobic amide Pi stacking; van der Waals contacts (hydrophobics) with CYS 48, GLY
49, TRP 52, ASN 87, CYS 89, ILE 94, ALA 184, GLU 243 and TRP 215.

GLN GLY SER CYS TRP TYR GLY GLY TYR PRO ASN HIS ALA TRP
45 49 50 51 52 9 91 92 93 181 182 183 184 215
0

-1
2 4
3 4
-4 4
-5
-6 -

&7
8 = PEP32 mPEP39 m=PEP40

Figure 3. Breakdown of interaction energy (kcal/mol) contribution between PEP32, PEP39, PEP40
and the most interacting residues of the FP3 active site.

ILE
94

SER
158

GLU243

SER158

S2

[;lv::« Wasks [[] carbonrydrogengond

[l Corentionsl Hydrogen Bond Bl Aense Racied

Figure 4. Proposed binding mode of peptidomimetics inhibitors at the active site of FP3. Main favourable non-bond in-
teractions depicted in 3D (left picture) and 2D (right picture) for the most active PEP39 (purple carbons atoms).

It was observed that the IE diagrams analysis could not significantly guide the
choice of the R-groups in S1” and S2 subsites [30], when compared with the case for the
design of thymine-like inhibitors of thymidine monophosphate kinase [41]. It would ra-
ther be suggested that a large and diverse combinatorial virtual library (VL) of PEPs be
built and screened with our FP3 inhibition 3D-QSAR PH4, based on the complexation
one descriptor QSAR model. A successful case study was the design of pyrrolidine car-
boxamide inhibitors of Mycobacterium tuberculosisInhA [42].
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3.4. Ligand-Based 3D-QSAR PH4 Model of FP3 Inhibition

The 3D-QSAR PH4 pharmacophore generation process follows three main steps,
namely the constructive, the subtractive and the optimisation steps [33]. The constructive
phase of Hypo-Gen has automatically selected the most active compounds for which
ICsy” < 1.1 X 60 nM as leads. Thus, only the most active compound PEP39 (IC,” = 60
nM) was used to generate the starting PH4 features. Only those features that matched
this lead were retained. In the subtractive phase, which is normally used to remove
pharmacophoric features present in poorly active molecules, none of the training set
compounds were found to be inactive (ICg,” > 60 x 1035 = 189,736 nM). During the
optimisation phase, the score of the pharmacophoric hypothesis is improved. Hypothe-
ses are scored according to errors in activity estimates from regression and complexity
via a simulated annealing approach. At the end, the top scoring 10 unique pharmaco-
phoric hypotheses (Table 4) were kept, all displaying four features. The generated
pharmacophore models were then assessed for their reliability based on the calculated
cost parameters. The overall costs ranged from 24.13 (Hypol) to 456.44 (Hypo10). The
relatively small gap between the highest and lowest cost parameter corresponds well
with the homogeneity of the generated hypotheses and the consistency of the training set.
For this PH4 model, the fixed cost (21.24) is lower than the null cost (2317.26) by a dif-
ference A =2296. This difference is a major quality indicator of the PH4 predictability
(A> 70 corresponds to an excellent chance or a probability higher than 90% that the
model represents a true correlation [33]). To be statistically significant, the hypotheses
have to be as close as possible to the fixed cost and as far as possible from the null cost.
The cost distance A > 1860 for the set of 10 hypotheses confirms the high quality of the
pharmacophore model.

Table 4. Output parameters of 10 generated PH4 pharmacophoric hypotheses for FP3 inhibitors
after Cat-Scramble validation procedure (49 scrambled runs for each hypothesis at the selected
level of confidence of 98%).

. Total Costs Closest
Hypothesis RMSD ! Ret! Costs [d Difference 4! Random
Hypo 1 0.795 0.999 24.13 2293.1 31.20
Hypo 2 2.958 0.991 60.64 2256.6 31.90
Hypo 3 3.623 0.987 80.35 2236.9 39.75
Hypo 4 4.907 0.976 130.37 2186.9 42.21
Hypo 5 5.128 0.974 139.89 21774 4421
Hypo 6 5.203 0.973 143.71 2173.5 45.02
Hypo 7 5.880 0.966 177.49 2139.8 45.02
Hypo 8 7.910 0.937 304.23 2013.0 45.03
Hypo 9 9.767 0.902 451.68 1865.6 46.00

Hypo 10 9.830 0.901 456.44 1860.8 47.18

[l root mean square deviation; Plsquared correlation coefficient; [ overall cost parameter of the
PH4 pharmacophore; [4 cost difference between null cost and hypothesis total cost; [l lowest cost
from 49 scrambled runs at a selected level of confidence of 98%. The fixed cost = 21.24, with RMSD
=0, the null cost = 2317.26, with RMSD = 22.65 and the configuration cost = 11.85.

The standard indicators such as the RMSDs between the hypotheses ranged from
0.79 to 9.83 and the squared correlation coefficient (R?) falls to an interval from 0.90 to
0.99. The first PH4 hypothesis with the best RMSD and R? was retained for further anal-
ysis. The statistical data for the set of hypotheses (costs, RMSD, R?) are listed in Table 4.
The geometry of the Hypol pharmacophore of FP3 inhibition is displayed in Figure 5.
Table 5 lists the regression equation (Table 3) for pICg,” vs. pICE,® estimated from Hy-
pol with related indicators such as R?, R%,, Fisher F-test, ¢ and a, while Figure 6 dis-
plays a plot of regression equation for pICg,” vs.pICE;®. To check the consistency of the

generated pharmacophore model, we have computed the ratio of predicted and observed
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activities (pICE;°/(pICsy") for the validation set. The computed ratios are as follows:
PEP26 (1.01), PEP28 (1.01), PEP36 (1.01) all of them relatively close to one, which docu-
ments the substantial predictive power of the regression for the best PH4 model.
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Figure 5. (a) Features of the Hypol pharmacophore of FP3 inhibition; (b) pharmacophore mapping by the most active of
the training set PEP39; (c) inter-features distances in A; (d) angles between features. Colours legend of features: hydro-
phobic (blue), hydrogen bond acceptor (green), hydrogen bond donor (purple), excluded volumes (grey).
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Figure 6. Plot of estimated and experimental activity for PH4 Hypo 1.

Table 5. Statistical data on regression analysis of correlation for the training set between PH4 pre-
pre exp

dicted activity (pICg, ) and experimental one (pIC;,") against FP3. pICE’ép =— loglO(Ingp X 10_9) =
1.0002 x pICE;® — 0.0012.

Statistical Data of Linear Regression

Number of compounds n 9
Squared correlation coefficient of regression R? 0.99
Leave-one-out cross-validated squared correlation Coefficient R2, 0.99
Standard error of the regression o 0.04
Statistical significance of regression, Fisher F-test 5675.56
Level of statistical significance a > 98%
Range of activities of ICSy" (NM) 60-47,230

The configuration cost (11.85 for all hypotheses) far below 17 confirms this phar-
macophore as a reasonable one.

The link between the 98% significance and the number 49 scrambled runs of each
hypothesis is based on the formula S = [1 - (1 + X)/Y] x 100, with X as the total number of
hypotheses having a total cost lower than the original hypothesis (Hypo 1) and Y the total
number of HypoGen runs (initial + random runs): X =0 and Y = (1 +49), hence 98% = {1 -
[(1+0)/(49 + 1)]} x 100.

The evaluation of Hypo 1 was performed first through Fisher’s randomisation
cross-validation test. The Cat-Scramble program was used to randomise the experimental
activities of the training set. At 98% confidence level, each of the 49 scramble runs created
10 valid hypotheses, using the same features and parameters as in the generation of the
original 10 pharmacophore hypotheses.

Among them, the cost value of Hypol is the lowest compared with those of the 49
randomly generated hypotheses, as we can see in Table 4, where the lowest cost of the 49
random runs is listed for each original hypothesis, and none of them was as predictive as
the original hypotheses generated shown in Table 4. Thus, there is a 98% probability that
the best selected hypothesis Hypol represents a pharmacophore model for inhibitory
activity of peptidomimetics with a similar level of predictive power as the complexation
QSAR model, which relies on the PEPx active conformations from 3D structures of the
FP3-PEPx complexes and computed GFE of enzyme-inhibitor binding AAG,y,. Another
evaluation of Hypo 1 is the mapping of the best active training set PEP39 (Figure 5) dis-
playing the geometry of the Hypol pharmacophore of FP3 inhibition. The regression
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equation for plCg," vs. pICE, estimated from Hypol: pICgiP = 1.0002 x pICE® —
0.0012 (n=9, R? =0.99, RZ, =0.99, F-test = 5675.56, 0 = 0.04, & > 98 %) is also plotted on
Figure 5.

3.5. Library Design and ADME Focusing

In order to identify more potent PfFP3 peptidomimetics inhibitors, we have built a
virtual library of new analogues inhibitors of PfFP3 based on substitutions at four posi-
tions (P1', P1, P2 and P3) of a scaffold of a dipeptidic compound in order to better FP3
active site four pockets S1', S1, S2 and S3 [30]. This virtual library was built from the side
chains of 20 essential amino acids except the proline side chain. The 19 R-groups listed in
Table 6 have been attached in positions Ri to R4 of the appropriate scaffold to provide a
combinatorial library of the size: R; X R, X Rz X R, = 19* = 130,321 PEPAs.

Table 6. R-groups (amino acid side chains) used in the design of the initial diversity library of PEP
analogues. Dashed bonds indicate the attachment points of the fragments.

0 Ry
R4 N o
\{( N
o Rs Ry
2 3

1 4 -CH:-CH(CHs)

[Gly] -H [Ala] ~CHs [Val] ~CH(CH) [Leu] 2
5 6 7 8
(Tle] —C(CHs)-Cz2Hs [Met] —(CH2)>-S5-CHs [Cys] -CH:-SH [Ser] -CH:-OH
° _chonycrs 1 _cHecoon M cHycoon ' _cH-coNH
[Thr] * [Asp] ? [Glu] 22 [Asn] ? ?
13 ~(CH::-CON 14 ~ 15 —(CH2-NH-C(NH)- 16 ‘{\ \H
[GIn] H [Lys] (CHz)-NH: [Arg] NH: [His] N)

It should be noted that one of the important criteria for the design of new antima-
larials, is their oral bioavailability in the context of oral delivery. Structural information
provided from these peptidomimetic computational studies can guide the design of
novel antimalarial inhibitors of FP3 deliverable by injection. Therefore, no ADME-based
focusing step in order to remove compounds with expected poor oral bioavailability and
low drug likeness was performed for the enumerated combinatorial library [64].

3.6. Screening PEPs Virtual Library Using the Obtained in Silico Model

The library of PEP analogues has been further virtually screened for molecular
structures matching to the 3D-QSAR PH4 pharmacophore model Hypol of FP3 inhibi-
tion. During this virtual screening, 1000 conformations were generated for each analogue
using the BEST algorithm of Discovery Studio 2.5. Thus 130,321,000 conformations were
screened to fit the 3D-QSAR PH4 pharmacophore model Hypol retained in this work.
From the set of 130,321,000 analogues, few thousands of PEPAs mapped to at least two
features, 242 of which mapped to four features of the pharmacophore.Out of then, only
the 21 best-fitting analogues (PH4 hits) have been retained and submitted to screening
with help of the complexation QSAR model. Their Gibbs free energy (GFE) upon com-
plex formation with PfFP3 has been computed along with its component and their pre-
dicted half-maximal inhibitory concentration IC2;° has been estimated with the correla-
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tion the equation on Table 3. The results obtained are given in Table 7. Of the 21 ana-
logues whose inhibitory activities were predicted in Table 7, 13 showed better activities
than the most active compound of the training set among them four showed even more
activity: PEP-17-03-14-10 (ICE° = 0.29 nM); PEP-08-15-18-19 ( ICE;° = 0.19 nM);
PEP-13-06-04-19 (ICE,°= 0.10 nM); PEP-14-14-14-18 (ICE,°= 0.07 nM).

Table 7. Complexation Gibbs free energy and its components for the top 21 scoring virtually de-
signed analogues. The analogue numbering concatenates the index of each substituent R1 to R4
numbered in Table 6.

Analogues 1 My ®  AAHym @ AAGgy ™ AATSyp @ AAGeon 1 ICES (nM) &
PEP23 482.61 0.00 0.00 0.00 0.00 36,360
PEP-14-19-04-01 400.53 5.54 -6.82 0.75 -2.03 9580.30
PEP-15-04-17-01 389.50 -1.05 -6.59 0.72 -8.36 8.76
PEP-15-04-18-01 405.50 -4.11 -1.27 1.32 -6.69 55.75
PEP-05-12-19-03 428.54 -5.96 1.25 1.43 -6.14 102.41
PEP-15-04-17-03 431.58 -6.25 -2.27 2.78 -11.30 0.34
PEP-18-05-14-03 419.57 -6.60 -1.08 2.02 -9.70 2.00
PEP-01-19-18-04 435.53 -5.83 -2.45 -1.49 -6.79 49.62
PEP-18-19-15-04 534.66 -5.78 -6.88 -2.56 -10.10 1.29
PEP-17-03-14-10 405.50 -7.71 -1.01 2.73 -11.45 0.29
PEP-04-07-19-14 446.62 -7.68 4.89 1.27 -4.07 1009.94
PEP-17-09-19-15 506.61 -12.07 11.41 2.83 -3.49 1906.57
PEP-04-06-05-17 420.62 -5.31 -2.99 0.55 -8.85 5.13
PEP-05-03-18-18 45457 -1.58 -0.74 0.57 -2.90 3676.95
PEP-14-14-14-18 463.63 -9.46 -2.40 0.91 -12.76 0.07
PEP-02-15-03-19 428.54 -3.28 -2.99 1.78 -8.05 12.35
PEP-03-08-15-19 44454 -2.26 -5.00 -0.81 -6.45 72.74
PEP-08-15-17-19 49258 -9.89 -0.26 0.54 -10.69 0.67
PEP-08-15-18-19 508.58 -12.30 0.84 0.38 -11.83 0.19
PEP-09-18-18-19 529.60 -7.61 -0.28 -0.19 -7.70 18.29
PEP-10-18-18-19 543.58 -10.16 -0.81 0.19 -11.15 0.40
PEP-13-06-04-19 474.63 -10.05 -1.60 0.76 -12.42 0.10

lalDesigned analogues; !l Mw represents molecular mass of the inhibitor; I AAHyy rep-
resents the relative enthalpic contribution to the Gibbs free energy change related to the
FP3-PEP complex formationAAG,p; 41 AAGg, represents the relative solvation Gibbs free
energy contribution to AAGen ; 1! AATS,;, represents the relative entropic (vibrational)
contribution to AAGgop; ! AAGeom represents the relative Gibbs free energy change re-
lated to the enzyme-inhibitor FP3-PEP complex formation (see Equation (9)); 18l ICE®
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represents the predicted inhibition constant towards PfFP3 calculated from AAGg,, us-
ing correlation (Table 3).

3.7. Analysis of New Inhibitors

In order to identify the substituents that make the analogues predicted to be active,
we have analysed the frequency of occurrence of certain substituents chosen from Table
7, on the predicted active analogues. From the four best analogues proposed (seen
chemical structure in Figure 7), the following R-groups are present 3, 4, 6, 8, 10, 13, 14, 15,
17, 18 and 19. Additionally, Figure 8 displays the best virtual hit, analogue
PEP-14-14-14-18 and the least active PEP32 mapped to a PH4. Figure 9 displays a 2D
schematic interaction diagram of the most potent inhibitor PEP39 and the most potent
analogue design at the active site of PfFP3 as well as the Connolly surface of the active
site of PfFP3.
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PEP-17-03-14-10 (IC2;°= 0.29 nM) PEP-14-14-14-18 (ICE;°= 0.07 nM)
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PEP 08-15-18-19 (1C2;°=0.19 nM) PEP-13-06-04-19 (IC5;°= 0.10 nM)

Figure 7. Chemical structures towards Pf FP3 of four most potent PEP analogues.

Figure 8. The best virtual hit, analogue PEP-14-14-14-18 (with purple carbons atoms), mapped a
PH4 Hypo 1.



Sci. Pharm. 2021, 89, 44 18 of 23

— CYs4s
SERS0 GLY48

@

GLN45

£r158 S0 His1e3
TRP215
242 181
\ ILE15&/

PRO181 '
GLU243 /‘ssmss ﬂ serzigd
RP215
ALAtS1
3 ===
%
/e il
ASNeg
% ¥/ |
\ =/GL Glyas CYS48
)
TYRO3
(9
Ny
THRE5 AN X
ILES4 TRPS2 Qsm Juus
A3 N~
1 ' 183
PRO181 /SERss ﬂ $
{
GLU243 / SER1SE RP215
YS89,
\ 6\49 cysas

LN45

\).. / e
ALATES ﬁ ]
P ceries SERZ
GLU243 P215

Figure 9. Connolly surfaces (left) and 3D (right) schematic interaction diagrams of the 4 most po-
tent analogues designed at the active site of PfFP3: (a) PEP-17-03-14-10 (ICIS)ge— 0.29 nM); (b)

PEP-08-15-18-19 (ICE;°= 0.19nM); (c) PEP-13-06-04-19 (lcgge— 0.10nM); (d) PEP-14-14-14-18 (IC5,°=
0.07 nM).
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The FP3-PEPs’ interaction energy breakdown to active site residues displayed on
Figure 10 is classified according to the enzyme’s four pockets S1, 52, S3 and S1’ for the top
four analogues (PEP-Top4). The interaction energy between FP3 and the most active
training set compound PEP39 (ICg;" = 60 nM) breakdown is presented on Figure 3 where
only residues with noticeable contributions are displayed. The sum of residues’ contri-
bution to Ej,; for the S1 pocket is almost the same for PEP39 and PEP-Top4 as is the case
for the S1’ pocket, where a slight difference of 1 kcal mol™ in favour of PEP-Top4 is no-
ticed. For pocket S2 PEP-Top4 the sum of energy is lower by about 5 kcal mol™* com-
pared with PEP39. The same stabilising effect of 6 kcal mol™ in favour of PEP-Top4 is
detectable for pocket S3.
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Figure 10. FP3-PEPs interaction energy breakdown for the top four ranked novel analogues.
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4. Conclusions

Structural information from the crystal structure of the FP3-K11017 complex has
been successfully used to establish a reliable QSAR model of non-covalent PfFP3 inhibi-
tion by peptidomimetic (PEP) inhibitors. This model correlates the unique descriptor,
namely the computed Gibbs free energies (GFE) upon complex formation, with observed
inhibitory potencies and is able to identify a few predicted low nanomolar range inhibi-
tors of P. falciparum. As GFE is a combined descriptor involving the enthalpic gas phase,
entropic contributions and solvation free energy, a precise insight into S1” and S3 pockets
filling has been performed from the model by analysis of interactions between the en-
zyme active-site residues and the inhibitor. For this purpose, the breakdown of the in-
teraction energy clearly indicated the residues involved in the affinity with the most ac-
tive inhibitors. This information has helped to design an initial diversity virtual combi-
natorial library of new analogues to be screened by the pharmacophore models derived
from the GFE QSAR. The screened library by mapping of the analogues to the PfFP3 in-
hibition PH4 pharmacophore permitted a library subset of 21 best virtual hits to be se-
lected, which was further submitted to the computation of predicted PfFP3 inhibitory
potencies by the formerly established complexation QSAR model. The best cross checked
analogues showed predicted activities in the low nanomolar concentration range, with
the most promising hits being PEP-08-15-17-19 (ICE;°= 0.67 nM); PEP-10-18-18-19 (ICE{°=
0.40 nM); PEP-15-04-17-03 (ICE°= 0.34 nM); PEP-17-03-14-10 (ICE;*= 0.29 nM);
PEP-08-15-18-19 (ICE°= 0.19 nM); PEP-13-06-04-19 (IC5,°= 0.10 nM); PEP-14-14-14-18
(ICE;°= 0.07 nM) against PfFP3. These four candidates are proposed for synthesis and bi-

50
ological screening and may lead to a discovery of novel potent peptidomimetic antimalarial.
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