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Abstract: For centuries, many kinds of native plants and their products have been used for the
treatment of gastric ulcers by traditional healers in Phayao province. The current study aimed to
investigate the polyphenol content in some of these medicinal plants and to point out the relationship
between their antioxidant capacity and anti-inflammatory activities. Six species were selected based
on ethnopharmacologic considerations: Punica granatum L., Psidium guajava L., Careya arborea Roxb.,
Gochnatia decora (Kurz) Cabr., Shorea obtusa Wall. ex Blume, and Ficus hispida L.f. The leaves or bark of
these plants were extracted with 70% ethanol and water. Anti-inflammatory and antioxidant activities
of the extracts were analyzed based on nitric oxide (NO) and proinflammatory cytokine production
in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and through the determination of
scavenging activity. The results demonstrated that the ethanol extract from P. granatum and P. guajava
leaves significantly inhibited NO production by suppressing nitric oxide synthase. The extracts also
inhibited tumor necrosis factor-α, interleukin-1, and interleukin-6 in terms of both mRNA and protein
levels and possessed high antioxidants. These extracts were shown to contain the highest amount of
polyphenols. Our study concluded that among the plants studied, P. granatum and P. guajava have the
most significant anti-inflammatory and antioxidant activities and polyphenols. These plants may have
the potential for use in gastric ulcer therapy due to their indicated properties. Future research should
focus on the isolation of their active compounds and their in vivo biological activities. Their beneficial
applications need to be warranted by such evidence.
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1. Introduction

Gastric ulcers are a common digestive disease, which are usually caused by Helicobacter pylori
(Hp), non-steroidal anti-inflammatory drugs (NSAIDs), or stress. The production of proinflammatory
mediators such as tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-6, nitric oxide synthase
(NOS), and NO is also a vital mechanism for ulceration [1–3]. Moreover, these inflammatory molecules
can react with free radicals, and this can result in the development of degenerative diseases [4].

Many researchers have revealed the relevance of gastrointestinal tract hormones and gastric
mucosal blood flow in the regulation of the body’s physiological activities. Previous studies have
shown that the administration of growth hormones can accelerate the healing of experimental
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gastroduodenal ulcers [5,6]. Increasing the level of ghrelin and obestatin in a rat with gastric ulcers
has also led to significant restitution of proper blood flow through mucosal microcirculation [7–10].
Moreover, the maintenance of gastric mucosal blood flow is essential for the evaluation of other
experimental gastrointestinal lesions such as pancreatitis and colitis [11–15].

Hp infection causes an inflammation which increases the production of proinflammatory
cytokines [16] and causes the stomach to produce more acid; this, in turn, leads to possible irritation
and injury of the stomach lining and epithelial cells [17].

NSAIDs are widely prescribed drugs, used for the reduction of pain and inflammation; however,
they can also cause gastrointestinal complications, such as ulcers and erosions [18]. NSAIDs lower the
stomach’s ability to make a protective layer of mucus and make it more susceptible to damage from
stomach acid. NSAIDs can also affect the flow of blood to the stomach, reducing the body’s ability to
repair cells. The mechanism by which NSAIDs can cause mucosal injuries is a result of the inhibition
of cyclooxygenase (COX) and the subsequent prostaglandin (PG) deficiencies that can occur. PG plays
an essential role in gastric mucosal defense. This effect is dependent on the prostaglandin-induced
stimulation of bicarbonate and mucous secretion, inhibition of gastric acid secretion, and regulation or
maintenance of epithelial cell restitution and mucosal blood flow [19–21].

COX has two isoforms—COX-1 is primarily responsible for PG synthesis in the GI tract,
whereas COX-2 is responsible for PG synthesis at inflammation sites. Narayanan et al. found
that the patients taking COX-2 inhibitors demonstrated lower incidences of ulceration at the level of
approximately 3%–5% when compared to those receiving traditional NSAIDs (nonselective; inhibiting
both COX-1 and -2), which have a 20%–40% incidence rate [17], making them safer for use in the GI
tract. The activities of COX-2 are necessary for the therapeutic effects of various peptides, such as
growth factors, calcitonin gene-related peptides (CGRPs), as well as some gut hormones including
gastrin, cholecystokinin (CCK), leptin, ghrelin, and gastrin-releasing peptides (GRPs) in the stomach.
Therefore, treatment with these peptides can reverse the harmful effects of COX-1 inhibitors on the
healing of ethanol-induced gastric ulcers [9,22].

Currently, several synthetic drugs are widely used for the management of inflammatory conditions;
nevertheless, these drugs may be responsible for different adverse side effects such as hypersensitivity,
arrhythmia, impotence, gynecomastia, and hematopoietic disorders [23]. In particular, though, they can
cause gastric irritation, which can lead to the formation of gastric ulcers [24,25]. Extracts from medicinal
plants, containing active compounds such as curcumin, polyphenols, flavonoids, proanthocyanidins,
and tannins, have been used for ulcer treatment [26–28]. There is an abundance of medicinal plants
worldwide that are used in this way, including those frequently used in Thailand to protect and heal
people from ulcers [29,30]. For centuries, the consumption of picked, decocted, infused, or boiled
preparations of many kinds of native plants have been used by traditional healers in Phayao province
for gastric ulcer treatment. However, information about the antioxidant and anti-inflammatory effects
as well as the level of polyphenols of their natural products used in the treatment of gastric ulcers has not
been intensively explored and reported. Thus, this study aimed to determine the anti-inflammatory and
antioxidant activities and polyphenols in six medicinal plants found in Phayao, and those potentially
effective for the treatment of gastric ulcer, namely, Punica granatum, Psidium guajava, Careya arborea,
Gochnatia decora, Shorea obtusa, and Ficus hispida.

2. Materials and Methods

2.1. Collection and Preparation of the Extracts

The six antiulcer medicinal plants to be studied were selected on the advice offered by Mr
Kaew Wandee, a traditional healer in Baan Tham, Dok Kham Tai district, Phayao province, Thailand.
They include P. granatum, P. guajava, C. arborea, G. decora, S. obtusa, and F. hispida. The findings
about the potential effectiveness of these plants are similar to those found in the in vivo and in vitro
studies previously reported [31–40]. Leaves from P. granatum and P. guajava and pieces of bark from
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C. arborea, G. decora, S. obtusa, and F. hispida were collected in Baan Tham, Dok Kham Tai, Phayao.
These botanical plants were identified by Dr. Boonchuang Boonsuk, Department of Biology, School of
Science, University of Phayao. All voucher specimens were deposited at the Queen Sirikit Botanic
Garden Herbarium (QBG), Mae Rim, Chiang Mai, Thailand. The voucher specimen numbers are as
follows: K. Phromnoi_1 (Punica granatum L.); K. Phromnoi_2 (Psidium guajava L.); K. Phromnoi_3
(Careya arborea Roxb.); K. Phromnoi_4 (Gochnatia decora (Kurz) Cabr.); K. Phromnoi_5 (Shorea obtusa
Wall. ex Blume); and K. Phromnoi_6 (Ficus hispida L.f.). The leaves or the pieces of bark from the plants
were dried and finely ground. The powder was extracted using a 70% ethanol (EtOH) and water (H2O)
solution, with occasional shaking overnight, and they were then filtered using Whatman paper No. 1.
The filtrate was removed using an evaporator and lyophilized to obtain the EtOH and water crude
extracts. Each extract was stored at 20 ◦C and suspended in dimethyl sulfoxide (DMSO) before use.

2.2. Phytochemical Screening Test

The evaluation of polyphenols was performed based on the method used by Mohammadi et
al [41], with some modifications. The extract was boiled in 10 mL distilled water. A few drops of 10%
FeCl3 solution were added. Blue-black precipitate indicated the presence of phenols. The study of
tannin was performed following the standard phytochemical analysis protocol described by Broadhurst
and Jones [42]. The extract was added with 1 mL of vanillin reagent, followed by one drop of HCl.
The red color showed the presence of tannins. The determination of leuco-anthocyanin was performed
according to the method indicated by Harborne [43], with some modifications. The extract was added
in 2N HCl 2 mL and boiled for 5 min. The red color indicated leuco-anthocyanin.

2.3. Total Phenolic Content (TPC)

TPC was determined using the Folin–Ciocalteu method. Briefly, a 20 µL portion of the extract was
mixed with 100 µL of 10% Folin- Ciocalteu reagent and 80 µL of 7.5% Na2CO3 and incubated for 30 min at
room temperature. The absorbance was measured at 765 nm. TPC was estimated using a standard curve
of gallic acid and expressed as milligram gallic acid equivalents per 1 g fraction (mg GAE/g fraction).

2.4. Total Flavonoid Content (TFC)

TFC was examined using the aluminum chloride colorimetric method. Briefly, 25 µL of the extract
and 125 µL deionized water were mixed with 7.5 µL of 5% NaNO2 solution. Then, a 15 µL portion
of 10% AlCl3 was added and incubated. Color development was performed by adding 50 µL of
1 M NaOH. The final volume of the reaction mixture was adjusted to 250 µL using deionized water.
The absorbance was measured at 510 nm. TFC was calculated using a standard curve of catechin and
expressed as milligram of catechin equivalents per 1 g fraction (mg CE/g fraction).

2.5. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay

The free-radical scavenging capacity of the extract was analyzed using the DPPH test according to
the method used by Chumphukam et al. [44], with some modifications. Ascorbic acid and Trolox were
used as a reference standard. The samples (20 µL) of various concentrations were mixed with 180 µL
of freshly prepared DPPH methanolic solution and kept in the dark for 30 min; then, the absorbance at
540 nm was measured. Results were expressed as 50% DPPH decolorization (IC50)

2.6. 2,2’-Azino-bis-3-ethylbenzthiazoline-6-sulfonic Acid (ABTS) Radical Scavenging Assay

The ABTS free radical-scavenging assay was performed as previously described [45], with some
modifications. The ABST solution was diluted in potassium persulfate and kept in the dark for
12–14 h. Before use, this solution was diluted with distilled water to give an absorbance at 734 nm of
approximately 0.70. The various concentrations of each fraction (10 µL) were mixed with 990 µL of
working diluted ABTS and incubated for 6 min in the dark. The decrease in absorbance was measured
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at 734 nm. The reference standards were Trolox and ascorbic acid. Results were expressed as 50%
ABTS decolorization (IC50).

2.7. Cell Culture

Mouse macrophage RAW 264.7 cells (ATCC Manassas, VA, USA) were cultured in DMEM
containing 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin-streptomycin under 5%
CO2, and 95% air at 37 ◦C.

2.8. Cell Viability Assay

The RAW 264.7 cells (5 × 103 cells/100 mL/well) were seeded into each well of a 96-well plate and
incubated for 24 h. Then, the extracts were treated at different concentrations (0-800 µg/mL) for 24 h.
A 20 µL portion of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) was added
and further incubated at 37 ◦C for 4 h. The excess MTT dye solution was removed, and only MTT
formazan that stained the living cells was redissolved in DMSO. The color intensity was measured at
540 and 630 nm using a microplate reader [46].

2.9. NO Production Assay

The NO production was determined using Griess colorimetric assay, according to the
manufacturer’s protocol (Sigma-Aldrich, St. Louis, MO, USA) and modified from Chumphukam
et al. [44]. The RAW 264.7 cells (5 × 103 cells/100 mL/well) were incubated with a non-toxic dose
of the extract ((0-800 µg/mL) for 2 h. Then, 1 µg/mL LPS was added to induce inflammation, and
further incubated for 24 h. Afterward, the culture medium was mixed with 100 µL of Griess reagent
and incubated at room temperature for 15 min before measuring the color change at 540 nm using a
microplate reader.

2.10. Total RNA Extraction and cDNA Preparation

Total RNA of RAW 264.7-treated cells was isolated using a NucleoSpin®RNA kit (Macherey-Nagel,
Düren, Germany). RNA was dissolved with RNase-free water; we then measured the RNA
concentration and synthesized the complementary DNA (cDNA) using a ReverTra Ace®qPCR
RT Kit (TOYOBO, Osaka, Japan).

2.11. Quantitative Real-Time PCR (qPCR)

To measure iNOS, COX-2, TNF-α, IL-6, and IL-1β mRNA expression, the cDNA was amplified in
a 7500 Real-time PCR system (Applied Biosystem, Thermo Fisher Scientific, Waltham, Massachusetts,
USA) using a SensiFAST SYBR®Lo-ROX Kit (Bioline, Singapore) as described in the manufacturer’s
protocol. GAPDH was used as a reference gene [47].

2.12. Enzyme-Linked Immunosorbent Assay (ELISA)

The LPS-induced TNF-α, IL-6, and IL-1β secretion in RAW 264.7 cells was analyzed using a
sandwich ELISA assay kit (Biolegend, San Diego, CA, USA). Culture medium was collected and
detected the production of proinflammatory cytokines according to the manufacturer’s protocol.

2.13. Statistical Analysis

The statistical analysis was determined using one-way ANOVA. The significant differences at the
levels of p < 0.05, p < 0.01 and p < 0.001 were determined by Tukey’s honestly significant difference
multiple comparison test using IBM SPSS Statistics 22 (IBM Corp., Armonk, NY, USA). Excel software
was used to plot the graphs.
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3. Results and Discussion

3.1. Phytochemical Screening

In general, plants that are classified as medicinal can contain many groups of phytochemicals,
mainly polyphenols, tannins, and leuco-anthocyanins, which have pharmacological properties
(e.g., antiulcer, antioxidant, and anti-inflammatory activities, and others) [48–52]. For this
report, polyphenols and classes of polyphenols, including tannins and leuco-anthocyanins, were
colorimetrically measured in a sample of six selected medicinal plants found in Phayao (Table 1). The
results indicated that each extract contained different ingredients, which could lead to various % yields,
colors, and differences in appearance for the extracts [53,54].

Table 1. Phytochemical screening test.

Scientific Name Used Part Polyphenols Tannins Leuco-Anthocyanins

Punica granatum L. Leaf † † −

Psidium guajava L. Leaf † † −

Careya arborea Roxb. Bark † † †

Gochnatia decora (Kurz) Cabr. Bark † − −

Shorea obtusa Wall. ex Blume Bark † † −

Ficus hispida L.f. Bark † − †

† signifies found; − signifies not found.

3.2. TPC and TFC of the Extracts

TPC and TFC results found that the highest amount of phenolics was detectable in P. granatum
EtOH extracts, and the lowest amount in F. hispida water extracts. The EtOH extracts of P. guajava
contained the highest amount of flavonoids, whereas the lowest amounts were showed in S. obtusa
EtOH extracts (Table 2). This result is similar to those of previous reports that have found P. granatum
and P. guajava EtOH extracts to have high levels of polyphenols and flavonoids [31,55,56]. The most
active compound in P. guajava was found to be quercetin along with two flavonoid compounds, namely,
quercetin-3-O-glucopyranoside and morin [57]. Most of the EtOH extracts showed higher phenolic
and flavonoid contents than the water extracts. Interestingly, traditional healers prepare these antiulcer
plants by pickling them in alcohol more frequently than by boiling them in water or through decoction.
Therefore, in our study, only EtOH plant extracts were selected for further experimentation.

Table 2. Total phenolic and flavonoid compounds contained in the EtOH and water extracts.

Medicinal Herbs
TPC (mg GAE/g Extract) TFC (mg CAE/g Extract)

EtOH Water EtOH Water

P. granatum/leaf 410.04 ± 2.06 e 235.79 ± 0.89 c 23.39 ± 2.10 b 13.06 ± 1.74 a

P. guajava/leaf 315.77 ± 1.41 d 274.78 ± 9.51 d 90.83 ± 1.15 d 59.58 ± 3.56 c

C. arborea/bark 252.34 ± 11.88 c 208.58 ± 10.36 c 27.32 ± 1.52 b 34.54 ± 5.51 b

G. decora/bark 62.99 ± 4.89 a 98.64 ± 7.17 b 28.24 ± 3.2 b 25.68 ± 3.08 b

S. obtusa/bark 332.15 ± 24.01 d 301.81 ± 21.36 d 4.54 ± 1.32 a 8.25 ± 1.39 a

F. hispida/bark 151.49 ± 5.70 b 58.91 ± 4.13 a 77.45 ± 4.51 c 26.28 ± 0.80 b

The values are expressed as mean ± SD (n = 3). Means with different letters in the same column are significantly
different (p < 0.05).

3.3. DPPH and ABTS Radical Scavenging Assay

In this assay, the antioxidant capacity of the EtOH extracts was determined through the inhibition
of DPPH and ABTS radicals. For the DPPH assay, the highest antioxidant activity (IC50) was shown in
P. granatum, followed by C. arborea, P. guajava, S. obtusa, F. hispida, and G. decora, respectively. For the
ABTS assay, P. granatum was also shown to have the highest antioxidant activity, followed by C. arborea,
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S. obtuse, P. guajava, F. hispida, and G. decora, respectively. Notably, our results demonstrated that
the IC50 values of P. granatum and P. guajava were nearly equal to the values of ascorbic acid and
Trolox, used as a reference standard (Table 3). In a comparison of the antioxidant capacity determined
by ABTS and DPPH assays, our results showed that the activity recorded by the former test was
significantly higher than in the latter one. Furthermore, ABTS is used to target oxygen radicals
commonly found in our bodies, whereas DPPH is used to target nitrogen radicals that are rarely
presented in living organisms [58,59]. These studies confirm that the ABTS assay is more reliable
than the DPPH assay for determining antioxidant activity in numerous natural products. Our results
are similar to those of the previous studies, reported by Bekir et al., that the methanolic extract from
P. granatum leaves presented an excellent IC50 using DPPH and ABTS assays [60]. Inconsistent with
the study of Amjad and Shafighi, it was suggested that the antioxidant activity of P. granatum leaves
had a direct relationship with phenolic compounds [61]. Fernandes et al. also found that P. guajava leaf
extracts had significant antioxidant and anti-inflammatory activities in vitro and in human cells [62].
With respect to C. arborea, the study of Senthilkumar et al. confirmed that C. arborea bark aqueous and
methanol extracts contained high total phenolic content and demonstrated potent antioxidant activity
against many oxidants in vitro [63].

Table 3. Antioxidant activity of the EtOH extracts by DPPH and ABTS methods.

Medicinal Herbs
IC50 (µg/ml)

DPPH Assay ABTS Assay

P. granatum/leaf 8.72 ± 0.64 b 2.21 ± 0.01 a

P. guajava/leaf 11.62 ± 0.49 b 3.77 ± 0.16 c

C. arborea/bark 10.15 ± 0.05 b 2.75 ± 0.08 b

G. decora/bark 94.21 ± 3.12 e 20.52 ± 0.56 e

S. obtusa/bark 19.75 ± 0.45 c 2.85 ± 0.03 b

F. hispida/bark 46.88 ± 0.82 d 10.00 ± 0.04 d

Ascorbic acid 6.81 ± 0.01 a 2.44 ± 0.10 a

Trolox 8.83 ± 0.07 b 3.42 ± 0.01 c

The values are expressed as mean ± SD (n = 3). Means with different letters in the same column are significantly
different (p < 0.05).

3.4. Effects of the Extracts on Cell Viability

The potential cytotoxicity of the extracts was evaluated using MTT assay, after incubating the cells
for 24 h with 0-800 µg/mL extract. All crude extracts did not show a cytotoxic effect at a concentration
of up to 800 µg/mL extract, compared to that of non-treated control. Thus, the anti-inflammatory effect
of a non-toxic dose (0-800 µg/mL) was subsequently determined.

3.5. Effects of the Extracts on the Production of NO

NO, a well-known proinflammatory mediator, is synthesized by iNOS and is involved in many
physiological and pathological process. As a result, the suppression of NO production has been
characterized as an effective new pharmacological strategy for the treatment of inflammation-related
disease [64]. As displayed in Figure 1, only the extracts from P. granatum and P. guajava leaves
were shown to markedly inhibited LPS-induced NO production as compared with the LPS-treated
group. These results are confirmed by a previous report that showed that P. guajava leaf extract
significantly inhibited the production of NO and prostaglandin E2 (PGE2) [65]. According to Berkoz
and Allahverdiyev’s experiments, punicalagin, hydrolysable tannins, isolated from P. granatum can
decrease the production of NO in a dose-dependent manner without affecting the viability of cells [66].
P. granatum and P. guajava leaf extracts exhibited high antioxidant activity and a high level of No
inhibition, but the bark extracts of C. arborea, G. decora, S. obtusa, and F. hispida did not show such
high levels of these activities. Therefore, only P. granatum and P. guajava extracts were further
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evaluated in terms of the anti-inflammatory effects of LPS-stimulated RAW 264.7 macrophages.
Indeed, the researchers sought to identify the mechanisms responsible for these effects.

Sci. Pharm. 2019, 87, x FOR PEER REVIEW 7 of 12 

 

decrease the production of NO in a dose-dependent manner without affecting the viability of cells 
[66]. P. granatum and P. guajava leaf extracts exhibited high antioxidant activity and a high level of 
No inhibition, but the bark extracts of C. arborea, G. decora, S. obtusa, and F. hispida did not show such 
high levels of these activities. Therefore, only P. granatum and P. guajava extracts were further 
evaluated in terms of the anti-inflammatory effects of LPS-stimulated RAW 264.7 macrophages. 
Indeed, the researchers sought to identify the mechanisms responsible for these effects. 

 
Figure 1. Effects of the extracts on the production of NO in LPS-stimulated RAW 264.7 macrophages. 
Cells were pretreated with various concentrations (0–800 μg/mL) of each extract for 1 h and then 
stimulated with LPS (1 μg/mL) for 18 h. NO production was determined using Griess reagent. 1, control; 
2, LPS treatment; 3, P. granatum; 4, P. guajava; 5, C. arborea; 6, G. decora; 7, S. obtusa; 8, F. hispida. The data 
illustrates the mean of three independent experiments, each performed in triplicate (n=3). Error bars 
indicate SD. (Significant versus the non-treated control, # p < 0.001; significant versus LPS treatment, * 
p < 0.05, ** p < 0.01)  

3.6. Effects of the Extracts on Proinflammatory Cytokine Expression and Production 

Upon an occurrence of inflammation in the body, macrophages are activated to produce 
proinflammatory mediators (NO), which are synthesized by iNOS. Other proinflammatory cytokines, 
TNF-α, IL-β, and IL-6, are known to contribution to tissue damage and multiple organ failure. They 
are also considered to be important initiators of the inflammatory response and mediators of the 
development of various inflammatory diseases [67]. Moreover, COX-2 is an enzyme that generates 
PG, which is induced by proinflammatory cytokines and other activators, such as LPS, resulting in the 
release of a large amount of PGE2 in inflammation sites [68]. Therefore, the identification of COX-2 
inhibitors is considered to be a promising approach for protecting against inflammation and 
tumorigenesis. 

The result of the qPCR assay (Figure 2) found that the leaf extracts ameliorated inflammation 
through the inhibition of the inflammatory mediators; see the iNOS, TNF-α, IL-6, and IL-1β mRNA 
expression below (Figure 2A–D). However, the extracts could not inhibit LPS-stimulated COX-2 
mRNA expression (Figure 2E). For the ELISA assay (Figure 3), the extracts also decreased the 
subsequent release of cytokines, namely, TNF-α, IL-6, and IL-1β. This is inconsistent with a previous 
study that demonstrated the promising acute anti-inflammatory activity of P. guajava leaf in Wistar rats 
[69]. P. guajava leaf was also shown to have suppressed the expression and activity of both iNOS and 
COX-2 through the downregulation of ERK1/2 activation [65]. P. granatum leaf extracts can be used to 
reduce NO production and cytokine gene expression during LPS treatment [70]. Hydrolyzable 

Figure 1. Effects of the extracts on the production of NO in LPS-stimulated RAW 264.7 macrophages.
Cells were pretreated with various concentrations (0–800 µg/mL) of each extract for 1 h and then
stimulated with LPS (1 µg/mL) for 18 h. NO production was determined using Griess reagent. 1,
control; 2, LPS treatment; 3, P. granatum; 4, P. guajava; 5, C. arborea; 6, G. decora; 7, S. obtusa; 8, F. hispida.
The data illustrates the mean of three independent experiments, each performed in triplicate (n=3).
Error bars indicate SD. (Significant versus the non-treated control, # p < 0.001; significant versus LPS
treatment, * p < 0.05, ** p < 0.01).

3.6. Effects of the Extracts on Proinflammatory Cytokine Expression and Production

Upon an occurrence of inflammation in the body, macrophages are activated to produce
proinflammatory mediators (NO), which are synthesized by iNOS. Other proinflammatory cytokines,
TNF-α, IL-β, and IL-6, are known to contribution to tissue damage and multiple organ failure.
They are also considered to be important initiators of the inflammatory response and mediators of the
development of various inflammatory diseases [67]. Moreover, COX-2 is an enzyme that generates
PG, which is induced by proinflammatory cytokines and other activators, such as LPS, resulting
in the release of a large amount of PGE2 in inflammation sites [68]. Therefore, the identification
of COX-2 inhibitors is considered to be a promising approach for protecting against inflammation
and tumorigenesis.

The result of the qPCR assay (Figure 2) found that the leaf extracts ameliorated inflammation
through the inhibition of the inflammatory mediators; see the iNOS, TNF-α, IL-6, and IL-1β mRNA
expression below (Figure 2A–D). However, the extracts could not inhibit LPS-stimulated COX-2 mRNA
expression (Figure 2E). For the ELISA assay (Figure 3), the extracts also decreased the subsequent
release of cytokines, namely, TNF-α, IL-6, and IL-1β. This is inconsistent with a previous study that
demonstrated the promising acute anti-inflammatory activity of P. guajava leaf in Wistar rats [69].
P. guajava leaf was also shown to have suppressed the expression and activity of both iNOS and COX-2
through the downregulation of ERK1/2 activation [65]. P. granatum leaf extracts can be used to reduce
NO production and cytokine gene expression during LPS treatment [70]. Hydrolyzable tannins from
P. granatum were also shown to have significantly decreased carrageenan-induced mice paw edema
and to have inhibited iNOS and COX-2 expression [66,71].
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represents P. granatum, black bar represents P. Guajava (Significant versus the non-treated control,
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4. Conclusions

In conclusion, six medicinal plants were selected according to the advice offered by the healer,
with respect to their potential effectiveness in antiulcer treatment. Our results showed that only the
leaves of P. granatum and P. guajava have powerful radical scavenging capacities as well as strong
anti-inflammatory activities. The leaf extracts were shown to have ameliorated inflammation through
inhibition of both mRNA and protein levels of inflammatory mediators. It is proposed that such
activities may be caused by the presence of a high amount of different polyphenols. The findings
support the effectiveness of medicinal plants used by traditional healers in the treatment of gastric ulcers.
Future research should verify the effects of P. granatum and P. guajava leaf extracts in experimentally
induced ulcers, and point out the bioactive phytochemicals.
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