
Scientia 

Pharmaceutica

Communication

NO-Donor Nitrosyl Iron Complex with
2-Aminophenolyl Ligand Induces Apoptosis and
Inhibits NF-κB Function in HeLa Cells

Tatiana Stupina 1, Anastasia Balakina 1, Tatiana Kondrat’eva 1, Galina Kozub 1,
Natalia Sanina 1,2,3 and Alexei Terent’ev 1,2,3,*

1 Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; stupina.tat@gmail.com (T.S.);
stasya.balakina@gmail.com (A.B.); konta@icp.ac.ru (T.K.); kozub@icp.ac.ru (G.K.); sanina@icp.ac.ru (N.S.)

2 Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University,
119991 Moscow, Russia

3 Medicinal Chemistry Research and Education Center, Moscow Region State University,
141014 Mytishchi, Russia

* Correspondence: alexei@icp.ac.ru; Tel.: +7-496-522-7779

Received: 5 September 2018; Accepted: 9 October 2018; Published: 11 October 2018
����������
�������

Abstract: NO donating iron nitrosyl complex with 2-aminothiophenyl ligand (2-AmPh complex)
was studied for its ability to cause cell death and affect nuclear factor kappa B (NF-κB) signaling.
The complex inhibited viability of HeLa cells and induced cell death that was accompanied by
loss of mitochondrial membrane potential and characteristic for apoptosis phosphatidylserine
externalization. At IC50, 2-AmPh caused decrease in nuclear content of NF-κB p65 polypeptide and
mRNA expression of NF-κB target genes encoding interleukin-8 and anti-apoptotic protein BIRC3.
mRNA levels of interleukin-6 and anti-apoptotic protein BIRC2 encoding genes were not affected.
Our data demonstrate that NO donating iron nitrosyl complex 2-AmPh can inhibit tumor cell viability
and induce apoptosis that is preceded by impairment of NF-κB function and suppression of a subset
of NF-κB target genes.
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1. Introduction

Since the discovery of important roles of nitric oxide (NO) in biology [1–3], there has been
an exponential growth of interest in its biochemistry and in studying nitrosyl transition metal
complexes, particularly, biomimetic complexes of iron and copper [4–6]. During the last decade,
mono- and binuclear nitrosyl complexes of tetrahedral iron with functional sulfur-containing ligands,
being mimetics of active centers of nitrosyl non-heme [nFe-mS] proteins, have been of interest for
researchers as the basis for developing new medicines [7–14]. Nitrosyl iron complexes (NICs)
of the general structure [Fe2(SR)2(NO)4] with R ligand being aliphatic or aromatic thioamines
have been shown to have a potential as therapeutic agents [15]. For example, cardioprotective
effect of NIC with penicillamine ligand was demonstrated on the model of heart injury caused by
ischemia/reperfusion [16]. NIC with cysteamine ligand suppressed the formation of bacterial biofilms
with efficiency comparable to that of the antibiotic ciprofloxacin [17]. Antitumor potential of NICs
with thioamine ligands has been also demonstrated [18–20].

The thioamine ligands of these NICs can inhibit DNA synthesis [21] and cell growth [22,23],
while the NO moieties confer additional activities related to biological effects of nitric oxide. NO has
been found to take part in the regulation of both cell survival and cell death. Multiple mechanisms
have been suggested for the regulation of apoptosis by NO that involve the direct effects of NO on
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heme-containing enzymes (e.g., soluble guanylate cyclase), generation of reactive nitrogen species,
and post-translational modifications [24–29]. All proposed mechanisms can underlie both pro- and
anti-apoptotic effects of NO, and the resulting effects on the cell proved to be dependent on both NO
concentration (and/or generation rate) and the cell type [24,25,28,29].

A number of transcription factors have been shown to be responsible for the effects of NO
on cell survival [27,30–32]. Among others, the NF-κB signaling pathway has emerged during the
last few decades as a target for pharmacological modulation for cancer therapy, since constitutive
activation of NF-κB proved to be a common feature of most major human cancers [33,34]. The cell
survival promoted by NF-κB involves activation of anti-apoptotic genes, e.g., anti-apoptotic Bcl-2
family members, the inhibitors of apoptosis proteins (IAPs) family, tumor necrosis factor receptor
associated factor (TRAF), and others, which in turn confers resistance of cells to apoptosis triggered
via receptor- or mitochondria-mediated pathways [27,33,35]. Thus, the paradigm of NF-κB pathway
targeting in cancer therapy implies the inhibition of anti-apoptotic activity of NF-κB [36].

Inhibition of NF-κB by NO can occur via several mechanisms. NO donors impair nuclear
localization of NF-κB [37–41] through stabilization of the inhibitor protein IκBα [41–44] that is a
consequence of suppression of the inhibitory κB kinase (IKK) [43,44]. On the other hand, NO donors
inhibit DNA binding of NF-κB [45–48]. Though the observed DNA binding suppression can be related
to the impairment of nuclear translocation under certain experimental conditions, NO donors were
shown to cause S-nitrosylation of NF-κB that accounts for the loss of DNA binding [46]. S-nitrosylation
can be responsible also for other effects exerted by NO on NF-κB [49,50]. Yet another NO-induced
posttranslational modification, the tyrosine nitration, has been demonstrated to lead to cytoplasmic
retention of p65 subunit of NF-κB [51].

Inhibition of NF-κB functions by NO leads to suppression of its anti-apoptotic target genes, which
in turn augments apoptotic response in cancer cells [27,31,32]. Thus, nitric oxide exhibits versatile
effects on NF-κB, and both NO and NF-κB are considered as important modulators of cellular functions
relevant to the cancer therapy. Recently, NO-donor NIC bearing thioamine ligand with the amino
group in the ortho-position of the phenyl ring, the 2-AmPh complex, has been synthesized and found
to donate NO in a pH dependent manner and to be toxic towards a number of cancer cell lines of
different origin [19].

Here we present data demonstrating that 2-AmPh induces apoptotic cell death in HeLa cells that
is preceded by inhibition of NF-κB function as evidenced by the decrease in the nuclear content of p65
subunit of NF-κB and inhibition of some NF-κB target genes.

2. Materials and Methods

2.1. Synthesis of 2-AmPh

2-AmPh complex (Figure 1) was synthesized according to the method designated “method 1”
in [19]. In brief, an aqueous mixture containing 0.3 g of KOH and 0.62 g of 2-aminothiophenol
in 20 mL was added to 20 mL of aqueous solution of 0.496 g of Na2S2O3·5H2O and 0.57 g of
Na2[Fe2(S2O3)2(NO)4]·4H2O under an argon atmosphere. The complex was obtained as a precipitate
that was collected by filtration. After desiccation, the complex was recrystallized from acetonitrile.
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2.2. Cell Culture

The experiments were carried out on HeLa cell culture, M subclone (purchased from the Russian
Collection of Cell Cultures of Vertebrates, Institute of Cytology RAS, St. Petersburg, Russia). The cells
were cultured at 37 ◦C in an atmosphere of 5% CO2 in the Eagle’s minimum essential medium
(EMEM) supplemented with 10% fetal calf serum and antibiotics (100 U/mL penicillin and 100 µg/mL
streptomycin).

2.3. Cytotoxicity Studies

Cytotoxicity was studied using MTT assay. Cells were plated in 96-well plates (5 × 103 cells
per well) 24 h before experiments in the standard incubation medium. The complex 2-AmPh was
dissolved in DMSO immediately before use and added into the incubation medium. The final DMSO
concentration in all samples was 0.1%. After 24 h of incubation in the presence of 2-AmPh, cells were
stained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at the concentration
of 0.45 mg/mL for 4 h, then the medium was aspirated and MTT-formazan was dissolved in 100 µL of
DMSO. The staining intensity was measured at 570 nm and background absorption was determined at
620 nm. MTT staining of cells treated with DMSO was taken as 100%. The IC50 values were calculated
using the median effect analysis [52].

2.4. Flow Cytometry

Cells were seeded to 10 cm cell culture dishes (106 cells per dish). 24 h after seeding, cells were
exposed to 2-AmPh at the IC50 for 24 h. Control cells were exposed to 0.1% DMSO. After exposure to
test compounds, cells were collected by trypsinization and washed thrice with PBS (pH 7.4).

To study the cell cycle profile, cells were fixed and permeabilized by a dropwise addition of 70%
ethanol pre-chilled to −20 ◦C followed by holding at 4 ◦C for at least 12 h. Ethanol from the fixed
samples was removed by triple washing with 1% BSA in PBS, then cells were resuspended in staining
solution containing 0.1% Triton X-100, 0.01 mg/mL propidium iodide (PI) and 0.1 mg/mL Rnase A in
PBS, and incubated at room temperature for 30 min [53].

To study the externalization of phosphatidylserine (PS), cells were resuspended in 100 µL of
annexin staining solution containing 5 mM HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2, 1 µL Annexin
V-FITC solution (Sigma-Aldrich, St. Louis, MO, USA), 1 µg/µL 7-Aminoactinomycin D (7-AAD) and
incubated for 30 min at room temperature. The samples were subjected to flow cytometry on a Guava
easyCyte System (Millipore, Billerica, MA, USA) with Guava® Cell Cycle Assay software (guavaSoft™
3.1.1, Millipore). Fluorescence was detected with a 488 nm excitation laser and a 695 nm emission filter
for propidium iodide or 7-AAD, and 525 nm emission filter for annexin V-FITC.

2.5. Evaluation of Mitochondrial Membrane Potential

Cells were plated in 96-well plate in the standard incubation medium (8 × 104 cells per well).
24 h after plating, 2-AmPh was added into the incubation medium at IC50. DMSO concentration
in all samples was 0.1%. After 24 h exposure, the cells were washed once with PBS (pH 7.4) and
stained using Mitochondrial membrane potential kit (Sigma-Aldrich) according to the manufacturer’s
protocol. For positive control of the mitochondrial membrane potential loss, cells were exposed to an
uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP) [54] at
the concentration of 10 µM for 30 min. Fluorescence intensity was measured using plate reader Spark
10M (Tecan, Männedorf, Switzerland) with excitation/emission filter pairs 490/525 nm and 540/590
nm for monomeric and aggregated form of JC-10 dye, respectively. The mitochondrial membrane
potential was estimated from ratios of emission intensities at 590/525. The 590/525 ratio in DMSO
treated cells was taken as 100%.
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2.6. Preparation of Nuclear Extracts and Immunoblotting

Nuclear extracts were obtained according to the described method [55] with slight modifications.
Cells were plated and treated as described above in the “Flow Cytometry” section. In some experiments
NICs containing cysteamine and phenylthiyl ligands, CysAm and Ph complexes, respectively, were
used at IC50 doses that are 3.5 µM for CysAm [56] and 25 µM for Ph [57]. After exposure to the studied
compounds for 6 h, cells were washed with PBS and lysed on ice for 15 min in the buffer containing
10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 0.1% NP-40, 1 mM DTT, 1 mM PMSF, and protease
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA). After centrifugation/washing with the same
buffer, pelleted nuclei were resuspended in the buffer containing 20 mM HEPES (pH 7.9), 25% glycerol,
420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF, and protease inhibitor cocktail.
After 45 min stirring at 4 ◦C, the nuclear extracts were separated from residual nuclei by centrifugation
for 15 min at 13,000× g. Protein content in lysates was measured by the bicinchoninic acid method [58].

The proteins of nuclear extracts were separated in 10% PAGE, transferred onto Hybond-C Extra
membranes (Amersham Biosciences, Little Chalfont, UK) and then blocked in TBST buffer (100 mM
Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20) supplied with 5% BSA and 0.02% NaN3. After
blocking, the membranes were incubated with NF-κB p65 primary antibody (Thermo Scientific,
Waltham, MA, USA) followed by incubation with HRP-conjugated anti-mouse secondary antibody
(R&D Systems, Minneapolis, MN, USA). The chemiluminescence reaction was carried out using the
mixture containing 0.68 µM p-coumaric acid, 100 mM Tris-HCl, pH 8.5, 1.25 mM luminol, and 0.01%
H2O2. The membranes were exposed to X-ray film and then stripped and reprobed with actin primary
antibody (Sigma-Aldrich) and HRP-conjugated anti-rabbit secondary antibody (R&D Systems) to
ensure equal loading.

2.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Cells plated in 6-well plates were treated with 2-AmPh at IC50 or DMSO at the concentration
of 0.1% for 6 h. Total RNA was isolated and purified using a GeneJET™ RNA Purification Kit
(Thermo Scientific) according to the manufacturer’s protocol. The reverse transcription of the purified
RNA was performed using MMLV RT kit (Evrogen, Moscow, Russia) and oligo-T-primer (Evrogen)
according to the manufacturer’s instructions. qRT-PCR was performed using qPCRmix-HS SYBR
reaction mixture (Evrogen). The primers used for gene expression analysis were as follows: IL6
sense 5′-TCCTGCAGAAAAAGGCAAAGAAT-3′, reverse 5′-AGCTGCGCAGAATGAGATGAG-3′; IL8
sense 5′-ACCGGAAGGAACCATCTCAC-3′, reverse 5′-GGCAAAACTGCACCTTCACAC-3′; BIRC2
sense 5′-AGCGGGCCGTATCTCCTT-3′, reverse 5′-CTTCAGGGTTGTAAATCGCAGT-3′; BIRC3 sense
5′-GGGCAGCAGGTTTACAAAGG -3′, reverse 5′-AACTACCTCCCGAGATTAGACT-3′; and β-actin
(ACTB) sense 5′-AGCGGGAAATCGTGCGTGAC-3′, reverse 5′-AGCAGCCGTGGCCATCTCTT-3′.
As a reference for normalization of the expression results, ACTB gene was used. Relative gene
expression levels were computed using the REST 2009 software (QIAGEN, Hilden, Germany) from the
results of three independent experiments.

3. Results

3.1. 2-AmPh Induces Apoptosis in HeLa Cells

In MTT staining experiments, 2-AmPh was studied in comparison with 2-aminothiophenol that
was used for the complex synthesis. Both compounds decreased the viability in HeLa cells, but
the cytotoxicity of 2-AmPh was appr. 2.5-fold higher compared to 2-aminothiophenol (Figure 2A).
The IC50 value for the complex calculated from data of three independent experiments amounted
to 29.7 ± 0.9 µM (expressed as mean ± standard deviation). Thus, for the further experiments, the
complex was used at the found IC50 dose of 29.7 µM.

After 24 h exposure, 2-AmPh caused cell death as it was demonstrated by an increase in SubG1
population of cells revealed by flow cytometry of PI stained cells (Figure 2B). The increase in SubG1
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population takes place at the expense of G2/M with no apparent changes in G1 or S fractions of cells.
These results suggest that 2-AmPh causes cell death after either impairment of G2/M checkpoint or
cell cycle arrest at phases preceding G2/M phases of the cell cycle.

The cell death caused by 2-AmPh was further characterized. The mitochondrial membrane
potential loss is a well characterized sign of cell death [59]. 2-AmPh induces a decrease in the
mitochondrial membrane potential as revealed by JC-10 staining (Figure 2C). The complex also caused
an increase in the number of cells stained by FITC-conjugated annexin V as it can be seen from
Figure 2D. Annexin V binds PS with high affinity, ant its binding to cells that are PI-negative (the lower
right quadrant) is a well-defined marker of apoptosis-specific externalization of PS [60]. Thus, at IC50
2-AmPh induces apoptotic cell death in HeLa cells.

As it can be seen from Figure 2, the cell death did not account entirely for the decrease in cell
viability. At the IC50, appr. 15% of cells are detected in the SubG1 population (Figure 2B), and no
accumulation of late apoptotic or necrotic cells (Figure 2D, the upper right quadrant) was observed
compared to the vehicle treated cells. These results show that cells with degraded DNA (SubG1
population) still retained their plasma membrane integrity since PI-positive populations of cells
(Figure 2D, upper quadrants) did not increase. On the other hand, cell viability decreases by 50% after
exposure to a test compound at IC50 dose. This discrepancy can be explained by the fact that MTT
staining of cells depends rather on the mitochondrial electron transport chain functionality than the
number of cells with intact DNA. Thus, the 50% decrease in cell viability measured by MTT does not
have necessarily to be accompanied by an equal increase in population of cells with degraded DNA.

Our data show that 2-AmPh induces apoptosis in HeLa cells. Earlier, we have found that NICs
with cysteamine or phenylthiyl ligands disturbed NF-κB functions [56]. This finding was consistent
with other works demonstrating that NO-donor compounds affect NF-κB signaling [39,45–48,61–64].
Thus, further we studied the influence exerted by 2-AmPh on NF-κB.

Sci. Pharm. 2018, x, x FOR PEER REVIEW  5 of 13 

 

population takes place at the expense of G2/M with no apparent changes in G1 or S fractions of cells. 
These results suggest that 2-AmPh causes cell death after either impairment of G2/M checkpoint or 
cell cycle arrest at phases preceding G2/M phases of the cell cycle. 

The cell death caused by 2-AmPh was further characterized. The mitochondrial membrane 
potential loss is a well characterized sign of cell death [59]. 2-AmPh induces a decrease in the 
mitochondrial membrane potential as revealed by JC-10 staining (Figure 2C). The complex also 
caused an increase in the number of cells stained by FITC-conjugated annexin V as it can be seen 
from Figure 2D. Annexin V binds PS with high affinity, ant its binding to cells that are PI-negative 
(the lower right quadrant) is a well-defined marker of apoptosis-specific externalization of PS [60]. 
Thus, at IC50 2-AmPh induces apoptotic cell death in HeLa cells. 

As it can be seen from Figure 2, the cell death did not account entirely for the decrease in cell 
viability. At the IC50, appr. 15% of cells are detected in the SubG1 population (Figure 2B), and no 
accumulation of late apoptotic or necrotic cells (Figure 2D, the upper right quadrant) was observed 
compared to the vehicle treated cells. These results show that cells with degraded DNA (SubG1 
population) still retained their plasma membrane integrity since PI-positive populations of cells 
(Figure 2D, upper quadrants) did not increase. On the other hand, cell viability decreases by 50% 
after exposure to a test compound at IC50 dose. This discrepancy can be explained by the fact that 
MTT staining of cells depends rather on the mitochondrial electron transport chain functionality 
than the number of cells with intact DNA. Thus, the 50% decrease in cell viability measured by MTT 
does not have necessarily to be accompanied by an equal increase in population of cells with 
degraded DNA. 

Our data show that 2-AmPh induces apoptosis in HeLa cells. Earlier, we have found that NICs 
with cysteamine or phenylthiyl ligands disturbed NF-κB functions [56]. This finding was consistent 
with other works demonstrating that NO-donor compounds affect NF-κB signaling [39,45–48,61–64]. 
Thus, further we studied the influence exerted by 2-AmPh on NF-κB. 

 
Figure 2. Cytotoxic properties of 2-AmPh for HeLa cells. (A) The “dose-effect” curve of MTT staining 
of cells. (B) The cell cycle profiles after PI staining of DNA. (C). Decrease in the mitochondrial 
membrane potential, as revealed from aggregated/monomeric JC-10 staining, *** p < 0.001. CCCP was 
used as a positive control for the mitochondrial membrane potential loss. (D) Flow cytometry 
analysis of cells stained with Annexin V-FITC conjugate and 7-AAD. 

Figure 2. Cytotoxic properties of 2-AmPh for HeLa cells. (A) The “dose-effect” curve of MTT staining of
cells. (B) The cell cycle profiles after PI staining of DNA. (C). Decrease in the mitochondrial membrane
potential, as revealed from aggregated/monomeric JC-10 staining, *** p < 0.001. CCCP was used as a
positive control for the mitochondrial membrane potential loss. (D) Flow cytometry analysis of cells
stained with Annexin V-FITC conjugate and 7-AAD.
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3.2. Effects of 2-AmPh on NF-κB Functions

The cell response to apoptotic stimuli initiates very early, and the alterations of NF-κB activity
after NO donor exposure can be observed within several hours, long before the period of apparent
cytotoxic effects. For example, the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) decreased
the expression of c-Rel subunit of NF-κB in nuclei of murine leukemia L-1210 cells within 2 h, while
the decrease in cell viability was observed after 24 h exposure [38]. The pattern of gene expression in
response to SNAP has been demonstrated to change drastically, with main evetns taking place between
4 and 12 h [65]. Thus, to study the effects of 2-AmPh on NF-κB functions, we used a 6 h exposure
time point.

NF-κB transcription factor is a dimeric protein comprising of two subunits. The most common
composition of NF-κB is a heterodimer of p50 and p65 (RelA) polypeptides. The latter contains
transcription activation domain, thus conferring transactivation function to the whole dimer [66].
With use of p65 specific antibody we have found that 2-AmPh affected the nuclear content of p65.
After exposure to 2-AmPh the nuclear p65 level decreased substantially compared to the vehicle control
(Figure 3A). The effect of 2-AmPh was compared to that exerted by NICs containing cysteamine and
phenylthiyl ligands (CysAm [56] and Ph [57] complexes, respectively). All complexes were used at
corresponding IC50 doses. Ph decreased p65 nuclear content to the extent similar to that observed
under 2-AmPh exposure, while CysAm had a weaker effect on nuclear p65. Ph and CysAm were
shown earlier to cause cell death and affect nuclear levels of p50 subunit of NF-κB [56,57]. It is
interesting that CysAm exerted weaker effect on nuclear p50 compared to Ph. Thus, at equitoxic
doses, NICs containing the phenyl ring (Ph and 2-AmPh) have more pronounced effect on the nuclear
content of NF-κB subunits.

Since p65 subunit is important for NF-κB transactivation function, to find out if the decrease in
nuclear p65 level can evoke functional consequences, we studied the expression of several NF-κB target
genes representing two different functional groups, cytokine encoding genes IL6 and IL8, and genes
encoding IAPs family proteins, BIRC2 (cIAP1) and BIRC3 (cIAP2). Under experimental conditions used,
one of two cytokine genes, as well as one of two IAPs family genes tested, IL8 and BIRC3, were found
to be inhibited by 2-AmPh, whereas IL6 and BIRC2 expression levels were not affected (Figure 3B).

Thus, apoptosis induction by 2-AmPh is preceded by the decrease in nuclear levels of
transactivation domain containing NF-κB subunit p65 and inhibition of a subset of NF-κB target
genes. Our data suggest that NF-κB signaling pathway is involved into the cell response to 2-AmPh.
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subunit of NF-κB revealed by the immunoblotting with anti-p65 antibody of nuclear extracts of cells
treated with the vehicle, 2-AmPh and NICs bearing cysteamine (CysAm) and phenylthiyl (Ph) ligands.
(B) Expression of NF-κB target genes after 6 h exposure to 2-AmPh relative to the control (0.1% DMSO)
levels, * p < 0.05.
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4. Discussion

NF-κB signaling is well recognized as an important molecular crossway that contributes to various
diseases, including cancer [67–73]. Chemical compounds that inhibit NF-κB, either directly or via its
upstream regulators, cause cell death and suppress tumor growth [74–83] or sensitize cancer cells to
radiation or chemotherapeutic agents [84–86].

Nitric oxide, either produced by endogenous sources under conditions of hyperthermia [87], shear
stress [88] and exposure to cytotoxic chemicals [89] or generated by exogenous NO donors [39,45],
inhibited NF-κB signaling and caused loss of cell viability.

Previously, NO-donor complex 2-AmPh has been shown to be toxic to ovarian carcinoma (SKOV3),
large intestine cancer (LS174T), mammary gland carcinoma (MCF7), and non-small cell lung carcinoma
(A549) cells with IC50 values ranging from 25 to 74 µM [19]. So far, the mechanism(s) underlying the
toxicity of 2-AmPh towards cancer cells has not been studied. Earlier, we have found that NF-κB is
one of regulatory factors that are affected by NICs in HeLa cells [56]. Thus, we studied the effects of
2-AmPh on HeLa cells viability and NF-κB function.

The complex inhibited viability of HeLa cells with IC50 corresponding to the IC50 range found
earlier for other cell lines. The IC50 of 2-AmPh is similar to that for HeLa cells of the structurally similar
Ph complex [57]. Based on the results of MTT assay for 2-AmPh and 2-aminothiophenol (Figure 2A),
it can be suggested that the toxicity of 2-AmPh might be partially accounted for by the presence of
2-aminothiophenyl moieties. On the other hand, the mechanism of decomposition of the complex in
the course of NO generation is not known, and the resulting products that could be formed during the
decomposition are not defined. Thus, determination of contribution of NO and other decomposition
products to the overall toxicity of the complex would require more comprehensive studies.

At the IC50 dose, 2-AmPh caused cell death that was defined as apoptotic by annexin V staining.
The apoptotic response of HeLa cells to 2-AmPh appears to be not completed by 24 h since the
plasma membrane integrity was retained, and relatively small part of the cell population exhibited
DNA degradation and PS externalization (Figure 2B,D). The mitochondrial membrane potential was
not changed within the first 12 h of exposure and decreased only by 24 h (Figure 2C). These data
demonstrate that the irreversible stage of apoptosis characterized by the mitochondrial membrane
potential loss in the course of the apoptosis [90] was initiated after 12 h, hence supporting the finding
that the execution of the apoptosis program was still ongoing by 24 h.

Cell death caused by 2-AmPh is preceded by inhibition of NF-κB function. 2-AmPh exposure
caused the decrease in p65 levels in the nucleus (Figure 3A). Earlier, we have found that NICs with
cysteamine or phenylthiyl ligands affected nuclear content of p50 subunit of NF-κB [56]. Thus,
both present and previous data demonstrate that NO-donor NICs affect functions of NF-κB through
modulation of its nuclear content. While our data are not sufficient to make a conclusion regarding
if the NF-κB cytoplasmic-nuclear shuttling is affected by NICs, it is possible that NICs can affect the
nuclear import of NF-κB as it was shown in many studies of NO donors [37–44].

The impairment of nuclear expression of p65 subunit is accompanied by the inhibition of a subset
of NF-κB target genes. Since both NO and NF-κB play different (and often opposite) roles in the
functions of the cell, we studied representative genes belonging to two groups with very different
functions: Unrelated to apoptosis cytokine genes IL6 and IL8, and closely related to apoptosis IAPs
family genes BIRC2 and BIRC3. Like many other NF-κB target genes, IL6, IL8, BIRC2 and BIRC3
are related to tumor progression and treatment: cytokines are involved into regulation of tumor
microenvironment [91–93], whereas IAPs contribute to tumor cell survival [94–98]. The observed
2-AmPh-induced suppression of IL8 gene expression demonstrates that NO delivery to tumor
cells might be beneficial for interfering with tumor promoting microenvironment conditions, e.g.,
angiogenesis [91]. The inhibitory effect of 2-AmPh on BIRC3 gene is consistent with the data on
apoptosis induction by 2-AmPh. It must be noted that NO affects multiple signaling mechanisms in
the cell [24–27], and its pro-apoptotic activity is not based solely on NF-κB regulation. Transcription
factors p53, YY1 and FOXP3 have been shown to be modulated by NO [27,57] and can be involved in
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NO-induced apoptosis. The observed inhibition of IAPs family gene BIRC3 can lead to decrease in
anti-apoptotic capacity of cells and thus contribute to the overall apoptotic response.

Other studied NF-κB target genes, IL6 and BIRC2, were found to be not affected by 2-AmPh
under our experimental conditions. The observed variations in the response of genes controlled by
NF-κB on the action of 2-AmPh can be related to either different mechanisms of their regulation
(e.g., requirement of specific accessory factors) or different kinetics of their response. Determination of
mechanisms underlying this variability would require more detailed research.

5. Conclusions

NF-κB, an important factor regulating versatile processes in both healthy and tumor tissues, is
considered as a possible molecular target whose inhibition might be beneficial in cancer treatment [33].
We demonstrate that NO-donor NIC with 2-aminothiophenyl ligand causes apoptotic cell death and
suppress NF-κB target genes involved in cell survival and tumor progression.
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