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Abstract: Point mutations in Plasmodium falciparum dihydrofolate reductase (pf DHFR), especially
the double mutant variant (A16V + S108T), led to ineffective inhibiting by cycloguanil (Cyc).
Cycloguanil derivatives showed good inhibiting properties against wild-type and mutant pf DHFR
with an inhibition constant as low as the nanomolar level. However, there have been no reports on
the stereochemistry of the compounds, and this is important because the pure enantiomeric form
of a chiral drug can exert desirable, as well as non-desirable responses on the body or both. In this
work, three-dimensional structures of Cyc derivatives in R and S configuration were constructed and
optimized using Hartree-Fock/6-31G (d,p). Their structures were docked into the binding pocket
of wild-type and double mutant (A16V + S108T) pf DHFR, complexed with nicotinamide adenine
dinucleotide phosphate (NADPH). Results indicate that both wild-type and mutant pf DHFR are
enantioselective towards enantiomeric Cyc derivatives (R and S configuration).
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1. Introduction

Plasmodium falciparum dihydrofolate reductase (pf DHFR) is a key enzyme responsible for the
Plasmodium parasite’s reproductive cycle. Point mutations at amino acid residues 16, 51, 59, 108,
and 164 prevent the effective binding of antifolate treatments [1,2]. Among them, double mutations
at residue 16 (alanine mutates to valine) and at residue 108 (serine mutates to threonine) confer
cycloguanil (Cyc) resistance in the double mutant variant pf DHFR (A16V + S108T) [1,2]. To tackle
this problem, Cyc derivatives are designed and experimentally tested against both wild-type and
mutant pf DHFR (A16V + S108T). The new design of Cyc derivatives contain modifications at the
C-2 and N-1 position (refer to Figure 1) [3,4]. The effects of changing the substituent at C-2 and
the shifting of p-chlorophenyl to the m-position at N-1, results in the lowering of the inhibition
constant (Ki) between the Cyc derivative and mutant pf DHFR at the nanomolar level [5]. However,
there have been no reports on the stereochemistry of the compounds, and this is important because
the pure enantiomeric form of a chiral drug can exert desirable or non-desirable responses on the
body or both [6–8]. Treating patients with the racemic drug (equimolar mixture of pure enantiomers:
R- and S-enantiomers) can mitigate the disease but might cause minor to severe side effects at the same
time [6]. For some chiral drugs, only one enantiomer is effective. This would, in theory, only require
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half of the effective dose of a 50:50 racemic mixture [6]. For example, the treatment of tuberculosis with
racemic ethambutol can fight tuberculosis infections (S,S-(+)-ethambutol), but also causes optic nerve
inflammation (R,R-(−)-ethambutol). The pure enantiomeric form of a chiral drug that exerts desirable
effects and non-desirable effects is called a eutomer and a distomer, respectively. Taking a mixture of
a eutomer and a distomer (in the form of racemates) may lead to different biological responses like:
(i) distomer is inactive when compared to eutomer; (ii) distomer has the same biological activity as
eutomer; (iii) distomer is less potent than eutomer; (iv) distomer acts as an antagonist to eutomer;
(v) distomer exerts an adverse effect on eutomer; and (vi) distomer exerts different therapeutic effects
than eutomer [6].
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Figure 1. Chemical structure of (a) cycloguanil (Cyc) and (b) Cyc derivatives. Asterisk indicates chiral
center. X and X’ are m-positions. Y is p-position.

The general structures of Cyc and its derivatives are shown in Figure 1a,b, respectively. Cyc consists
of a 1,3,5-dihydrotriazine ring with a 2,2-dimethyl substitution at the C-2 position and p-chlorophenyl
substitution at the N-1 position. At the N-1 position of Cyc derivatives, the chlorophenyl substituents are
substituted with either p- or m-chlorophenyl to avoid steric hindrance with Thr108 of mutant pfDHFR.
At the C-2 position of Cyc derivatives, the dimethyl groups are substituted with either alkyl chains or
phenol chains (R1 and R2) to avoid steric hindrance with Val16 of mutant pfDHFR. The substitution of
flexible substituents at C-2 gives rise to one carbon chiral center. As a result, Cyc derivatives can exist
as R- or S-enantiomers. Wild-type and mutant pfDHFR are also enantiomers because of the presence of
chiral centers in their amino acid residues. Until date, there is no report on the stereochemistry of the Cyc
derivatives and the authors are interested in studying the enantioselectivity of both the wild-type and
double mutant pfDHFR with pure enantiomeric Cyc derivatives (the R- and S-enantiomers).

2. Materials and Methods

The three-dimensional structures of Cyc and its derivatives are constructed using GaussView 5 [9].
The geometry of Cyc derivatives are optimized by Gaussian 09 using the basis set Hartree-Fock/6-31G
(d,p), gaseous phase [10]. The x-ray crystal structures of wild-type pfDHFR (PDB ID: 3UM8 [11]) and
double mutant (A16V + S108T) pfDHFR (PDB ID: 3UM6 [12]) are downloaded from the RCSB Protein
Data Bank. Hydrogen atoms are added and water molecules are removed from the structures of the
wild-type and double mutant pfDHFR via Discovery Studio Visualizer 4.0 [13]. Optimized ligands are
then docked into the binding pockets of both wild-type and mutant pfDHFR via AutoDock 4.2 [14].
Ligands are kept flexible, while the enzyme macromolecules are kept rigid. Gasteiger charges are assigned
to the system before performing molecular docking simulation. A grid size of 60 × 60 × 60 with 0.375 Å
spacing is used. The dimensions and coordinates of grid boxes are kept constant throughout the docking
process. One hundred docking calculations are performed on each ligand-enzyme complex using the
Lamarckian genetic algorithm with remaining parameters run at default settings [15]. The results obtained
are classified into different clusters with different binding energies. The cluster with the highest frequency
and that also satisfies the essential binding characteristics is selected for further analysis.
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3. Results and Discussion

The binding energies (BE) of Cyc derivatives with the wild-type pfDHFR (3UM8) and mutant
(A16V + S108T) pfDHFR (3UM6), and experimental BE are summarized in Table 1. The experimental BE
are calculated from inhibition constant value, Ki (taken from ref [5]). Their values are calculated using
the formula: BE = −RTln(K) = RTln(Ki), T = 298.15 K, and R = 8.314 JK−1 mol−1, where K and Ki are
the equilibrium constant and the inhibition constant (the reciprocal of K), respectively. The details of
substituents (R1 and R2), chlorophenyl substitution at m-position (X) or p-position (Y), and experimental
BE of Cyc derivatives are taken from [5].

Table 1. Binding energy of Cyc derivatives (kcal mol–1) for binding with the wild-type Plasmodium
falciparum dihydrofolate reductase (pf DHFR) (3UM8) and mutant (A16V + S108T) pf DHFR (3UM6)
obtained from molecular docking calculations and experimental data.

3UM8 3UM6

Comp. X Y R1 R2 R S Exp. R S Exp.

Cyc H Cl Me Me −8.12
−7.98

−12.04 −7.70
−7.70

−8.02
23 Cl H Me Me −11.63 −8.88
24 H Cl Me nPr −8.07 −6.85 b −11.54 −8.08 −7.09 b −6.87
25 Cl H Me iPr −8.59 −7.30 b −10.36 −8.20 a −7.41 b −7.72
26 H Cl Me iPr −8.72 −7.12 b −10.15 −7.70 −7.37 b −5.93
27 Cl H Me nPr −8.14 −8.01 −11.37 −8.07 −7.57 a −8.63
28 H Cl Me nHex −7.75 b −8.26 −12.58 −7.81 −7.79 −8.21
29 Cl H Me nHex −7.85 −8.17 −11.76 −7.65 a −7.62 a −9.54
30 H Cl H Me −8.34 −7.76 −11.44 −7.98 −7.53 −9.41
31 Cl H H Me −8.26 a −7.83 −10.90 −8.40 a −7.48 −10.11
32 H Cl H C6H5 −8.97 −8.39 −11.39 −9.18 −7.21 b −9.97
33 Cl H H C6H5 −8.80 a −8.67 −10.82 −9.34 a −7.19 −10.88
34 H Cl H 4-C6H5OC6H5 −8.57 b −9.47 −12.82 −9.19 −9.04 b −11.49
35 Cl H H 4-C6H5OC6H5 −8.47 b −9.97 −12.49 −9.01 a −7.22 b −11.69
36 H Cl H 3-C6H5OC6H5 −8.60 −9.49 −12.69 −8.91 −6.81 −11.69
37 Cl H H 3-C6H5OC6H5 −8.73 b −9.85 −12.22 −8.50 −8.55 b −11.73
38 H Cl H 3-C6H5CH2OC6H4 −8.12 −8.82 −12.49 −8.40 −6.74 −11.20
39 Cl H H 3-C6H5CH2OC6H4 −9.31 b −9.82 −11.78 −8.14 −7.01 −11.59
40 H Cl H 3-(4-ClC6H4O)C6H4 −8.82 −10.04 −12.08 −8.96 −7.27 −11.08
41 Cl H H 3-(4-ClC6H4O)C6H4 −9.25 b −10.40 −12.12 −8.79 −7.39 −11.54
42 Cl H H nC7H15 −8.39 a −8.03 −11.69 −8.33 a −7.59 −11.49
43 Cl H H 4-PrOC6H4 −7.43 b −8.87 −11.57 −9.43 a −8.05 b −10.96
44 Cl H H 3-(3,5-Cl2C6H3O)C6H4 −8.90 b −10.09 −11.93 −8.62 −6.93 b −11.36
45 Cl H H 3-[2,4,5-Cl3C6H2O(CH2)3O]C6H4 −9.18 b −10.20 −11.46 −7.68 −3.49 b −11.71
46 Cl H H 3-(3-CF3C6H4O)C6H4 −8.20 b −9.98 −11.69 −8.62 −6.74 −11.17

a m-Cl at X flips to X’ position; b Poor conformation; X: m-position; Y: p-position; R1, R2: substituents; R: Cyc
derivatives in R configuration; S: Cyc derivatives in S configuration; Exp.: Experimental data; Comp.: Compound;
Bold: Enantiomer configuration with the lowest BE.

The molecular docking results in Table 1 are selected according to the guideline of essential
binding characteristics of a good pf DHFR inhibitor (Figure 2a,b) [16]. The chirality of amino acid
residues in both the wild-type and mutant pf DHFR binding pocket is shown in Figure 3. Cycloguanil
derivatives with the best-fit configuration have similar binding interactions to that in Figure 2b.
For some Cyc derivatives, poor conformation exists inside the pf DHFR binding pocket. They occur
because of the steric hindrance between Cyc derivatives and the side chain of amino acids in pf DHFR
binding pocket. Cycloguanil derivatives with poor conformations do not have the best-fit configuration
in their hundred docking frequencies. Cycloguanil derivatives with poor conformations have binding
interactions different from the reference structure but they are able to meet some of the essential binding
characteristics. For analysis purpose, the cluster with the highest frequency is selected. The best-fit
configuration is selected from the cluster with highest frequency as well. For Cyc derivatives where
both R and S configurations are the best-fit configuration, their binding interactions are compared
based on the priority assigned in this order: (i) first priority is assigned to the strength of hydrogen
bonding with Asp54 side chains because Asp54 is responsible for pf DHFR catalytic activity [16];
(ii) if Cyc derivatives have the same hydrogen bonding strength for Asp54 or they do not interact



Sci. Pharm. 2017, 85, 37 4 of 9

with Asp54, then the strength of hydrogen bonds of Cyc derivatives with Ile14 and Ile164 side chains
are compared; (iii) hydrophobic interactions with residue 16 and 108 increase the overall binding
affinity of that Cyc derivative; (iv) hydrophobic interaction of m-Cl with Leu46 decreases the BE of
that configuration (p-Cl does not interact with Leu46).
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pf DHFR. Dark grey, blue, red, green, and yellow represents carbon, nitrogen, oxygen, chlorine, and
sulfur atoms, respectively. Chiral center is indicated by asterisk.

R- and S-Cyc derivatives differ by the substituent priority at C-2 position. Their 1,3,5-dihydrotriazine
rings and chlorophenyl rings are preserved. The most important part of Cyc derivatives is the
1,3,5-dihydrotriazine ring because hydrogen bondings are formed here (refer to Figure 2). Hydrophobic
interactions are formed around the chlorophenyl ring at N-1 and the flexible substituents’ side chains at
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C-2 position. As a result, R- and S-Cyc derivatives can fit inside the binding pocket of both the wild-type
and mutant pfDHFR.

For molecular docking of wild-type, the charges of the molecule were derived from quantum
mechanics (QM) Hartree-Fock/6-31G (d,p) and Gasteiger calculations. The results from both
calculations are highly correlated with each other with R2 = 0.80 (Supplementary Materials).

Figure 4 presents the relationships of binding energy between the molecular docking calculations
and the experimental data. The linear correlation coefficient (R2) between molecular docking and the
experimental data are rather low for both the wild-type (Figure 4a) and mutant pf DHFR (Figure 4b).
This is due to the position of all amino acid residues in the binding pockets are fixed during the
molecular docking calculations. However, if we consider biological activity values of compounds
within the same methodology, we are able to classify the potent and non-potent Cyc derivatives
the same as the experimental data. In order to obtain the docking-based binding energies that are
sufficiently accurate to discriminate the preferred ligand stereochemistry, more accurate methods for
binding energy prediction as well as incorporating protein flexibility may be required to improve the
quality of the predicted binding energies. These could be done by molecular dynamics simulations
(MD) in the real aqueous environment.
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of (a) wild-type pf DHFR and (b) mutant pf DHFR.

In experimental data, wild-type pf DHFR have higher binding affinity for Cyc derivatives
with p-chlorophenyl than the m-chlorophenyl (except Cyc41–46). While few Cyc derivatives of the
molecular docking results (3UM8) with the p-chlorophenyl (Cyc28, 30, and 32) have better binding
activity towards wild-type pf DHFR. Wild-type pf DHFR can bind to Cyc derivatives with both the
p- and m-chlorophenyl because residue size of Ser108 is smaller than Thr108 of the mutant pf DHFR
(refer to Figure 3). As a result, both p- and m-Cl have more space to occupy and do not experience
steric hindrance with Ser108.

The results in 3UM8 indicate that Cyc24–27, Cyc30–33, and Cyc42 have better binding activity
towards pf DHFR when they are in the R configuration. Cyc28–29, Cyc34–41, and Cyc43–46 bind
better to pf DHFR when they are in the S configuration. Structural analysis of Cyc derivatives reveals
that Cyc derivatives with alkyl chains (except Cyc28 and 29) are preferred for the R-enantiomer and
Cyc derivatives with phenol chains (except Cyc32 and 33) are preferred for the S-enantiomer. R-Cyc
derivatives with alkyl chains have better binding activity than S-Cyc derivatives because they can
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avoid steric hindrance with the Phe58 side chains. S-Cyc derivatives with phenol chains have better
binding activity than R-Cyc derivatives because they can avoid steric hindrance with the Leu46 and
Met55 side chains. Cyc28, 29, 32, and 33 are exceptions because the size of their substituents is the
transition between non-bulky alkyl chains and bulky phenol chains. The superposition image of Cyc
derivatives (line model) with the reference structure (stick model) in the wild-type pf DHFR binding
pocket is shown in Figure 5. Good superposition is observed in Figure 5a,d. Cyc31 and 33 experience
steric hindrance with the Ile164 side chains, resulting in the chlorophenyl ring rotation from position X
to X’, as seen in Figure 5a.
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Figure 5. Superposition image of Cyc derivatives (p- and m-chlorophenyl substituent) with the
reference structure in the wild-type pf DHFR binding pocket. Cyc24–31 and Cyc42 (R2 is alkyl chain)
in (a) R configuration and (b) S configuration. Cyc32–41 and Cyc43–46 (R2 is phenol chain) in
(c) R configuration and (d) S configuration. Cycloguanil derivatives and the reference structure are
shown as line model and stick model, respectively. Black, blue, and green indicates carbon, nitrogen,
and chlorine atom, respectively.

Mutant pf DHFR BE values have similar trend to the experimental data as well. Cycloguanil
derivatives, irrespective of the substituent type, are preferred for the R-enantiomer. Mutant pf DHFR is
made up of chiral centers. The chirality within mutant pf DHFR are similar to that of wild-type, except
for Thr108 that contains two chiral centers (R and S configuration). The highest available enantiomers
are in S configuration (refer to Figure 3). The increase in the bulkiness of Val16 and Thr108 results in the
reduction of binding pocket volume around them. Mutation at residue 108 results in Cyc derivatives
with p-Cl (except Cyc28, 34, 36, 38, and 40) to experience steric hindrance with Thr108 side chains.
Val16 is situated in front Phe58 (refer to Figure 3). Because Val16 is bulkier than Ala16, the pocket
volume Val16 and Phe58 is reduced, resulting in the R-Cyc derivatives to have better binding activity
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than the S-Cyc derivatives. Chlorophenyl ring rotation (Cyc25, 27, 29, 31, 33, 35, 42, and 43) is observed
in mutant pf DHFR as well (refer to Figure 6a,c).Sci. Pharm. 2017, 85, 37 7 of 9 
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4. Conclusions

Theoretical investigation of the enantioselective complexations between wild-type and mutant
pf DHFR and Cyc derivatives shows that both pf DHFR can bind to Cyc derivatives in R and S
configuration. In wild-type pf DHFR, R-Cyc derivatives with alkyl chains (except Cyc28 and 29)
are preferred over the S-Cyc derivatives because they do not experience steric hindrance with Phe58
side chains. S-Cyc derivatives with phenol chains (except Cyc32 and 33) are preferred over R-Cyc
derivatives because they do not experience steric hindrance with the Leu46 and Met55 side chains.
Cycloguanil derivatives with p- and m-chlorophenyl rings can form hydrophobic interaction with
the wild-type pf DHFR due to larger binding pocket volume. In mutant pf DHFR, R-Cyc derivatives,
irrespective of the substituent type, are preferred over the S-Cyc derivatives because they do not
experience steric hindrance with Phe58 side chains. Val16 in the mutant pf DHFR is bulkier than Ala16
in the wild-type. As a result, the pocket volume around Val16 and Phe58 is reduced, resulting in the
flexible side chains of S-Cyc derivatives to experience steric hindrance with the Phe58 side chains.
Cycloguanil derivatives with m-Cl are preferred over p-Cl because Thr108 in mutant pf DHFR is bulkier
than Ser108 of the wild-type, resulting in Cyc derivatives with p-Cl to experience steric hindrance with
Thr108 side chains. The effect of chlorophenyl ring rotation to avoid steric hindrance with Ile164 side
chain, is observed in both the wild-type and mutant pf DHFR. In addition, the substitution of p- and
m-Cl in Cyc derivatives do not affect the enantiomeric form of Cyc derivatives.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2218-0532/85/4/37/s1,
Table S1: Binding energy (BE) of Cyc derivatives (kcal mol−1) for binding with the wild-type pf DHFR (PDB
ID: 3UM8), using derived quantum mechanics (QM) Hartree-Fock/6-31G (d,p) charges and Gasteiger charges
obtained from molecular docking calculations and experimental data; Figure S1: Plot of molecular docking binding
energies (BE) of (a) R-Cyc derivatives using QM Hartree-Fock/6-31G (d,p) charges versus R-Cyc derivatives using
Gasteiger charges; (b) S-Cyc derivatives using QM Hartree-Fock/6-31G (d,p) charges versus S-Cyc derivatives
using Gasteiger charges.
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