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Abstract: We report the first rapid ultra-high performance liquid chromatographic (UHPLC)
enantiomeric reversed-phase separation of rasagiline mesylate and its tartrate salts using a Chiralpak®

AGP column (50 mm × 2.1 mm, 5 µm) as a stationary phase. This method was developed as
an alternative to the usage of previously reported normal-phase chiral LC columns for isomer
separation. Our method is based on an isocratic approach using a mixture of ammonium acetate
and isopropyl alcohol (90:10, v/v) as the mobile phase (0.6 mL/min flow rate). The detection limit
(at a detection wavelength of 210 nm) and quantification limit for the rasagiline enantiomers were
0.06 and 0.2 µg/mL, respectively. This method is compatible with the UHPLC-MS technique.
The successful separation of rasagiline and its enantiomer was confirmed by determining the
corresponding specific optical rotation values. Our method will be applicable for detecting rasagiline
enantiomers during the control of manufacturing processes, and for use in rapid analysis for
quality control in pharmaceutical industry to obtain optically pure pharmaceutical substances. This
method was validated in terms of its precision, limit of detection, limit of quantification, linearity,
accuracy, robustness, ruggedness, specificity, forced degradation, and solution stability, according to
International Council on Harmonization Validation Guidelines Q2 (R1).
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1. Introduction

Rasagiline mesylate is a pharmaceutical substance employed in the treatment of Parkinson’s
disease, and its tartrate salt has displayed promise in terms of a cure for the disease [1–7]. Rasagiline
mesylate itself has a single chiral center, resulting in the presence of two optical isomers (i.e., the R-
and S-enantiomers, see Figure 1), with the R-form being pharmacologically active and the S-form
being inactive [1–7]. Hence, in the manufacture of rasagiline, it is necessary to implement a strategy to
control the formation of and/or detect the presence of the inactive S-enantiomer. This often involves
the use of a specific and accurate liquid chromatographic (LC) method. Ideally, in the synthesis of
rasagiline, the two isomers should be separated using chiral stationary phases. However, these isomers
cannot be separated using C18, C8, or other stationary phases due to their comparable physicochemical
properties. It is therefore necessary to either derivatize the isomers using chiral reagents, or employ
a chiral stationary phase to separate the two enantiomers by LC techniques.
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Figure 1. Chemical structures of R-rasagiline (RAS) and S-rasagiline (RAS-III).

To date, the detection and quantification of rasagiline have been reported using a number of
analytical techniques, including high-performance thin layer chromatography (HPTLC) [8], UV-visible
spectroscopy [9,10] through the formation of colored ion pair complexes in acidic media [11],
high-performance liquid chromatography (HPLC) with a range of mobile phase mixtures [12–17], and
LC-MS/MS (mass spectrometry) estimations [18,19]. However, previous reports in this area describe
the analysis of the rasagiline racemic mixture, and do not address the detection or quantification of the
separate enantiomers. Nonetheless, later studies have reported the HPLC enantiomeric separation of
these isomers using a polysaccharide-based Chiralcel OJ-H (Cellulose tris-(4-methylbenzoate)) column
and a Chiralpak® AD-RH (Amylose tris (3,5-dimethylphenylcarbamate)) column in the normal [20]
and reversed-phase modes [21], respectively, in addition to a crown ether-based Chirosil RCA(+)
((+)-(18-crown-6)-tetracarboxylic acid) column in the polar organic mode [22].

In contrast, the use of chiral ultra-high performance liquid chromatography (UHPLC) for the
separation of the rasagiline mesylate enantiomers and its tartrate salts has not yet been reported.
We therefore selected this technique for our study, and employed a Chiralpak® AGP (α1-acid
glycoprotein) column for the first time as the stationary phase for the determination of these compounds.

2. Materials and Methods

2.1. Materials and Reagents

R- and S-Rasagiline mesylate and rasagiline tartrate were synthesized in the laboratory at
St. Peter’s University, Avadi, Chennai, India. [1–7]. Ammonium acetate (99%) and isopropyl alcohol
(99.5%) were purchased from Fisher Scientific (Mumbai, India). The Chiralpak® AGP column
(50 mm × 2.1 mm, 5 µm) was obtained from Daicel Chiral Technologies (Hyderabad, India). USP
(United States pharmacopeia) grade water was employed throughout, and was prepared using
a Metrohm Elga water purifier (Metrohm, Wycombe, United Kingdom). The 0.22 µm membrane
filter paper and 0.22 µm syringe filters were obtained from Millipore (Bangalore, India).

2.2. Instrumentation

An Agilent Infinity LC 1290 (Germering, Germany) equipped with a binary bump with integrated
vacuum degasser (G4220A), an autosampler (G4226A), a thermostatted column compartment (G1316C),
and a diode array detector (G4212A) was used for the UHPLC separation of the rasagiline enantiomers.
Thermal degradation studies were carried out using a hot air oven (MACK Pharmatech, Mumbai,
India), while photodegradation studies were performed in a photostability chamber (Newtronics
Photostability Chamber, Kandivali, Mumbai, India). An Autopol-II automatic polarimeter (Rudolph
Research Analytical, Hackettstown, NJ, USA) was employed for determination of the specific optical
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rotations. Finally, a Shimadzu LC-8A preparative liquid chromatograph (Shimadzu, Chiyoda-ku,
Tokyo, Japan) was utilized for isolation purposes.

2.3. Chromatographic Conditions

A Chiralpak® AGP column with a length of 50 mm, an internal diameter of 2.1 mm, and a
particle size of 5 µm was used as the stationary phase. The buffer solution was prepared by dissolving
ammonium acetate (10 mmol/L) in water (1000 mL). The mobile phase was prepared by mixing the
buffer solution (900 mL) with isopropyl alcohol (100 mL), followed by filtration through a 0.22 µm
membrane filter. A flow rate of 0.6 mL/min was employed, along with a column temperature of
25 ◦C, a detection wavelength of 210 nm, and an injection volume of 2.0 µL. The conditions employed
for preparative LC were as follows: The Chiralpak® AGP column (150 mm × 10 mm, 5 µm) was
used as the stationary phase. The buffer solution was prepared by dissolving ammonium acetate
(10 mmol/L) in water (10,000 mL), and the mobile phase was prepared by mixing the buffer (9000 mL)
with isopropyl alcohol (1000 mL), followed by filtration through a 0.22 µm membrane filter. A flow rate
of 10 mL/min was employed in addition to a detection wavelength of 210 nm, an injection volume of
700 µL, and a column temperature of 25 ◦C. The sample solution was prepared by dissolving rasagiline
mesylate (200 mg) in methanol (20 mL). The isolated solution was distilled by vacuum distillation, and
separation was confirmed by determination of the specific optical rotation of each product.

2.4. Preparation of the Standard and Sample Solutions

The standard stock solution was prepared by dissolving the S-rasagiline enantiomer (3 mg) in
water (100 mL). The standard solution was then prepared by diluting a portion of the standard stock
solution (1 mL) to 100 mL with water. The concentration of the standard solution was 1.5 µg/mL with
respect to the analyte concentration (i.e., rasagiline mesylate and its tartrate). The sample solution was
prepared by dissolving rasagiline mesylate (20 mg) and rasagiline tartrate (20 mg) in water (100 mL).
For preparation of the spiked sample solutions, the sample (20 mg) was dissolved in water (90 mL), and
a portion of the standard stock solution (1 mL) was added and the solution made up to 100 mL with
water (six preparations). All spiked samples, standards, and sample solutions were passed through
a 0.22 µm syringe filter and introduced into the chromatograph using an autosampler. Direct injection
of the sample solution was not suitable due to the increase in column back pressure, likely due to
column clogging through the deposition of particles in the column pores. Approximately 10 batches of
samples were analyzed.

2.5. Preparation of the Stress Study Solutions

For the acid degradation experiments, the sample (20 mg) was dissolved in water (60 mL), and
a 0.4 mol/L hydrochloric acid solution (20 mL) was added. This solution was maintained at 60 ◦C
for 24 h in a water bath, after which time it was cooled to 25 ◦C, neutralized with a 1 mol/L sodium
hydroxide solution (8 mL) (tested with pH paper), and diluted to 100 mL with water. For the basic
degradation experiments, the sample (20 mg) was dissolved in water (60 mL), and a 0.4 mol/L sodium
hydroxide solution (20 mL) was added. This solution was maintained at 60 ◦C for 24 h in a water
bath, after which time it was cooled to 25 ◦C, neutralized with a 1 mol/L hydrochloric acid solution
(8 mL) (tested with pH paper), and diluted to 100 mL with water. For the peroxide degradation
experiments, the sample (20 mg) was dissolved in water (60 mL), and a 7.5% (w/v) hydrogen peroxide
solution (40 mL) was added. This solution was maintained at 25 ◦C for 24 h. For the photodegradation
experiments, the sample (20 mg) was dissolved in water (100 mL). The resulting solution was then
placed in the photostability chamber and exposed to 1.2 million lux hours and 200 W·h/m2 radiation to
promote photodegradation. For the thermal degradation process, a uniform distribution of the sample
(5 g, maximum 5 mm thickness) was dried in a petri dish at 105 ◦C for 7 d in a hot air oven. After this
time, the sample (20 mg) was dissolved in water (100 mL). The chromatograms of the standard and
system suitability solutions are shown in Figure 2. The acid degradation, base degradation, peroxide
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degradation, thermal degradation, and photodegradation experiments are discussed in further detail
in Section 3.8.
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Figure 2. Chromatograms of (a) the standard and (b) the system suitability (RAS-III = S-enantiomer, RAS
= R-enantiomer) solutions. Chromatographic conditions: Chiralpak® AGP column (50 mm × 2.1 mm,
5 µm); 90:10 (v/v) mixture of ammonium acetate and isopropyl alcohol as the mobile phase; 0.6 mL/min
flow rate; 210 nm detection wavelength; and 2.0 µL injection volume.

3. Results and Discussion

3.1. Method Development

In recent years, several trials have been performed involving the investigation of different chiral
stationary phases for use in the separation of the two rasagiline enantiomers (Table 1) [19,20]. However,
we selected the α1-acid glycoprotein (AGP) column as the chiral stationary phase for our study due to
its unique properties. For example, this column can be utilized between pH 4 and 7, and can also be
used in the reversed-phase mode [21,22].

Table 1. Comparison of the proposed method with reported methods for the separation of
rasagiline enantiomers.

Method Column Resolution LOD; LOQ * Run Time Reference

HPLC Chiralcel OJ-H
250 × 4.6 mm; 5.4

0.35 µg/mL;
1.05 µg/mL

Requires more time to
stabilize the LC system. [20]

Normal phase
(n-hexane/isopropyl

alcohol/ethanol/diethyl
amine) (96:2:2:0.01, v/v/v/v)

Run time: 20 min.
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Table 1. Cont.

Method Column Resolution LOD; LOQ * Run Time Reference

HPLC Chiralpak AD-RH
150 × 4.6 mm; 3.5

0.16 µg/mL;
0.49 µg/mL

Requires less time to
stabilize the LC system

compared to method [21]. [21]

Reversed-phase (20
mmol/L potassium

dihydrogen phosphate in
water/acetonitrile (65:35,

v/v) adjusted to pH 6.9
using 10 wt % potassium

hydroxide)

Run time: 25 min.

HPLC Chirosil RCA(+)
250 × 4.6 mm; >2.0 Not available ~20 min. [22]Polar organic phase

(ethanol/acetonitrile/acetic
acid/triethylamine

(80:20:0.2:0.3, v/v/v/v))

UHPLC Chiralpak® AGP
50 × 2.0 mm

2.9
0.06 µg/mL;
0.20 µg/mL

MS-compatible, rapid
analysis, easy to stabilize
the LC system compared

to other normal phase [20]
and reversed-phase [21]

methods.

Present
work

Reversed phase
(ammonium

acetate/isopropyl alcohol
(90:10, v/v))

Run time: 15 min.

* LOD: Limit of detection; LOQ: Limit of quantification; UHPLC: ultra-high performance liquid chromatography.

As outlined in Table 1, the use of a normal phase mobile phase preparation was previously
reported to lead to issues with quality control analysis, due to the increased probability of solvent
evaporation and resulting variations in retention times and peak resolutions. To overcome this issue,
we selected a reversed-phase mobile phase preparation, which differed from that previously suggested
by Nirogi et al. [21]. In trial 1, the mobile phase was prepared as follows. Initially, a 10 mmol/L
aqueous potassium phosphate solution was selected as the buffer and methanol was used as the solvent.
The buffer-to-methanol ratio was varied as follows: 70:30, 80:20, 90:10, and 95:5 (v/v). However, no
separation was observed between the isomers under these conditions. In trial 2, the buffer pH was
adjusted to pH 6.0 using orthophosphoric acid, and buffer-to-methanol ratios of 70:30, 80:20, 90:10,
and 95:5 (v/v) were examined. In this case, isomer separation was observed as a USP resolution of ~1.0
for a buffer-to-methanol ratio of 90:10. In trial 3, the solvent was changed from methanol to isopropyl
alcohol, and buffer-to-isopropyl alcohol ratios of 70:30, 80:20, 90:10, and 95:5 (v/v) were examined.
Although the USP resolution between isomers was ~2.0 for a buffer-to-isopropyl alcohol ratio of 90:10,
the baseline was somewhat disturbed. In trial 4, ammonium acetate was used to prepare the buffer,
as it has the added advantage of mass compatibility. Therefore, a 10 mmol/L aqueous ammonium
acetate solution was used as the buffer, which was mixed in a 90:10 ratio with isopropyl alcohol. Using
this mobile phase, the obtained USP resolution was >2.0, when compared to other trials. As described
above, the preparation of our mobile phase was straightforward compared to previously reported
methods, although it provided a comparable resolution between the two rasagiline enantiomers
(i.e., ~2.9). However, the original run time for this method was rather long, and so we attempted to
reduce it by increasing the column flow rate. Unfortunately, the column pressure increased to 300 bar,
which was higher than the recommended operation conditions specified by the manufacturer [23,24].
We therefore adjusted the mobile phase composition to a 75:25 ratio of buffer to isopropyl alcohol,
but this gave a poor resolution of 0.8. As stated in the literature, the minimum baseline resolution
criterion between peaks for any analytical method is 1.5 [25]. The optimal conditions for UHPLC
were therefore determined to be as follows: 10 mmol/L ammonium acetate in water (buffer), 90:10
ratio of ammonium acetate buffer to isopropyl alcohol as the mobile phase, 0.6 mL/min flow rate,
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210 nm detection wavelength, 2.0 µL injection volume, and a Chiralpak AGP (50 mm × 2.1 mm)
UHPLC column.

Initially, the same UHPLC chromatographic conditions were employed for the preparative LC
process, and these conditions were found to be suitable for product isolation. Thus, using these
optimized conditions on a preparative LC system equipped with a chiral preparative LC column,
separation of the two rasagiline enantiomers was carried out. The final separation conditions for
preparative LC were therefore as follows: 10 mL/min column flow rate, a mobile phase consisting of
ammonium acetate buffer (900 mL of 10 mmol/L) and isopropyl alcohol (100 mL), 300 µL injection
volume, 210 nm detection wavelength, and a 150 mm (length) × 10 mm (internal diameter) column with
a 5 µm particle size. The fractions containing each individual isomer were concentrated and distilled
under reduced pressure at 60 ◦C. The optical rotations of the resulting products were determined,
and the successful separation of the two isomers was confirmed by the observation of two specific
optical rotation values at +20◦ and −19◦, corresponding to the R- and S-enantiomers, respectively
(concentration = 0.6 mg/mL in water, temperature = 25 ◦C, wavelength = 589 nm). It should be
noted that the reference value for the specific optical rotation of R-rasagiline is +21◦ [25], which is
comparable to the obtained value. Two UHPLC columns were used for development and validation.
The total number of injections in the development column was 300, and so this column was employed
for the forced degradation study and intermediate precision analysis. A new UHPLC column was
used for validation analysis. Different retention times were observed for the enantiomers using the
development column due to the age of the column. However, a resolution between isomers of >1.5 was
achieved. This was confirmed by MS measurements through observation of a species with the same
mass as rasagiline rather than as the degradation products (as confirmed by the forced degradation
and stress studies).

3.2. Analytical Method Validation

In terms of method validation, the system suitability and precision, limit of detection (LOD),
limit of quantitation (LOQ), linearity and range, recovery, specificity, stress, robustness, and solution
stability of this method for the analysis of the rasagiline enantiomers were determined as per the
International Council on Harmonization (ICH) validation guidelines Q2, (R1) [26]. Further details
regarding each of the above points can be found in the following subsections.

3.3. System Suitability and Precision

As previously mentioned, a separation resolution of 2.9 was established between the two rasagiline
enantiomers upon injecting the system suitability solution into the chromatograph according to the
optimized conditions. To determine the precision of this analytical system (i.e., an expression of the
closeness of agreement between a series of measurements obtained from multiple sampling of the same
homogeneous sample under the prescribed conditions) [26], the standard solution was injected into
the chromatograph six times and the percentage relative standard deviation (% RSD) was calculated.
The obtained % RSD of <3% indicates that this system was precise (% RSD limit = ≤5%) [27], and as
such, is suitable for analysis of the rasagiline enantiomers. Further details regarding determination of
the system precision are outlined in Table 2 below.

3.4. Method Precision

To determine the precision of this method, six spiked sample solutions were initially prepared.
Using the above described method, the % RSD for the S-rasagiline content was 1.5% for the method
precision (limit = <2%) [27], and was within 1.5% for the intermediate precision when performed
by different analysts, on different columns and instruments on different days. These observations,
in combination with the detailed results outlined in Table 3, indicate that our developed technique was
suitably precise for the system of interest.



Sci. Pharm. 2017, 85, 26 7 of 13

Table 2. Determination of the system suitability and precision.

% RSD of Peak Area

Inj. No. S-Rasagiline (RAS-III) (1.5 µg/mL) Criteria

1 24,865

≤5%

2 24,510
3 24,279
4 23,787
5 22,957
6 24,881

Mean 24,213
SD 738

% RSD 3.0

Resolution between RAS-III and R-Rasagiline (RAS)

Inj. No. Resolution Criteria

1 2.9 ≥1.5

K Prime (Retention Factor)

Inj. No. S-Rasagiline (RAS-III) S-Rasagiline (RAS-III) Repeatability of K

1 8.9 8.8

Peak Symmetry Factor

Inj. No. S-Rasagiline (RAS-III) R-Rasagiline (RAS)

1 1.0 1.1

Inj. No. Selectivity

1 2.9

RSD: relative standard deviation.

Table 3. Method and intermediate precision results for S-rasagiline (RAS-III).

Preparation No.
RAS-III Content (1.5 µg/mL) RAS-III Content (1.5 µg/mL)

Method Precision Intermediate Precision

1 0.145 0.151
2 0.147 0.152
3 0.149 0.150
4 0.150 0.153
5 0.150 0.149
6 0.151 0.148

Mean 0.148 0.150
% RSD 1.5 1.2

3.5. Limit of Detection and Limit of Quantification

The method detection limit (MDL) and method quantification limit (MQL) (i.e., the limit of
detection, LOD, and limit of quantification, LOQ) were determined based on the signal to noise (S/N)
ratio method as outlined in the ICH guideline Q2 (R1). Upon injecting the solution sequence of
predetermined known concentrations (0.2–2.2 µg/mL), the S/N ratio for the LOD was determined to
be 3:1, while that of the LOQ was determined to be 10:1. Thus, the MDL and MQL for S-rasagiline were
0.06 and 0.20 µg/mL, respectively, which were very low when compared to those of references [20,21].
These results indicate that the method was sufficiently sensitive for determination of the S-enantiomer
content in the sample of rasagiline mesylate and its tartrate.



Sci. Pharm. 2017, 85, 26 8 of 13

3.6. Linearity and Range

The linearity of an analytical procedure reflects its ability to produce results that are directly
proportional to the concentration of an analyte in the sample [26]. In this case, linearity tests were
performed from the LOQ to 150% of this limit for an analyte concentration of 200 µg/mL. The results
of this test and the corresponding correlation coefficient are shown in Table 4, while the linearity
plot is provided in Figure 3. As shown, the correlation coefficient was close to 1, indicating that the
developed method was indeed linear. Furthermore, the statistical linear regression results indicate that
the validated method was linear for the rasagiline system, and that this linearity was satisfactory over
the defined concentration range (i.e., 0.2–2.2 µg/mL).

Table 4. Linearity data for the S-enantiomer (RAS-III).

Sample No. % Level Concentration (µg/mL) Peak Response

1 LOQ 0.20 3349.00
2 50 0.75 12,560.50
3 80 1.20 20,096.80
4 100 1.50 25,121.00
5 120 1.70 30,145.20
6 150 2.25 37,681.50
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3.7. Accuracy

The accuracy of an analytical procedure indicates the closeness of understanding between the
quality, which is acknowledged either as a conventional true value or an accepted reference value, and
the observed value [26]. For quantitative approaches, at least nine determinations across a specified
range should be obtained [26]. In our case, the accuracies (%) for detecting the S-enantiomer in separate
mixtures of rasagiline mesylate and its tartrate were 95–100% and 91–100%, respectively. These results
indicate that our developed method was accurate for the present analytical system, as the mean
accuracy value was within the standard 80–120% limit. Furthermore, the accuracies of this method at
the LOQ and at 50, 100, and 150% levels of the LOQ for the S-enantiomer are outlined in Tables 5 and 6.
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Table 5. Accuracy of S-enantiomer detection in the rasagiline mesylate mixture at various
concentration levels.

Accuracy
Level

Spiked
Amount
(wt %)

Mean
Content
(wt %)

Content in
Spiked Sample

(wt %)

Recovered
Content

(wt)

%
Recovery

Mean %
Recovery % RSD

LOQ-1 0.003
0.004

0.007 0.003 100.000
100.00 0.00LOQ-2 0.003 0.007 0.003 100.000

LOQ-3 0.003 0.007 0.003 100.000

50%-1 0.074
0.004

0.075 0.071 95.945
95.93 0.0350%-2 0.073 0.074 0.070 95.890

50%-3 0.074 0.075 0.071 95.945

100%-1 0.147
0.004

0.144 0.140 95.238
95.48 0.40100%-2 0.147 0.145 0.141 95.918

100%-3 0.148 0.145 0.141 95.270

150%-1 0.222
0.004

0.215 0.211 95.045
95.19 1.18150%-2 0.221 0.217 0.213 96.380

150%-3 0.222 0.213 0.209 94.144

RSD: relative standard deviation; wt: weight.

Table 6. Accuracy of S-enantiomer detection in rasagiline tartrate at various concentration levels.

Accuracy
Level

Spiked
Amount
(wt %)

Mean
Content
(wt %)

Content in
Spiked Sample

(wt %)

Recovered
Content

(wt)

%
Recovery

Mean %
Recovery % RSD

LOQ-1 0.004
0.001

0.005 0.004 100.000
100.0 0.00LOQ-2 0.004 0.005 0.004 100.000

LOQ-3 0.004 0.005 0.004 100.000

50%-1 0.072
0.001

0.067 0.066 91.666
91.59 0.0750%-2 0.071 0.066 0.065 91.549

50%-3 0.071 0.066 0.065 91.549

100%-1 0.143
0.001

0.135 0.134 93.706
93.47 0.43100%-2 0.143 0.134 0.133 93.006

100%-3 0.143 0.135 0.134 93.706

150%-1 0.215
0.001

0.198 0.197 91.627
92.24 1.60150%-2 0.214 0.202 0.201 93.925

150%-3 0.215 0.197 0.196 91.162

3.8. Specificity and Stability Studies

Specificity is the ability to assess the analyte unequivocally in the presence of other components
that may be present in the mixture. These might typically include impurities, degradants, and
matrix components, among others [26]. Thus, the specificity of our method was determined by
examination of the peak purity (i.e., the purity angle should be lower than the purity threshold) using
a photodiode array detector for the forced degradation samples. To confirm the specificity of our
system, all forced degradation samples examined were investigated using a sample concentration of
200 µg/mL. For both the R- and S-rasagiline enantiomers, no interference was observed either from
the blank or from impurities. In addition, no secondary peaks originating from degraded species
were observed. Furthermore, the results of the forced degradation study indicate that the S-rasagiline
was not a degradation impurity. The chromatograms of the acid degraded, base degraded, peroxide
degraded, thermally degraded, and photodegraded solutions are shown in Figure 4. These results
confirm the specificity/homogeneity of our developed method for the detection of S-rasagiline.



Sci. Pharm. 2017, 85, 26 10 of 13

Sci. Pharm. 2017, x, x FOR PEER REVIEW    10 of 13 

 

 

 

Figure 4. Chromatograms of (a) the acid degraded; (b) the base degraded; (c) the peroxide degraded;
(d) the thermally degraded; and (e) the photodegraded solutions. RAS-III = S-enantiomer, RAS =
R-enantiomer. Chromatographic conditions: Chiralpak® AGP column (50 mm × 2.1 mm, 5 µm); 90:10
(v/v) mixture of ammonium acetate and isopropyl alcohol as the mobile phase; 0.6 mL/min flow rate;
210 nm detection wavelength; and 2.0 µL injection volume.
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3.9. Robustness

We then examined the effect of chromatographic conditions on the resolution between the two
rasagiline enantiomers. As the original mobile phase flow rate was 0.6 mL/min, we varied the
flow rate from 0.5 to 0.7 mL/min to investigate its effect on the resolution. In addition, the column
oven temperature was set at 20 ◦C, 25 ◦C, or 30 ◦C to examine the effect of temperature. Finally,
the isopropyl alcohol content in the mobile phase was varied between 80 mL and 120 mL at 20 mL
intervals. Interestingly, the resolution was >1.8 under all conditions studied, thus demonstrating the
robustness of our method.

3.10. Solution Stability

Finally, the solution stability was determined by examination of a freshly prepared standard
solution and a sample solution stored in a sealed volumetric flask at 25 ◦C over 24 h. The % difference
between the peak areas of S-rasagiline at 0 and 24 h was <15.0 for the standard solution, and the %
difference between the contents of S-rasagiline at 0 and 24 h was <15.0 for the sample solution [26].
These results therefore indicate that the enantiomer solution was stable under the above conditions.

4. Conclusions

We herein reported the use of a volatile mobile phase compatible with mass spectrometry
(i.e., ammonium acetate and isopropyl alcohol in water) in a rapid chiral reversed-phase ultra-high
performance liquid chromatographic (UHPLC) method for the determination and separation of the
pharmaceutically inactive S-enantiomer of rasagiline mesylate from a mixture of the two enantiomers
and rasagiline tartrate. The final separation conditions were as follows. A Chiralpak® AGP column was
used as the stationary phase, and a mixture of 10 mmol/L ammonium acetate and isopropyl alcohol
was employed as the mobile phase. The column oven temperature was 25 ◦C, the injection volume
was 2.0 µL, and the detection wavelength was 210 nm. More specifically, a Chiralpak® AGP column
was employed in our precise and accurate method, yielding acceptable and repeatable recoveries in
addition to low limits of detection and quantification. The successful separation of the enantiomers
was confirmed by optical rotation measurements, which were confirmed by comparison with literature
values. This authenticated method is expected to be applicable in the regular analysis of rasagiline
mesylate enantiomers in quality control laboratories during the preparation of this pharmaceutical
agent. However, further studies are required to decrease the run time of our method, as this was not
possible through simply increasing the column flow rate.
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