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Abstract 
A new, effective preparative method has been proposed and the synthesis of a 
series of N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-car-
boxamides has been carried out. It has been shown that amidation of alkyl  
1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates with arylalkyl-
amines in boiling xylene proceeds with good yield and purity to the 
corresponding N-(arylalkyl)-amides. However, the presence of water in the 
reaction mixture has been shown to cause the formation of specific impurities: 
N-(arylalkyl)-1-R-2,2-dioxo-1H-2λ6,1-benzothiazin-4-amines. According to the 
results of the pharmacological studies, powerful analgesics have been found 
among the substances synthesized. 
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Introduction 
The idea of creating the "ideal analgesic" was born in the middle of the last century and 
has not yet found practical implementation, but nowadays it actively continues to attract 
the attention of scientists of different specialties [1–5]. The undying interest in the given 
problem becomes quite clear and understandable, just by remembering that the feeling of 
pain to some extent is familiar to all of us. Appearing as unpleasant, depressing, if not 
unbearable sensations, pain first signals danger and thus plays an important role in 
protecting human health and even life. However, this does not mean that it should be 
borne. Strong and long-lasting pain stimulation exhausts the internal resources of the 
organism causing serious disorders of its vital functions. Therefore, the fight against pain 
and pain syndromes is recognized as one of the priority problems of medicine [6]. 

Modern science offers a wide range of methods for relieving pain and for pain control. 
However, the main role still belongs to medicines [7], and their improvement is conducted 
in different ways. For example, the methodology of creating combined drugs has had good 
results. It has appeared that the simultaneous intake of several substances with different 
mechanisms of pain suppression provides more profound analgesic effects in general than 
each component separately [8–10]. An important event of modern pharmacotherapy is the 
introduction of suitable dosage forms of analgesics – retard tablets and transdermal 
therapeutic systems. Their single use can maintain the desired concentration of the drug in 
blood for a long time, and thus an adequate level of analgesia, thereby greatly improving 
the quality of life of patients with chronic pain [11–13]. The numerous variants of their 
chemical modification are widely and fruitfully used to optimize certain properties of drugs 
that are already known [14]. 

Unfortunately, completely new or innovative analgesics do not often appear. It is not an 
easy task to find unexplored and, at the same time, promising classes of chemical 
compounds. Sometimes nature itself gives very useful tips for finding such compounds in 
substances that are produced by plants or animals and are highly active. These are often 
familiar to humans with their unique properties, and they are isolated in a pure form and 
subject to thorough pharmacological testing [15–19]. It is clear that not every study of this 
kind ends with the creation of a specific drug, however, the importance of the information 
obtained is undoubted for further research. 

Our choice for study subjects is based on a principle that is controversial, but nevertheless 
frequently used by medicinal chemists: similar substances should exhibit similar biological 
activity [20]. In other words, we have chosen 4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-
benzothiazine-3-carboxamides I (Fig. 1) based on the fact that they are isomers of 
nonsteroidal anti-inflammatory drugs from the group of oxicams II, they differ only with a 
reciprocal arrangement of atoms of nitrogen and sulfur in the thiazine fragment, and have 
perfectly proven themselves in medical practice as pain killers [7]. At the same time, 
amides I can be considered as sulfo analogues of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-
carboxamides III; powerful analgesics have also been found among them [21]. Finally, 
considering the fact that due to the lack of efficient methods for synthesis so far, 
derivatives of 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acids remain the 
class of chemical compounds that is almost unstudied. 



 The Effective Synthesis of N-(Arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-… 551 

Sci Pharm. 2015; 83: 549–566 

S
N

OH

Me
O O

NHR

O

N
S

OH

NHR

O

O
O

Me
N

OH

NHR'

O

R

O

I II III  
Fig. 1.  General formula of highly active analgesics [7, 21, 25–29] 

It should be noted that some of 1-N-methyl substituted carboxamides I have already been 
obtained by the reaction of 1-methyl-3,4-dihydro-2,2-dioxo-1H-2λ6,1-benzothiazin-4-one 
(V) and isocyanates. This four-step synthetic pathway (Fig. 2) was suggested more than 
40 years ago [22]. But it is rarely used and usually only if it is necessary to obtain amides I 
as model compounds [23]. Its major disadvantage is low yield at the first two stages of the 
synthesis of 2,l-benzothiazine V. Also, the use of isocyanates, which are often expensive 
or even unavailable reagents, appears to be the weakest link. 
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Fig. 2.  Known method for the synthesis of 4-hydroxy-1-methyl-2,2-dioxo-

1H-2λ6,1-benzothiazine-3-carboxamides I. 

Results and Discussion 
Chemistry 
A completely different three-step scheme of assembling target amides 1a–s has been 
proposed, its key stage is amidation of alkyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzo-
thiazine-3-carboxylates [24] 2a,b with the primary amines in dry, boiling xylene 
(Scheme 1). The method has not been worked out yet; however, it initially has the 
advantage, which is important for any work devoted to the search of the  
"structure – property" regularities, of the ability to use an unlimited and readily available 
range of the most diverse amines. This gives very good prospects. 

In the synthesis of the nearest analogues of drugs of the oxicam series, N-hetaryl-4-
hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides [25–27], our method 
has shown good results. There also are no problems in obtaining anilides [28, 29]. 
However, the reaction with 1H-1,2,4-triazol-5-amine takes place not so unambiguously, 
and in addition to the corresponding amides it unexpectedly leads to the formation of new 
condensed heterocyclic systems, triazolopyrimidobenzothiazines [30]. 
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Sch. 1.  Synthesis of 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides 1 

Our research is intended to explain how esters 2a,b will behave in the reaction with 
arylalkylamines and most importantly, how it will affect the biological properties of 
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides. The interest of including 
N-(arylalkyl)-substituted derivatives 1 as the objects of study is based primarily on the fact 
that among 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides III, similar by their 
structures, arylalkylamides appeared to be the most powerful pain killers [21, 31–33]. 

Our attempts to carry out amidation in methanol or ethanol using methyl 4-hydroxy-
1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (2b) and benzylamine were 
unsuccessful: even after refluxing for 30 h, benzylamide 1e was not found in the reaction 
mixture. Unlike highly reactive alkyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate, 
which forms the corresponding arylalkylamides in low-boiling alcohols very easily [31–33], 
their sulfo analogues 2 appeared to be completely inert relative to the arylalkylamines in 
the same conditions. However, in more severe conditions, (xylene, refluxing), N-benzyl-
4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carbox-amide (1e) was synthe-
sized with a good yield (Scheme 2). 
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Sch. 2.  Reaction of ester 2b and benzylamine. Reagents and conditions:  

(a) benzylamine, xylene, 150°C, 1 h, 88% (1e), 12% (4);  
(b) benzylamine, MeOH, 65°C, 3 h, 96% (4).  
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The quality control of crude benzylamide 1e by HPLC has demonstrated that it contains 
approximately 12% of the impurity, which according to the chromatographic characteristics 
was not the starting ester 2b. The 1H-NMR spectrum of the above-mentioned sample 
showed that the benzylamine fragment was present in both amide 1e and in the impurity 
detected. Interested in this fact, it was decided to determine the real structure of the minor 
product of the studied reaction; from this, one can first understand and then eliminate the 
causes of its formation. 

While slowly evaporating the mother liquor remaining after treatment of a crude 
benzylamide 1e with a strongly cooled acetone, we succeeded in growing some single 
crystals suitable for X-ray diffraction analysis. As a result, it has been clearly identified that 
the byproduct was N-benzyl-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazin-4-amine (4). Of the 
features of the spatial structure of this compound (Fig. 3), it may just be noted that its 
dihydrothiazine heterocycle is in "twist-boat" conformation (folding parameters [34]: S 0.66, 
Θ 53.4°, Ψ 28.9°). Deviations of atoms S(1) and С(8) from the mean square plane of the 
remaining atoms of the cycle are −0.95 and −0.37 Å, respectively. Both nitrogen atoms 
have a pyramidal configuration with a low degree of pyramidicity: N(1)- and N(2)-centered 
sums of bond angles are 355° and 356°, respectively. The benzyl substituent is in sp-
conformation in relation to the endocyclic bond C(7)–C(8), and its aromatic ring is in ар-
conformation in relation to the C(7)–N(2) bond and is significantly turned in relation to the 
N(2)–C(9) bond. 

 
Fig. 3.  The molecular structure of 4-N-benzylsubstituted benzothiazine 4 with atoms 

represented by thermal vibration ellipsoids of 50% probability. 
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In our opinion, the most likely cause of the impurity of 4-benzylamino substituted 
benzothiazine 4 is the trivial presence of water in one of the reagents or solvent. Earlier, 
we mentioned several times the peculiarity of alkyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-
3-carboxylate to react more readily with water than with amines at 120–150°С. At this 
temperature, hydrolysis has serious competition for amidation that all water present in the 
reaction mixture is involved in the formation of the corresponding quinoline-3-carboxylic 
acids. Those, in turn, quickly undergo decarboxylation. As a result, target 4-hydroxy-2-oxo-
1,2-dihydroquinoline-3-carboxamides are contaminated by specific impurities, 4-hydroxy-
quinolin-2-ones [35, 36].  

It is obvious that there is the same side reaction in amidation of benzothiazine esters 2; 
moreover, they are hydrolyzed much easier than their 2-carbonyl analogues, and we even 
have not had a chance to isolate the intermediate benzothiazine-3-carboxylic acids 5 yet, 
due to their extreme instability [37]. The only difference is that benzothiazine analogues of 
4-hydroxyquinolin-2-ones unsubstituted in position 3 exist predominantly in 4-ketoform V, 
and it is more significant in our case, in contrast to them and their synthetic precursors, 
esters 2, they possess a high reactivity in relation to N-nucleophiles. Therefore, byproducts 
of the reactions of benzothiazine esters 2 and arylalkylamines are not 4-hydroxy-(oxo)- 
benzothiazines V, but their 4-amino derivatives 4. It is this mechanism of appearance of 
the given impurities in N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-
carboxamides 1a-s that is confirmed by formation of 4-N-benzylsubstituted benzothiazine 
4 in the reaction of methyl-3,4-dihydro-2,2-dioxo-1H-2λ6,1-benzothiazin-4-one (V) and 
benzylamine in boiling methanol, i.e. under the conditions that are definitely unsuitable for 
amidation of esters 2. Differences in the rates of competing main and side reactions are 
still not very great. Otherwise, even a small amount of water quickly depleted on the 
hydrolysis of ester 2 would return again in the reaction mixture after the formation of 4-
amino derivative 4, restarting the process of hydrolysis, etc. Thus, the amidation would be 
largely or even completely suppressed, but it does not correspond to the experimental 
data. 

After determining the cause of specific impurities’ appearance, it was not difficult to 
minimize an undesirable side reaction. For this purpose it is sufficient to remove water not 
only from the solvent, but from both reagents as well. Esters 2a,b are nonhygroscopic, 
they were dried in the air at room temperature. Commercial xylene and arylalkylamines 
were dried with anhydrous CaCl2 in granules and КОН in tablets, respectively, followed by 
distillation. According to HPLC data in a new sample of benzylamide 1е obtained from 
reagents previously prepared, the content of the impurity of 4-amino derivative 4 
decreased up to 0.05%, and it could be neglected. As a result, according to this method 
the target N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides 
1а-s were obtained with good yields and purity. Naturally, cyclohexylmethyl-substituted 
derivative 1s does not belong to arylalkylamides, but it is of interest as a hydrogenated 
analogue of benzylamide 1е. All the products were characterized by elemental analysis, 
1H- and 13C-NMR data. It should be noted as a distinctive feature of the 1H-NMR spectra of 
amides 1а-s that due to rapid proton exchange in the amide group, N-methylene protons 
of benzyl- and phenethyl-amide fragments appear exclusively as singlets or triplets, 
respectively, in all cases instead of the classic doublets or quartets. For the same reason, 
the amide protons of these fragments give broad singlets. 
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Evaluation of the Analgesic Activity 
Analysis of the experimental data presented in Table 1 shows that our choice of N-
(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides as targets of 
research is fully justified; each and all compounds exhibited analgesic properties. 
Moreover, it is possible to assert unequivocally that derivatives 1a-d unsubstituted in 
position 1 are not of practical interest because their activity is too weak. However, the 1-N-
methyl substituent cardinally changes the situation. Benzylamide 1е, for example, exceeds 
Meloxicam more than twice in the similar dose by the potency of its analgesic effect. 
Introduction of substituents in the aromatic nucleus of the benzyl fragment regardless of 
their position and nature is accompanied by a decrease in activity, moreover, in a fairly 
wide range. So, if in the case of 4-chloro- (1h) and 4-methylbenzylamide 1k it can be 
classified as minor, whereas 2-methyl- (1i) and 4-methoxy (1m) groups inactivate the 
basic molecule almost completely. The removal of the phenyl nucleus from the amide 
nitrogen atom for another methylene unit causes a similar effect as evidenced by the 
extremely weak analgesic effect of phenethylamide 1о. Interestingly, in this group of 
compounds, the substituents in the phenyl nucleus is markedly enhanced the activity, i.e. 
they cause quite the opposite effect compared to benzylamides. The elongation of the 
hydrocarbon chain separating the aromatic nucleus and the amide nitrogen atom by up to 
three methylene groups (3-phenylpropylamide 1r), as well as hydrogenation of the benzyl 
substituent (сyclohexylmethylamide 1s), lead to a decrease in activity approximately twice 
although it is still quite high at the level of Meloxicam. 

Tab. 1.  The analgesic activity of arylalkylamides 1a–s, benzothiazine 4, V, and 
reference drugs. 

N
S

OH O

O
O

R

N
H

R'

 
Entry Product R R' The latent period  

in 1 h after 
introduction of the 

compounds, sa 

Change of the 
latent period, 
compared to 

control, % 

1 1a H 
 

4.22 ± 0.11 +8.2 

2 1b H 
Me  

4.07 ± 0.09 +4.6 

3 1c H 
OMe  

4.05 ± 0.11 +3.8 

4 1d H 
OMe

OMe

 
4.20 ± 0.10 +7.7 

5 1e Me 
 

8.31 ± 0.19 +113.1 
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Tab. 1.  (Cont.) 

Entry Product R R' The latent period  
in 1 h after 

introduction of the 
compounds, s a 

Change of the 
latent period, 
compared to 

control, % 

6 1f Me 
F  

5.52 ± 0.14 +41.5 

7 1g Me 
Cl

 
5.60 ± 0.16 +43.7 

8 1h Me 
Cl  

7.48 ± 0.23 +91.8 

9 1i Me 
Me

 
4.39 ± 0.12 +12.8 

10 1j Me 
Me

 
4.94 ± 0.13 +26.7 

11 1k Me 
Me  

7.43 ± 0.20 +90.4 

12 1l Me 
OMe

 
6.19 ± 0.14 +58.8 

13 1m Me 
OMe  

4.54 ± 0.11 +16.3 

14 1n Me 
OMe

OMe

 
6.11 ± 0.17 +56.8 

15 1o Me 
 

4.38 ± 0.10 +12.5 

16 1p Me 
Cl

 
6.31 ± 0.18 +61.9 

17 1q Me 
OMe

OMe  
4.89 ± 0.12 +25.4 

18 1r Me 
 

5.73 ± 0.14 +46.9 

19 1s Me 
 

5.84 ± 0.15 +49.7 

20 4 – – 5.01 ± 0.15 +28.5 
21 V – – 5.93 ± 0.16 +52.2 
22 Meloxicam – – 5.99 ± 0.16 +53.7 
23 Piroxicam – – 4.87 ± 0.17 +24.9 
24 Control – – 3.90 ± 0.13 – 

a All results from biological tests were analyzed statistically using Student’s t-test. Effects were 
regarded as statistically significant at p ≤ 0.05. 
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It is interesting to note a pronounced analgesic effect of the byproduct of the studied 
reaction, N-benzyl-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazin-4-amine (4) and especially 
its synthetic precursor, l-methyl-3,4-dihydro-2,2-dioxo-1H-2λ6,1-benzothiazin-4-one (V). 

Experimental 
Chemistry  
1Н- and 13С-NMR spectra were acquired on a Varian Mercury-400 instrument (400 and 
100 MHz, respectively) in DMSO-d6 with TMS as internal standard. The chemical shift 
values were recorded on a δ scale and the coupling constants (J) in hertz. The following 
abbreviations were used in reporting spectra: s = singlet, d = doublet, t = triplet, quin = 
quintet, m = multiplet. Elemental analysis was performed on a Euro Vector EA-3000 
Microanalyzer. Melting points were determined in a capillary using a Stuart SMP10 digital 
melting point apparatus. The reaction mixtures obtained after the reaction of ester 2b with 
benzylamine were analyzed on a modular Bischoff HPLC system with Lambda 1010 
spectrophotometric detector (Bischoff Analysentechnik GmbH). The chromatographic 
conditions were: ProntoSIL 120-5-CN column of 4.0 × 250 mm; the sorbent particle size 
was 5 μm; the mobile phase flow rate was 1 ml/min; the column temperature was 40°С; 
the injection volume was 5 μl; detection at 254 nm; the mobile phase composition was 
MeCN–H2O (87.3:12.7%). The synthesis of alkyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-
benzothiazine-3-carboxylates (2) was carried out by the method in the study [24]. 
General Procedure for the Synthesis of N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-
2λ6,1-benzothiazine-3-carboxamides (1a–s) 
A mixture of ester 2 (0.01 mol), arylalkylamine (0.01 mol), and dry xylene (2 ml) was kept 
for 1 h at 150°С in a liquid metal bath using a suitable air-cooled distilling column that 
allowed us to distill off the methanol or ethanol formed without removing the xylene 
solvent. The reaction mixture was cooled, EtOH (5 ml) was added, and the mixture was 
left for several hours at room temperature. The crystalline amide 1 that precipitated was 
filtered off, washed with cold EtOH, dried, and recrystallized from EtOH. Arylalkylamides 
1а–s were colorless crystals. 
N-Benzyl-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (1a) 

Yield: 94%; mp 183-185°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.28 (s, 1H, 4-ОН), 12.15 
(br. s, 1H, SO2NH), 8.38 (br. s, 1Н, CONH), 7.93 (d, 1Н, J = 8.0 Hz, Н-5), 7.62 (t, 1Н, J = 
7.7 Hz, Н-7), 7.30 (t, 1Н, J = 7.6 Hz, Н-6), 7.26-7.15 (m, 6Н, Н-8 + Ph), 4.48 (s, 2Н, 
NCH2). Anal. Calcd. for C16H14N2O4S: C, 58.17; H, 4.27; N, 8.48; S 9.71%. Found: C, 
58.24; H, 4.33; N, 8.56; S 9.66%. 

4-Hydroxy-N-(4-methylbenzyl)-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (1b) 

Yield: 91%; mp 186-188°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.22 (br. s, 1H, 4-OH), 
12.12 (br. s, 1H, SO2NH), 8.36 (br. s, 1H, CONH), 7.91 (d, 1H, J = 8.0 Hz, H-5), 7.63 (t, 
1H, J = 7.7 Hz, H-7), 7.31-7.08 (m, 6H, H-6,8,2',3',5',6'), 4.49 (s, 2H, NCH2), 2.25 (s, 3H, 
Me). Anal. Calcd. for C17H16N2O4S: C, 59.29; H, 4.68; N, 8.13; S 9.31%. Found: C, 59.35; 
H, 4.77; N, 8.18; S 9.33%. 
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4-Hydroxy-N-(4-methoxybenzyl)-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (1c) 

Yield: 93%; mp 180-182°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.29 (br. s, 1H, 4-OH), 
12.18 (br. s, 1H, SO2NH), 8.34 (br. s, 1H, CONH), 7.91 (d, 1H, J = 8.0 Hz, H-5), 7.62 (t, 
1H, J = 7.8 Hz, H-7), 7.32-7.218 (m, 3H, H-6,2',6'), 7.14 (d, 1H, J = 8.3 Hz, H-8), 6.89 (d, 
2H, J = 8.0 Hz, H-3',5'), 4.45 (s, 2H, NCH2), 3.70 (s, 3H, OMe); Anal. Calcd. for 
C17H16N2O5S: C, 56.66; H, 4.48; N, 7.77; S 8.90%. Found: C, 56.70; H, 4.55; N, 7.71; S 
8.82%. 

N-(3,4-Dimethoxybenzyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (1d) 

Yield: 90%; mp 189-191°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.21 (br. s, 1H, 4-OH), 
12.16 (br. s, 1H, SO2NH), 8.31 (br. s, 1H, CONH), 7.91 (d, 1H, J = 8.0 Hz, H-5), 7.63 (t, 
1H, J = 7.7 Hz, H-7), 7.26 (t, 1H, J = 7.5 Hz, H-6), 7.14 (d, 1H, J = 8.3 Hz, H-8), 6.97 (s, 
1H, H-2'), 6.91 (d, 1H, J = 8.3 Hz, H-5'), 6.84 (d, 1H, J = 8.3 Hz, H-6'), 4.46 (s, 2H, NCH2), 
3.72 (s, 3H, OMe), 3.70 (s, 3H, OMe). Anal. Calcd. for C18H18N2O6S: C, 55.38; H, 4.65; N, 
7.18; S 8.21%. Found: C, 55.32; H, 4.72; N, 7.24; S 8.29%. 

N-Benzyl-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (1e) 

Yield: 92%; mp 143-145-°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.39 (s, 1H, 4-ОН), 8.59 
(br. s, 1Н, NH), 8.04 (d, 1Н, J = 7.9 Hz, Н-5), 7.79 (t, 1Н, J = 7.8 Hz, Н-7), 7.52 (d, 1Н, J = 
8.3 Hz, Н-8), 7.41 (t, 1Н, J = 7.7 Hz, Н-6), 7.35-7.28 (m, 5Н, Ph), 4.60 (s, 2Н, NCH2), 3.45 
(s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-d6): δ 169.8 (С-ОН), 166.4 (С=О), 140.8, 138.8, 
135.4, 129.2, 128.1, 127.9, 127.1, 124.5, 119.1, 118.9, 103.5 (C-3), 43.5 (NCH2), 32.2 
(NCH3). Anal. Calcd. for C17H16N2O4S: C, 59.29; H, 4.68; N, 8.13; S 9.31%. Found: C, 
59.35; H, 4.76; N, 8.04; S 9.23%. 

N-(4-Fluorobenzyl)-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide 
(1f) 
Yield: 89%; mp 161-163°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.42 (s, 1H, 4-ОН), 8.60 
(br. s, 1Н, NH), 8.01 (d, 1Н, J = 8.0 Hz, Н-5), 7.77 (t, 1Н, J = 7.7 Hz, Н-7), 7.49 (d, 1Н, J = 
8.3 Hz, Н-8), 7.44-7.36 (m, 3Н, Н-6,2',6'), 7.18 (t, 2Н, J = 8.6 Hz, Н-3',5'), 4.64 (s, 2Н, 
NCH2), 3.42 (s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-d6): δ 169.8 (С-ОН), 166.4 (С=О), 
163.2/160.8 (d, 1JC-F = 246 Hz, C-4'), 140.8, 135.5, 135.1, 136.3/130.2 (d, 3JC-F = 8.2 Hz, 
C-2',6'), 127.1, 124.5, 119.0, 118.9, 116.0/115.8 (d, 2JC-F = 21.5 Hz, C-3',5'), 103.5 (C-3), 
42.9 (NCH2), 32.2 (NCH3). Anal. Calcd. for C17H15FN2O4S: C, 56.35; H, 4.17; N, 7.73; S 
8.85%. Found: C, 56.38; H, 4.24; N, 7.80; S 8.78%. 

N-(2-Chlorobenzyl)-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide 
(1g) 

Yield: 91%; mp 167-169°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.10 (s, 1H, 4-ОН), 8.41 
(br. s, 1Н, NH), 8.04 (d, 1Н, J = 8.0 Hz, Н-5), 7.74 (t, 1Н, J = 7.7 Hz, Н-7), 7.46-7.28 (m, 
6Н, Н-6,8,2',3',5',6'), 4.67 (s, 2Н, NCH2), 3.47 (s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-
d6): δ 169.7 (С-ОН), 166.6 (С=О), 140.8, 135.8, 135.5, 132.7, 130.0, 129.7, 129.3, 128.1, 
127.1, 124.5, 119.0, 118.9, 103.5 (C-3), 41.6 (NCH2), 32.2 (NCH3). Anal. Calcd. for 
C17H15ClN2O4S: C, 53.90; H, 3.99; N, 7.39; S 8.46%. Found: C, 53.86; H, 4.06; N, 7.32; S 
8.39%. 
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N-(4-Chlorobenzyl)-4-hydroxy-1-methyl-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide 
(1h) 

Yield: 95%; mp 138-140°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.32 (s, 1H, 4-ОН), 8.63 
(br. s, 1Н, NH), 8.01 (d, 1Н, J = 8.0 Hz, Н-5), 7.77 (t, 1Н, J = 7.8 Hz, Н-7), 7.49 (d, 1Н, J = 
8.4 Hz, Н-8), 7.43-7.39 (m, 3Н, Н-6,2',6'), 7.35 (d, 2Н, J = 8.2 Hz, Н-3',5'), 4.55 (s, 2Н, 
NCH2), 3.42 (s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-d6): δ 169.8 (С-ОН), 166.5 (С=О), 
140.8, 138.0, 135.5, 132.4, 130.0, 129.1, 127.1, 124.5, 119.0, 118.9, 103.5 (C-3), 42.9 
(NCH2), 32.2 (NCH3). Anal. Calcd. for C17H15ClN2O4S: C, 53.90; H, 3.99; N, 7.39; S 8.46%. 
Found: C, 53.98; H, 4.06; N, 7.47; S 8.37%. 

4-Hydroxy-1-methyl-N-(2-methylbenzyl)-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide 
(1i) 
Yield: 85%; mp 170-172°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.28 (s, 1H, 4-ОН), 8.37 
(br. s, 1Н, NH), 8.02 (d, 1Н, J = 8.0 Hz, Н-5), 7.79 (t, 1Н, J = 7.6 Hz, Н-7), 7.50 (d, 1Н, J = 
8.4 Hz, Н-8), 7.39 (t, 1Н, J = 7.6 Hz, Н-6), 7.27-7.15 (m, 4Н, Н-3',4',5',6'), 4.57 (s, 2Н, 
NCH2), 3.43 (s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-d6): δ 169.7 (С-ОН), 166.4 (С=О), 
140.8, 136.4, 136.2, 135.5, 130.8, 127.9, 127.8, 127.1, 126.6, 124.5, 119.0, 118.9, 103.4 
(C-3), 41.6 (NCH2), 32.2 (NCH3), 19.3 (2'-CH3). Anal. Calcd. for C18H18N2O4S: C, 60.32; H, 
5.06; N, 7.82; S 8.95%. Found: C, 60.37; H, 5.11; N, 7.87; S 9.03%. 

4-Hydroxy-1-methyl-N-(3-methylbenzyl)-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide 
(1j) 
Yield: 88%; mp 126-128°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.40 (s, 1H, 4-ОН), 8.49 
(br. s, 1Н, NH), 8.02 (d, 1Н, J = 7.9 Hz, Н-5), 7.76 (t, 1Н, J = 7.6 Hz, Н-7), 7.48 (d, 1Н, J = 
8.2 Hz, Н-8), 7.38 (t, 1Н, J = 7.5 Hz, Н-6), 7.24 (t, 1Н, J = 7.2 Hz, Н-5'), 7.18 (s, 1H, H-2'), 
7.13 (d, 1Н, J = 7.2 Hz, Н-6'), 7.08 (d, 1Н, J = 7.1 Hz, Н-4'), 4.54 (s, 2Н, NCH2), 3.42 (s, 
3Н, NMe), 2.29 (s, 3Н, Me). 13C-NMR (100 MHz, DMSO-d6): δ 169.8 (С-ОН), 166.4 (С=О), 
140.8, 138.7, 138.3, 135.4, 129.1, 128.8, 128.5, 127.1, 125.2, 124.4, 119.0, 118.8, 103.4 
(C-3), 43.5 (NCH2), 32.1 (NCH3), 21.7 (3'-CH3). Anal. Calcd. for C18H18N2O4S: C, 60.32; H, 
5.06; N, 7.82; S 8.95%. Found: C, 60.38; H, 5.13; N, 7.85; S 9.01%. 

4-Hydroxy-1-methyl-N-(4-methylbenzyl)-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide 
(1k) 

Yield: 87%; mp 131-133°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.42 (s, 1H, 4-ОН), 8.51 
(br. s, 1Н, NH), 8.02 (d, 1Н, J = 8.0 Hz, Н-5), 7.78 (t, 1Н, J = 7.6 Hz, Н-7), 7.50 (d, 1Н, J = 
8.3 Hz, Н-8), 7.40 (t, 1Н, J = 7.5 Hz, Н-6), 7.26 (d, 2Н, J = 7.0 Hz, Н-2',6'), 7.17 (d, 2Н, J = 
7.0 Hz, Н-3',5'), 4.53 (s, 2Н, NCH2), 3.43 (s, 3Н, NMe), 2.29 (s, 3Н, Me). 13C-NMR (100 
MHz, DMSO-d6): δ 169.8 (С-ОН), 166.4 (С=О), 140.8, 137.0, 135.7, 135.4, 129.7, 128.2, 
127.1, 124.5, 119.1, 118.9, 103.4 (C-3), 43.3 (NCH2), 32.2 (NCH3), 21.4 (3'-CH3). Anal. 
Calcd. for C18H18N2O4S: C, 60.32; H, 5.06; N, 7.82; S 8.95%. Found: C, 60.24; H, 4.95; N, 
7.73; S 8.87%. 

4-Hydroxy-1-methyl-N-(2-methoxybenzyl)-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-
carboxamide (1l) 
Yield: 90%; mp 165-167°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.32 (s, 1H, 4-ОН), 8.42 
(br. s, 1Н, NH), 8.01 (d, 1Н, J = 8.0 Hz, Н-5), 7.77 (t, 1Н, J = 7.6 Hz, Н-7), 7.50 (d, 1Н, J = 
8.3 Hz, Н-8), 7.39 (t, 1Н, J = 7.4 Hz, Н-6), 7.30 (t, 1Н, J = 7.5 Hz, Н-4'), 7.23 (d, 1H, J = 



560 I. V. Ukrainets et al.:  

Sci Pharm. 2015; 83: 549–566 

7.3 Hz, H-6'), 7.04 (d, 1Н, J = 8.0 Hz, Н-3'), 6.94 (t, 1Н, J = 7.2 Hz, Н-5'), 4.55 (s, 2Н, 
NCH2), 3.85 (s, 3H, OMe), 3.43 (s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-d6): δ 169.7 (С-
ОН), 166.2 (С=О), 157.6 (C-2'), 140.8, 135.5, 129.6, 128.8, 127.1, 125.7, 124.5, 121.1, 
119.0, 118.9, 111.5, 103.3 (C-3), 56.1 (OCH3), 39.0 (NCH2), 32.2 (NCH3). Anal. Calcd. for 
C18H18N2O5S: C, 57.74; H, 4.85; N, 7.48; S 8.56%. Found: C, 57.67; H, 4.80; N, 7.42; S 
8.64%. 

4-Hydroxy-1-methyl-N-(4-methoxybenzyl)-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-
carboxamide (1m) 

Yield: 87%; mp 119-121°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.43 (s, 1H, 4-ОН), 8.46 
(br. s, 1Н, NH), 8.01 (d, 1Н, J = 7.9 Hz, Н-5), 7.76 (t, 1Н, J = 7.6 Hz, Н-7), 7.49 (d, 1Н, J = 
8.2 Hz, Н-8), 7.38 (t, 1Н, J = 7.5 Hz, Н-6), 7.30 (d, 2Н, J = 8.2 Hz, Н-2',6'), 6.92 (d, 2H, J = 
8.2 Hz, Н-3',5'), 4.49 (s, 2Н, NCH2), 3.73 (s, 3H, OMe), 3.41 (s, 3Н, NMe). 13C-NMR (100 
MHz, DMSO-d6): δ 169.8 (С-ОН), 166.3 (С=О), 159.2 (C-4'), 140.9, 135.4, 130.7, 129.7, 
127.1, 124.5, 119.1, 118.9, 114.6, 103.4 (C-3), 55.7 (OCH3), 43.0 (NCH2), 32.2 (NCH3). 
Anal. Calcd. for C18H18N2O5S: C, 57.74; H, 4.85; N, 7.48; S 8.56%. Found: C, 57.69; H, 
4.78; N, 7.41; S 8.62%. 

N-(3,4-Dimethoxybenzyl)-4-hydroxy-1-methyl-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-
carboxamide (1n) 

Yield: 91%; mp 160-162°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.41 (s, 1H, 4-ОН), 8.46 
(br. s, 1Н, NH), 8.04 (d, 1Н, J = 8.0 Hz, Н-5), 7.79 (t, 1Н, J = 7.6 Hz, Н-7), 7.51 (d, 1Н, J = 
8.4 Hz, Н-8), 7.40 (t, 1Н, J = 7.6 Hz, Н-6), 7.03 (s, 1Н, Н-2'), 6.96 (d, 1H, J = 8.0 Hz, H-5'), 
6.90 (d, 1Н, J = 8.0 Hz, Н-6'), 4.52 (s, 2Н, NCH2), 3.77 (s, 3H, OMe), 3.75 (s, 3H, OMe), 
3.44 (s, 3Н, NMe). 13C-NMR (100 MHz, DMSO-d6): δ 169.7 (С-ОН), 166.3 (С=О), 149.3, 
148.8, 140.8, 135.4, 131.0, 127.1, 124.5, 120.5, 119.0, 118.9, 112.5, 112.4, 103.4 (C-3), 
56.2 (OCH3), 56.1 (OCH3), 43.3 (NCH2), 32.2 (NCH3). Anal. Calcd. for C19H20N2O6S: C, 
56.43; H, 4.98; N, 6.93; S 7.93%. Found: C, 56.48; H, 5.06; N, 7.00; S 7.85%. 

4-Hydroxy-1-methyl-N-phenethyl-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide (1o) 

Yield: 86%; mp 107-109°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.48 (s, 1H, 4-ОН), 8.07 
(br. s, 1Н, NH), 8.01 (d, 1Н, J = 8.0 Hz, Н-5), 7.77 (t, 1Н, J = 7.7 Hz, Н-7), 7.49 (d, 1Н, J = 
8.4 Hz, Н-8), 7.39 (t, 1Н, J = 7.5 Hz, Н-6), 7.31 (t, 2Н, J = 7.4 Hz, Н-2',6'), 7.26 (d, 2H, J = 
7.4 Hz, H-3',5'), 7.21 (t, 1Н, J = 7.2 Hz, Н-4'), 3.60 (t, 2Н, J = 6.8 Hz, NCH2), 3.41 (s, 3H, 
NMe), 2.87 (t, 2H, J = 7.2 Hz, NCH2CH2). 13C-NMR (100 MHz, DMSO-d6): δ 169.8 (С-ОН), 
166.4 (С=О), 140.8, 139.4, 135.4, 129.4, 129.1, 127.1, 127.0, 124.5, 119.1, 119.0, 103.2 
(C-3), 41.6 (NCH2), 35.4 (NCH2CH2), 32.3 (NCH3). Anal. Calcd. for C18H18N2O4S: C, 
60.32; H, 5.06; N, 7.82; S 8.95%. Found: C, 60.33; H, 5.01; N, 7.93; S 8.88%. 

N-(4-Chlorophenethyl)-4-hydroxy-1-methyl-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-
carboxamide (1p) 

Yield: 90%; mp 122-124°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.44 (s, 1H, 4-ОН), 8.07 
(br. s, 1Н, NH), 8.00 (d, 1Н, J = 7.9 Hz, Н-5), 7.76 (t, 1Н, J = 7.8 Hz, Н-7), 7.49 (d, 1Н, J = 
8.4 Hz, Н-8), 7.39 (t, 1Н, J = 7.5 Hz, Н-6), 7.34 (d, 2Н, J = 8.1 Hz, Н-3',5'), 7.28 (d, 2H, J = 
8.1 Hz, H-2',6'), 3.59 (t, 2Н, J = 6.8 Hz, NCH2), 3.40 (s, 3H, NMe), 2.87 (t, 2H, J = 7.2 Hz, 
NCH2CH2). 13C-NMR (100 MHz, DMSO-d6): δ 169.8 (С-ОН), 166.4 (С=О), 140.8, 138.4, 
135.4, 131.7, 131.3, 129.0, 127.1, 124.5, 119.0, 118.9, 103.2 (C-3), 41.3 (NCH2), 34.6 
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(NCH2CH2), 32.3 (NCH3). Anal. Calcd. for C18H17ClN2O4S: C, 55.03; H, 4.36; N, 7.13; S 
8.16%. Found: C, 54.96; H, 4.29; N, 7.17; S 8.11%. 

N-(3,4-Dimethoxyphenethyl)-4-hydroxy-1-methyl-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-
carboxamide (1q) 

Yield: 89%; mp 115-117°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.51 (s, 1H, 4-ОН), 8.06 
(br. s, 1Н, NH), 8.00 (d, 1Н, J = 7.9 Hz, Н-5), 7.77 (t, 1Н, J = 7.6 Hz, Н-7), 7.49 (d, 1Н, J = 
8.3 Hz, Н-8), 7.39 (t, 1Н, J = 7.4 Hz, Н-6), 6.89 (d, 1Н, J = 8.3 Hz, Н-5'), 6.84 (s, 1H, H-2'), 
6.76 (d, 1Н, J = 8.3 Hz, Н-6'), 3.75 (s, 3H, OMe), 3.71 (s, 3H, OMe), 3.58 (t, 2Н, J = 6.7 
Hz, NCH2), 3.40 (s, 3H, NMe), 2.80 (t, 2H, J = 6.9 Hz, NCH2CH2). 13C-NMR (100 MHz, 
DMSO-d6): δ 169.8 (С-ОН), 166.4 (С=О), 149.3, 148.0, 140.8, 135.4, 131.8, 127.1, 124.5, 
121.2, 119.0, 118.9, 113.2, 112.6, 103.2 (C-3), 56.2 (OCH3), 55.9 (OCH3), 41.8 (NCH2), 
34.9 (NCH2CH2), 32.2 (NCH3). Anal. Calcd. for C20H22N2O6S: C, 57.40; H, 5.30; N, 6.69; S 
7.66%. Found: C, 57.34; H, 5.25; N, 6.61; S 7.72%. 

4-Hydroxy-1-methyl-N-(3-phenylpropyl)-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide 
(1r) 
Yield: 82%; mp 89-91°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.53 (s, 1H, 4-ОН), 8.09 (br. s, 
1Н, NH), 8.02 (d, 1Н, J = 7.9 Hz, Н-5), 7.78 (t, 1Н, J = 7.7 Hz, Н-7), 7.50 (d, 1Н, J = 8.3 
Hz, Н-8), 7.40 (t, 1Н, J = 7.5 Hz, Н-6), 7.30 (t, 2Н, J = 7.4 Hz, Н-2',6'), 7.22 (d, 2H, J = 7.4 
Hz, H-3',5'), 7.17 (t, 1Н, J = 7.3 Hz, Н-4'), 3.43 (s, 3H, NMe), 3.38 (t, 2Н, J = 6.4 Hz, 
NCH2), 2.63 (t, 2H, J = 7.3 Hz, NCH2CH2CH2), 1.88 (quin. 2H, J = 7.1 Hz, NCH2CH2CH2). 
13C-NMR (100 MHz, DMSO-d6): δ 169.7 (С-ОН), 166.4 (С=О), 141.9, 140.8, 135.4, 129.0, 
128.9, 127.1, 126.5, 124.4, 119.1, 118.9, 103.3 (C-3), 39.8 (NCH2), 33.1 (CH2-Ph), 32.2 
(NCH3), 30.9 (NCH2CH2). Anal. Calcd. for C19H20N2O4S: C, 61.27; H, 5.41; N, 7.52; S 
8.61%. Found: C, 61.35; H, 5.47; N, 7.47; S 8.55%. 

N-Cyclohexylmethyl-4-hydroxy-1-methyl-2,2-dioxo-1Н-2λ6,1-benzothiazine-3-carboxamide 
(1s) 
Yield: 80%; mp 93-95°C; 1H-NMR (400 MHz, DMSO-d6): δ 16.57 (s, 1H, 4-ОН), 8.04 (d, 
1Н, J = 8.0 Hz, Н-5), 7.98 (br. s, 1Н, NH), 7.79 (t, 1Н, J = 7.8 Hz, Н-7), 7.52 (d, 1Н, J = 8.4 
Hz, Н-8), 7.41 (t, 1Н, J = 7.4 Hz, Н-6), 3.44 (s, 3H, NMe), 3.26 (d, 2Н, J = 6.2 Hz, NCH2), 
1.74-1.60 (m, 6H, 3,4,5-CH2), 1.27-0.91 (m, 5H, 2-CH2CHCH2-6). 13C-NMR (100 MHz, 
DMSO-d6): δ 169.7 (С-ОН), 166.4 (С=О), 140.7, 135.4, 127.1, 124.5, 118.9, 118.8, 103.3 
(C-3), 45.8 (NCH2), 37.8 (CH), 32.2 (NCH3), 30.8 (2,6-CH2), 26.6 (4-CH2), 25.9 (3,5-CH2). 
Anal. Calcd. for C17H22N2O4S: C, 58.27; H, 6.33; N, 7.99; S 9.15%. Found: C, 58.36; H, 
6.39; N, 8.04; S 9.11%. 

N-Benzyl-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazin-4-amine  
(4-(Benzylamino)-1-methyl-2λ6,1-benzothiazine-2,2(1H)-dione, 4)  
Benzylamine (1.18 g, 0.011 mol) was added to a solution of 1-methyl-3,4-dihydro-2,2-
dioxo-1H-2λ6,1-benzothiazin-4-one (V) (2.11 g, 0.01 mol) in methanol (10 ml) and heated 
at reflux for 3 h. The reaction mixture was cooled, diluted by adding cold water, and 
brought to pH ~ 4 by adding acetic acid and was used in the isolation of 4-N-
benzylsubstituted benzothiazine 4. The precipitate formed was filtered off, washed with 
cold water, and dried. Yield: 2.88 g (96%), colorless crystals of mp 167-169°С (acetone). 
1H-NMR (400 MHz, DMSO-d6): δ 7.90 (d, 1Н, J = 8.0 Hz, Н-5), 7.61-7.47 (m, 2Н, Н-7 + 
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NH), 7.39-7.20 (m, 7Н, Н-6,8 + Ph), 5.63 (s, 1H, H-3), 4.33 (d, 2Н, J = 5.9 Hz, NCH2), 3.19 
(s, 3H, NMe). Anal. Calcd. for C16H16N2O2S: C, 63.98; H, 5.37; N, 9.33; S 10.67%. Found: 
C, 64.04; H, 5.44; N, 9.28; S 10.63%. 

X-ray Structural Analysis 
Crystal data for N-benzyl-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazin-4-amine (4): 
C16H16N2O2S, colorless, monoclinic (acetone). At 20°С a = 9.558(1), b = 7.5316(6), c = 
20.639(2) Å, β = 91.865(9)°, V = 1484.9(3) Å3, Mr = 300.37, Z = 4, space group P21/n, dcalc 
= 1.478 g/сm3, µ (MoKα) = 0.261 mm−1, F(000) = 624. The unit cell parameters and 
intensities of 12499 reflections (4326 independent, Rint = 0.061) were measured on an 
Xcalibur-3 Diffractometer (MoKα radiation, ССD detector, graphite monochromator, ω-
scanning to 2θmax = 60°). The structure was solved by the direct method using the 
SHELXTL program package [38]. The hydrogen atom positions were revealed by 
differential synthesis of electron density and refined according to the "rider" model with Uiso 
= nUeq for the nonhydrogen atom bonded to a given hydrogen atom (n = 1.5 for methyl 
group, n = 1.2 for the rest of the hydrogen atoms). The amino group hydrogen atom 
participating in hydrogen bonds were refined in isotropic approximation. The structure was 
refined using F2 full-matrix least-squares analysis in the anisotropic approximation for non-
hydrogen atoms to wR2 = 0.153 for 4261 reflections (R1 = 0.064 for 2221 reflections with F 
> 4σ (F), S = 0.932). CCDC 1053043 contains the supplementary crystallographic data for 
this paper. These data can be obtained free of charge from the Cambridge 
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

Pharmacology  
Analgesic Test 

The analgesic activity of the synthesized compounds was studied using the model of the 
thermal tail-flick procedure in white rats (Tail Immersion Test) by comparing those with 
similar structure, Piroxicam (Jenapharm, Germany) and Meloxicam (Boehringer Ingelheim, 
Germany), on [39] enabling judgment of the central effect on the nociceptive system. For 
this purpose, the rat’s tail tip was immersed in a water bath heated to 54°С, and the latent 
period of the tail withdrawal (immersion) expressed in seconds was determined. The 
analgesic effect (in %) was assessed by the change of the latent period in 1 hour after 
introduction of the test substances and reference drugs. Seven experimental animals were 
involved to obtain statistically reliable results (the significance level of the confidence 
interval accepted in this work was p ≤ 0.05) in testing each of arylalkylamides 1а–s, 
reference drugs, and control. All substances under research, Piroxicam, and Meloxicam 
were introduced orally in the form of fine aqueous suspensions stabilized with Tween-80 in 
the dose of 20 mg/kg. The animals of the control group received an equivalent amount of 
water with Tween-80. 

Conclusion  
It has been experimentally proven that the direction of the reaction of alkyl 1-R-4-hydroxy-
2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates and arylalkylamines in boiling xylene can 
vary significantly: in the presence of water N-(arylalkyl)-1-R-2,2-dioxo-1H-2λ6,1-benzo-
thiazin-4-amines are notably formed, whereas in the anhydrous conditions the 
corresponding N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carbox-

http://www.ccdc.cam.ac.uk/data_request/cif
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amides are obtained with good yields. The regularities of the revealed “structure – activity” 
relationship are discussed. According to the results of the pharmacological study 
conducted, some compounds that deserve a deeper and more detailed pharmacological 
study have been found; among them is N-benzyl-4-hydroxy-1-methyl-2,2-dioxo-1Н-2λ6,1-
benzothiazine-3-carboxamide which is certainly the structure-leader as a new promising 
pain killer. 

Acknowledgement  
We sincerely appreciate the help of the Candidate of Chemistry Svitlana V. Shishkina 
(NTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, Kharkiv, 
Ukraine) in studying the structure of the compounds synthesized. 

Authors' Statements 
Competing Interests  
The authors declare no conflict of interest.  

Animal Rights 
All biological experiments were carried out in full accordance with the European 
Convention on the Protection of Vertebrate Animals Used for Experimental and Other 
Scientific Purposes and the Ukrainian Law No. 3447-IV "On protection of animals from 
severe treatment" (2006). 

References 
[1] Carter HM. 

The ideal analgesic in labor and childbirth. 
Med World (New York). 1946; 64: 403–405. 

[2] Bentley KW. 
The relief of pain – the search for the ideal analgesic. 
Endeavour. 1964; 23: 97–101. 
http://www.ncbi.nlm.nih.gov/pubmed/14155200 

[3] Todd WM. 
The search for the ideal analgesic. 
Acta Anaesthesiol Belg. 1984; 35: Suppl. 237–241. 
http://www.ncbi.nlm.nih.gov/pubmed/6151331 

[4] Tao PL, Law PY, Loh HH. 
Search for the "ideal analgesic" in pain treatment by engineering the mu-opioid receptor. 
IUBMB Life. 2010; 62: 103–111. 
http://dx.doi.org/10.1002/iub.292 

[5] Mathuram Thiyagarajan U, Bagul A, Nicholson ML. 
Pain management in laparoscopic donor nephrectomy: a review. 
Pain Res Treat. 2012; 2012: 201852. 
http://dx.doi.org/10.1155/2012/201852 

[6] Goldberg D S, McGee S J. 
Pain as a global public health priority. 
BMC Public Health. 2011; 11: 770. 
http://dx.doi.org/10.1186/1471-2458-11-770 

http://www.ncbi.nlm.nih.gov/pubmed/14155200
http://www.ncbi.nlm.nih.gov/pubmed/6151331
http://dx.doi.org/10.1002/iub.292
http://dx.doi.org/10.1155/2012/201852
http://dx.doi.org/10.1186/1471-2458-11-770


564 I. V. Ukrainets et al.:  

Sci Pharm. 2015; 83: 549–566 

[7] Kleemann A, Engel J, Kutscher B, Reichert D. 
Pharmaceutical Substances: Syntheses, Patents, Applications of the most relevant APIs, 5th ed. 
Thieme: Stuttgart, 2008, 1800 p. 

[8] Zor F, Ozturk S, Bilgin F, Isik S, Cosar A. 
Pain relief during dressing changes of major adult burns: ideal analgesic combination with ketamine. 
Burns. 2010; 36: 501–505. 
http://dx.doi.org/10.1016/j.burns.2009.08.007 

[9] Smith HS. 
Combination opioid analgesics. 
Pain Physician. 2008; 11: 201–214. 
http://www.ncbi.nlm.nih.gov/pubmed/18354712 

[10] Madhusudhan SK. 
Novel analgesic combination of tramadol, paracetamol, caffeine and taurine in the management of 
moderate to moderately severe acute low back pain. 
J Orthop. 2013; 10: 144–148/ 
http://dx.doi.org/10.1016/j.jor.2013.07.001 

[11] Kern KU, Krings D, Waldmann-Rex S. 
[Tapentadol prolonged release improves analgesia, functional impairment and quality of life in patients 
with chronic pain who have previously received oxycodone/naloxone]. 
MMW Fortschr Med. 2014; 156(2): 54–63. 
http://www.ncbi.nlm.nih.gov/pubmed/25351028 

[12] Szkutnik-Fiedler D, Sawicki W, Balcerkiewicz M, Mazgalski J, Grabowski T, Grześkowiak E. 
Biopharmaceutical evaluation of new slow release tablets obtained by hot tableting of coated pellets 
with tramadol hydrochloride. 
Acta Pol Pharm. 2014; 71: 813–820. 
http://www.ncbi.nlm.nih.gov/pubmed/25362810 

[13] Kesmati M, Torabi M. 
Interaction between Analgesic Effect of Nano and Conventional size of Zinc Oxide and Opioidergic 
System Activity in Animal Model of Acute Pain. 
Basic Clin Neurosci. 2014; 5: 80-87. 

[14] Kubinyi H. 
In: Looking ups of the New Compounds-leaders for Creation of Drugs. 
Russian Chem J. 2006; L(2): 5–17. 

[15] Alonso D, Khalil Z, Satkunanthan N, Livett B G. 
Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological conditions. 
Mini Rev Med Chem. 2003; 3: 785–787. 
http://dx.doi.org/10.2174/1389557033487746 

[16] Gibbs WW. 
A new way to spell relief: v-e-n-o-m. A toxin from killer sea snails promises a better painkiller. 
Sci Am. 1996; 274(2): 28–30. 
http://www.ncbi.nlm.nih.gov/pubmed/8560212 

[17] Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP, Grishin EV. 
Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid 
receptor 1 (TRPV1). 
J Biol Chem. 2008; 283: 23914–23921. 
http://dx.doi.org/10.1074/jbc.M800776200 

[18] Zwart R, Strotton M, Ching J, Astles PC, Sher E. 
Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus 
laevis oocytes. 
Eur J Pharmacol. 2014; 726: 77–86. 
http://dx.doi.org/10.1016/j.ejphar.2014.01.031 

http://dx.doi.org/10.1016/j.burns.2009.08.007
http://www.ncbi.nlm.nih.gov/pubmed/18354712
http://dx.doi.org/10.1016/j.jor.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25351028
http://www.ncbi.nlm.nih.gov/pubmed/25362810
http://dx.doi.org/10.2174/1389557033487746
http://www.ncbi.nlm.nih.gov/pubmed/8560212
http://dx.doi.org/10.1074/jbc.M800776200
http://dx.doi.org/10.1016/j.ejphar.2014.01.031


 The Effective Synthesis of N-(Arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-… 565 

Sci Pharm. 2015; 83: 549–566 

[19] Dulu TD, Kanui TI, Towett PK, Maloiy GM, Abelson KS. 
The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-
plate, and formalin tests in the naked mole-rat (Heterocephalus glaber). 
In Vivo. 2014; 28: 39–48. 
http://www.ncbi.nlm.nih.gov/pubmed/24425834 

[20] Martin YC, Kofron JI, Traphagen LM. 
Do structurally similar molecules have similar biological activity? 
J Med Chem. 2002; 45: 4350–4358. 
http://dx.doi.org/10.1021/jm020155c 

[21] Ukrainets IV, Gorokhova OV, Jaradat NA, Petrushova LA, Mospanova EV, Savchenkova LV, 
Kuz'min VE, Lyahovsky AV. 
4-Hydroxyquinolin-2-ones and their close structural analogues as a new source of highly effective 
pain-killers. 
In: Pain and Treatment. 
Racz GB, Noe CE; eds. 
InTech: Rijeka, 2014, pp. 21–73. 
http://dx.doi.org/10.5772/57402 

[22] Lombardino JG. 
Preparation of some 4-hydroxyl-l-methyl-1H-2,l-benzothiazine-3-carboxanilide 2,2-dioxides. 
J Heterocycl Chem. 1972; 9: 315–317. 
http://dx.doi.org/10.1002/jhet.5570090221 

[23] Ciske FL, Genin MJ, Lee BH, Schnute ME, Vaillancourt VA. 
Heterocycle carboxamides as antiviral agents. 
U.S. Patent 6,559,145, 2003. 

[24] Ukrainets IV, Petrushova LA, Dzyubenko SP. 
2,1-Benzothiazine 2,2-dioxides. 1. Synthesis, structure, and analgesic activity of 1-R-4-hydroxy-2,2-
dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid esters. 
Chem Heterocycl Compd. 2013; 49: 1378–1383. 
http://dx.doi.org/10.1007/s10593-013-1388-9 

[25] Ukrainets IV, Petrushova LA, Dzyubenko SP, Sim G. 
2,1-Benzothiazine 2,2-dioxides. 3. 4-Hydroxy-1-methyl-2,2-dioxo-N-(1,3-thiazol-2-yl)-1Н-2λ6,1-
benzothiazine-3-carboxamides – a new group of potential analgetics. 
Chem Heterocycl Compd. 2014; 50: 103–110. 
http://dx.doi.org/10.1007/s10593-014-1452-0 

[26] Ukrainets IV, Petrushova LA, Dzyubenko SP, Liu Y. 
2,1-Benzothiazine 2,2-dioxides. 4. Synthesis, structure, and analgesic properties of 4-hydroxy-1-
methyl-2,2-dioxo-N-(pyridin-2-yl)-1H-2λ6,1-benzothiazine-3-carboxamides. 
Chem Heterocycl Compd. 2014; 50: 564–572. 
http://dx.doi.org/10.1007/s10593-014-1508-1 

[27] Ukrainets IV, Petrushova LA, Dzyubenko SP, Grinevich LA. 
Synthesis and analgesic activity of N-(benzothiazol-2-yl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-
3-carboxamides. 
Zh Org Farm Khim [J Org Pharm Chem]. 2014; 12(4): 38–43. 

[28] Ukrainets IV, Petrushova LA, Dzyubenko SP. 
Methyl-substituted anilides of 4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid. 
Synthesis, spectral characteristics and biological properties. 
Zh Org Farm Khim [J Org Pharm Chem]. 2014; 12(2): 53–58. 

[29] Petrushova LA, Ukrainets IV, Dzyubenko SP, Grinevich LA. 
Synthesis and the biological activity of 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazin-3-carboxylic acids 
trifluoromethyl-substituted anilides. 
Zh Org Farm Khim [J Org Pharm Chem]. 2015; 13(1): 44–48. 

http://www.ncbi.nlm.nih.gov/pubmed/24425834
http://dx.doi.org/10.1021/jm020155c
http://dx.doi.org/10.5772/57402
http://dx.doi.org/10.1002/jhet.5570090221
http://dx.doi.org/10.1007/s10593-013-1388-9
http://dx.doi.org/10.1007/s10593-014-1452-0
http://dx.doi.org/10.1007/s10593-014-1508-1


566 I. V. Ukrainets et al.:  

Sci Pharm. 2015; 83: 549–566 

[30] Ukrainets IV, Petrushova LA, Sim G, Bereznyakova NL. 
2,1-Benzothiazine 2,2-dioxides. 10. Reaction of alkyl 1-R-4-hydroxy-2,2-dioxo-1Н-2λ6,1-benzothiazine-
3-carboxylates with 1H-1,2,4-triazol-5-amine. 
Chem Heterocycl Compd. 2015; 51: 97–101. 
http://dx.doi.org/10.1007/s10593-015-1665-x 

[31] Ukrainets IV, Gorokhova OV, Andreeva KV. 
Transformation of 3-(3-arylalkylcarbamoyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-1-yl)propanenitriles 
into amides and acids. 
Russian J Org Chem. 2013; 49: 867–871. 
http://dx.doi.org/10.1134/S1070428013060122 

[32] Ukrainets IV, Mospanova EV, Jaradat NA, Bevz OV, Turov AV. 
4-Hydroxy-2-quinolones. 204. Synthesis, bromination, and analgetic properties of 1-allyl-4-hydroxy-
6,7-dimethoxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid arylalkylamides. 
Chem Heterocycl Compd. 2012; 48: 1347–1356. 
http://dx.doi.org/10.1007/s10593-012-1143-7 

[33] Ukrainets IV, Gorokhova OV, Andreeva KV, Davidenko AA. 
N-Benzyl-1-(2-cyanoethyl)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinecarboxamides as promising 
analgesics. 
Zh Org Farm Khim [J Org Pharm Chem]. 2014; 12(1): 51–55. 

[34] Zefirov NS, Palyulin VA, Dashevskaya EE. 
Stereochemical studies. XXXIV. Quantitative description of ring puckering via torsional angles. The 
case of six-membered rings. 
J Phys Org Chem. 1990; 3: 147–158. 
http://dx.doi.org/10.1002/poc.610030304 

[35] Ukrainets IV, Bevz OV, Mospanova EV, Savchenkova LV, Yankovich SI. 
4-Hydroxy-2-quinolones. 202. Synthesis, chemical and biological properties of 4-hydroxy-6,7-
dimethoxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid alkylamides. 
Chem Heterocycl Compd. 2012; 48: 320–326. 
http://dx.doi.org/10.1007/s10593-012-0992-4 

[36] Ukrainets IV, Golik MYu, Shemchuk OL, Kravchenko VM. 
Synthesis and diuretic properties of N-aryl-6-hydroxy-2-methyl-4-oxo-2,4-dihydro-1H- 
pyrrolo[3,2,1-ij]quinoline-5-carboxamides with electron-acceptor substituents in the anilide fragment. 
Zh Org Farm Khim [J Org Pharm Chem]. 2013; 11(3): 16–21. 

[37] Ukrainets IV, Petrushova LA, Dzyubenko SP, Liu Y. 
2,1-Benzothiazine 2,2-dioxides. 5. Hydrolysis of alkyl 1-R-4-hydroxy-2,2-dioxo-1Н-2λ6,1-
benzothiazine-3-carboxylates. 
Chem Heterocycl Compd. 2014; 50: 1047–1052. 
http://dx.doi.org/10.1007/s10593-014-1563-7 

[38] Sheldrick GM. 
A short history of SHELX 
Acta Crystallogr, Sect A: Found. Crystallogr. 2008; A64: 112–122. 
http://dx.doi.org/10.1107/S0108767307043930 

[39] Vogel H G, editor. 
Drug Discovery and Evaluation: Pharmacological Assays. 
Second ed; Springer: Berlin, 2008, pp 1014–1016. 
http://dx.doi.org/10.1007/978-3-540-70995-4 

http://dx.doi.org/10.1007/s10593-015-1665-x
http://dx.doi.org/10.1134/S1070428013060122
http://dx.doi.org/10.1007/s10593-012-1143-7
http://dx.doi.org/10.1002/poc.610030304
http://dx.doi.org/10.1007/s10593-012-0992-4
http://dx.doi.org/10.1007/s10593-014-1563-7
http://dx.doi.org/10.1107/S0108767307043930
http://dx.doi.org/10.1007/978-3-540-70995-4

