

Supporting Information to

Hydroxycinnamic Acid Derivatives Obtained from a Commercial *Crataegus* Extract and from Authentic *Crataegus* spp.

Ulrich Kuczkowiak, Frank Petereit, Adolf Nahrstedt

Published in Sci Pharm. 2014; 82: 835-846

doi:10.3797/scipharm.1404-02

Available from: http://dx.doi.org/10.3797/scipharm.1404-02

© Kuczkowiak et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table of Contents

- **Tab. 1S.** ¹H-NMR data of monocoumaroylquinic acids, *p*-coumaric acid, and free D(-)-quinic acid
- **Tab. 2S.** ¹H-NMR data of monohydroxycinnamoylquinic acids, caffeic acid, and free D-(-)-quinic acid
- Tab. 3S. ¹³C-NMR data of monocaffeoylquinic acids and free D-(-)-quinic acid
- **Tab. 4S.** ¹H-NMR and ¹³C-NMR data of dicaffeoylquinic acids
- **Tab. 5S.** ¹H-NMR data of hydroxycinnamoyl aldonic and malic acid derivatives
- Tab. 6S. ¹³C-NMR data of hydroxycinnamoyl aldonic and malic acid derivatives
- **Tab. 7S.** ¹H-NMR of L-threonic acid and γ-L-threonic acid lactone

		1		3		4			D-(−)-quinic acid		
Н	(ppm)	<i>J</i> (Hz)	(ppm)	<i>J</i> (Hz)	(ppm)	<i>J</i> (Hz)	Μ	(ppm)	<i>J</i> (Hz)		
2ax	2.20	2.4; -14	2.17	2.8; -13.5	2.17	3.4; -14.2	dd	2.06	3.3; -14.5		
2eq	2.14	2.0; 4.3; -14	2.07	2.4; 3.8; -13.5	2.04	2.2; 5.3; -14.2	ddd	2.02	2.0; 3.3; -14.5		
6ax	1.95	10; -13	2.01	11.0; -13.5	2.08	9.3; -13.5	dd	1.85	11.0; -13.5		
6eq	2.14	2.0; 4.313	2.20	2.4; 4.0; -13.5	2.22	2.2; 4.4; -13.5	ddd	2.12	2.0; 4.7; -13.5		
3	5.36	2.4; 3.2; 4.3	4.29	2.8; 3.3; 3.8	4.16	2.9; 3.4; 5.3	ddd	4.08	3.3; 3.7; 3.2		
4	3.64	3.2; 9	4.80	3.3; 9.4	3.72	2.9; 8.4	dd	3.39	3.2; 9.2		
5	4.15	9; 4.3; 10	4.28	4.0; 9.4; 11.0	5.33	4.4; 8.4; 9.3	ddd	3.99	4.7; 9.2; 11		
								р-со	oumaric acid		
2'	7.45	2.3; 8.6	7.47	2.3; 8.6	7.46	2.3; 8.6	d(d)	7.41	2.3; 8.6		
3'	6.80	2.3; 8.6	6.80	2.3; 8.6	6.80	2.3; 8.6	d(d)	6.79	2.3; 8.6		
5'	6.80	2.3; 8.6	6.80	2.3; 8.6	6.80	2.3; 8.6	d(d)	6.79	2.3; 8.6		
6'	7.45	2.3; 8.6	7.47	2.3; 8.6	7.46	2.3; 8.6	d(d)	7.41	2.3; 8.6		
7'	7.65	15.9	7.70	15.9	7.62	15.9	d	7.59	15.9		
8'	6.36	15.9	6.42	15.9	6.32	15.9	d	6.27	15.9		
	4	00 MHz		600 MHz		400 MHz			200 MHz		

Tab. 1S. ¹H-NMR data of monocoumaroylquinic acids, *p*-coumaric acid, and free D-(-)-quinic acid (rel. to CD₃OD = δ 3.30 ppm; M = multiplicity)

Tab. 2S. ¹H-NMR data of monohydroxycinnamoylquinic acids, caffeic acid, and free D-(-)-quinic acid (rel. to CD₃OD = δ 3.30 ppm; M = multiplicity)

	4		5		6			D-(-)-quinic acid		
Н	(ppm)	<i>J</i> (Hz)	(ppm)	<i>J</i> (Hz)	(ppm)	<i>J</i> (Hz)	Μ	(ppm)	<i>J</i> (Hz)	
2ax	2.18	3.2; -14.3	2.17	2.4; -14.4	2.17	3.4; -14.2	dd	2.05	3.3; -14.5	
2eq	2.13	2.0; 4.3; -14.3	2.07	2.4; 3.4; -14.4	2.04	2.2; 5.4; -14.2	ddd	2.02	2.0; 3.3; -14.5	
6ax	1.94	9.7; -13.4	2.01	10.5; -13.5	2.07	9.3; -13.5	dd	1.85	11.0; -13.5	
6eq	2.11	2.0; 4.0; -13.4	2.21	2.4; 4; -13.5	2.22	2.2; 4.4; -13.5	ddd	2.12	2.0; 4.7; -13.5	
3	5.34	3.2; 3.2; 4.3	4.28	2.4; 3.3; 3.4	4.16	3.3; 3.4; 5.4	ddd	4.08	3.3; 3.7; 3.4	
4	3.63	3.2. 8.3	4.80	3.3; 9.6	3.72	3.3; 8.4	dd	3.39	3.4; 9.2	
5	4.14	4.0; 8.3; 9.7	4.29	4.0; 9.6; 10.5	5.33	4.4; 8.4; 9.3	ddd	3.99	4.7; 9.2; 11	
								Ca	affeic acid	
2'	7.03	1.90	7.06	1.90	7.04	1.90	d	7.03	1.9	
3'	—	-	_	-	—	-	d	—		
5'	6.76	8.2	6.78	8.2	6.77	8.0	d	6.77	8.2	
6'	6.93	1.9; 8.2	6.95	1.9; 8.2	6.95	1.9; 8.0	d	6.92	1.9; 8.2	
7'	7.57	15.9	7.63	16.0	7.55	16.1	d	7.53	15.9	
8'	6.30	15.9	6.36	16.0	6.26	16.1	d	6.21	15.9	
		200 MHz	2	100 MHz	3	360 MHz			200 MHz	

	1	3	4	4	5	6	D-(-)-quinic acid
С	(ppm)						
1	75.42	76.61	76.22	75.46	76.61	76.17	76.88
2	36.75	38.41	38.26	36.77	38.43	38.12	38.43
3	73.03	69.67	71.36	73.02	69.69	71.35	71.93
4	74.87	79.34	73.58	74.84	79.34	73.57	77.1
5	68.29	65.52	72.02	68.34	65.54	71.86	68.03
6	41.57	42.72	38.88	41.53	42.74	38.85	42.39
7	178.29	177.27	177.04	178.5	177.27	176.96	177.56
1'	127.44	127.32	127.30	128.04	127.92	127.78	
2'	131.05	131.25	131.12	115.91	115.42	115.26	
3'	116.80	116.82	116.84	146.81	146.74	146.59	
4'	161.06	161.13	161.2	149.35	149.47	149.36	
5'	116.80	116.82	116.84	116.51	116.53	116.49	
6'	131.05	131.25	131.12	122.84	122.94	122.94	
7'	146.42	146.74	146.66	146.81	147.12	147.01	
8'	115.94	115.44	115.42	115.21	115.27	115.26	
9'	169.00	168.99	168.70	169.04	169.03	168.70	

Tab. 3S. ¹³C-NMR data of monocaffeoylquinic acids and free D-(-)-quinic acid (rel. to CD₃OD = δ 49 ppm, 50 MHz)

Tab. 4S. ¹H-NMR and ¹³C-NMR data of dicaffeoylquinic acids (in $CD_3OD = \delta$ 3.30 ppm and 49.0 ppm)

		7		8			7	8
Н	(ppm)	J (Hz)	(ppm)	J (Hz)	М	С	(ppm)	(ppm)
2ax	2.31	4.0; -13.8	2.30	3; -14.2	dd	C-1	74.77	76.15
2eq	2.15	1.5; 7.2; -13.8	2.10	2; 5.2; -14.2	ddd	C-2	36.04	38.45
6ax	2.20	7.5; 14.0	2.23	9.3; -14	dd	C-3	72.58	69.00
6eq	2.23	1.5; 4.2; -14	2.28	2; 5; -14	ddd	C-4	70.71	75.86
3	5.41	3; 4.0; 7.2	4.36	3; 3; 5.2	ddd	C-5	72.13	69.42
4	3.98	3; 7.5	5.11	3; 9.3	dd	C-6	37.70	39.45
5	5.41	4.2; 7.5; 7.5	5.61	5; 9.3; 9.3	ddd	C-7	17.74	176.76
						C-1'/1"	127.99 / 127.87	127.78 / 127.72
						C-2'/2"	115.97 / 115.68	115.27 / 115.27
2'/2"	7.06 / 7.06	2.1	7.02 / 7.00	2.3	d	C-3'/3"	146.77 / 146.77	147.70 / 147.57
3'/3"	-	-	-	-	d	C-4'/4"	149.56 / 149.47	149.67 / 149.67
5'/5"	6.77 / 6.77	8.1	6.73 / 6.73	8.3	d	C-5'/5"	116.51 / 116.51	116.53 / 116.53
6'/6"	6.96 / 6.96	2.1; 8.1	6.93 / 6.89	2.3; 8.3	dd	C-6'/6"	123.01 / 122.94	123.10 / 123.10
7'/7"	7.61 / 7.57	16.1	7.60 / 7.51	16.1	d	C-7'/7"	147.03 / 147.26	146.77 / 146.77
8'/8"	6.34 / 6.26	16.1	6.28 / 6.18	16.1	d	C-8'/8"	115.33 / 115.20	114.78 / 114.84

	40 44							•				4.0	
		10	10 11				9			12			
Н	(ppm)	<i>J</i> (Hz)	Μ	(ppm)	<i>J</i> (Hz)	Μ	(ppm)	<i>J</i> (Hz)	Μ	Η	(ppm)	<i>J</i> (Hz)	М
2	4.24	-	d	4.25	2.0	d	5.28	2.4	d	2	5.48	4.4; 7.8	dd
3	4.24	-	ddd	4.22	2.0; 6.0; 8.0	ddd	4.2	2.4; 5.0; 9.0	ddd	3a	2.96	-16; 4.4	dd
4a	4.26	-	dd	4.27	8; -11	dd	3.63	6.0; -11.0	dd	3b	2.91	-16; 7.8	dd
4b	4.26		dd	4.26	6; -11	dd	3.61	8.0; -11.0	dd				
2'	7.04	1.7	d	7.46	8.5; 2.3	d	7.08	2.1	d	2'	7.06	2.0	d
3'	-	-	-	6.80	8.5; 2.3	dd	-	-	-	3'	-	-	-
5'	6.77	8.1	d	6.80	8.5; 2.3	dd	6.79	8.2	d	5'	6.78	8.0	d
6'	6.95	1.7; 8.1	dd	7.46	8.5; 2.3	dd	6.97	2.1; 8.2	dd	6'	6.95	2.1; 8.0	dd
7'	7.58	15.9	d	7.64	16.0	d	7.68	15.8	d	7'	7.60	15.8	d
8'	6.29	15.9	d	6.35	16.0	d	6.37	15.8	d	8'	6.31	15.8	d
	600 MHz			60	0 MHz		20	00 MHz			200	MHz	

Tab. 5S. ¹H-NMR data of hydroxycinnamoyl aldonic and malic acid derivatives (in $CD_3OD = \delta$ 3.30 ppm: M = multiplicity)

Tab. 6S.	¹³ C-NMR data of hydroxycinnamoyl aldonic and malic acid derivatives (50 MHz,
	in CD ₃ OD = δ 49.0 ppm; 10 also in D ₂ O)
	* These assignments may be interchanged

	10	10	11	9	12
С	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	-	176.5	175.8	172.2	173.0*
2	71.4	71.9	72.3	73.6	69.9
3	71.4	70.7	72.2	72.7	37.1
4	66.0	65.7	65.9	63.1	179.6*
1'	127.8	127.7	127.2	127.8	127.7
2'	115.2	114.5	131.2	115.3	116.6
3'	146.7	145.0	116.8	146.8	146.7
4'	149.7	147.9	161.2	149.7	149.7
5'	116.5	115.8	116.8	116.5	115.3
6'	123.0	123.6	131.2	123.1	123.2
7'	147.2	147.0	146.8	147.9	148.1
8'	114.9	116.9	115.0	114.4	114.2
9'	169.0	169.9	169.0	168.5	168.1
	CD ₃ OD	D_2O	CD ₃ OD	CD ₃ OD	CD ₃ OD

These assignments may be interchanged

Tab. 7S.	¹ H-NMR of L-threonic acid and γ -L-threonic acid lactone (in CD ₃ OD = δ 3.30
	ppm, 50 MHz; M = multiplicity)

		L-thr	eonic acid	γ-L-threonic acid lactone			
Н	Μ	(ppm)	<i>J</i> (Hz)	(ppm)	J (Hz)		
2	d	4.19	1.2	4.20	7.6		
3	ddd	3.97	1.2; 6.0; 7.3	4.29	7.6; 6.8; 7.2		
4a	dd	3.66	6.0; -11.0	4.41	6.8; -9.1		
4b	dd	3.61	7.3; -11.0	3.93	7.2; -9.1		