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Abstract 
Methimazole is used as an antithyroid drug to control the symptoms of 
hyperthyroidism and maintain patients in a euthyroid state. Administration of this 
drug is associated with agranulocytosis and hepatotoxicity, which are the two 
most significant adverse effects. The present investigation was conducted to 
study the protective role of taurine against cytotoxicity induced by methimazole 
and its proposed reactive intermediary metabolite, N-methylthiourea, in an 
in vitro model of isolated rat hepatocytes. 
At different points in time, markers such as cell viability, reactive oxygen 
species (ROS) formation, lipid peroxidation, mitochondrial membrane potential, 
and hepatocyte glutathione content were evaluated. 
Treating hepatocytes with methimazole resulted in cytotoxicity characterized by 
the reduction in cell viability, an increase in ROS formation and lipid 
peroxidation, mitochondrial membrane potential collapse, and a reduction in 
cellular glutathione content. Furthermore, a significant amount of oxidized 
glutathione (GSSG) was formed when rat hepatocytes were treated with 
methimazole. N-methylthiourea toxicity was accompanied by a reduction in 
cellular GSH content, but no significant changes in lipid peroxidation, ROS 
formation, GSSG production, or changes in mitochondrial membrane potential 
were detected. Administration of taurine (200 µM) effectively reduced the toxic 
effects of methimazole or its metabolite in isolated rat hepatocytes. 
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Introduction 
Methimazole is one of the most convenient drugs used in the treatment of hyperthyroidism 
and the reduction of thyroid function before surgery [1]. On the other hand, many authors 
have reported hepatotoxicity as a deleterious effect accompanying the use of methimazole 
[2, 3]. N-methylthiourea is a proposed metabolite for methimazole which is suspected to be 
responsible for methimazole-induced hepatotoxicity [4].To prevent methimazole-induced 
toxicity, no particular protective agents have been reported. 

Taurine is a conditionally essential amino acid containing a sulfonic acid group with 
several physiological roles [5]. There are many reports on taurine’s protective effects 
against different chemically-induced hepatotoxicity [6–11]. Furthermore, taurine has shown 
protective effects in clinical situations such as diabetes [12] and pancreatitis [13]. It has 
been reported that this amino acid could act as an antioxidant in biological systems [14]. 
Hence, the protective effects of taurine could be due to the antioxidant capability of this 
amino acid. Being an antioxidant, it also has the ability to scavenge the reactive oxygen 
species, attenuate lipid peroxidation, and consequently stabilize biological membranes 
[15]. The goal of the present study was, therefore, to investigate the beneficial role of 
taurine against cytotoxicity induced by methimazole and its reactive metabolite. Cellular 
damage was evaluated by measuring the percent of viable cells using the trypan blue 
exclusion test. The possibility of reactive oxygen species (ROS) formation and lipid 
peroxidation was assessed and the effect of methimazole and its metabolite on cellular 
defense mechanisms such as intracellular glutathione was studied. Furthermore, the effect 
of methimazole on hepatocyte mitochondria was evaluated. 

Results and Discussion 
Methimazole toxicity in rat hepatocytes was concentration-dependent with 10 mM 
methimazole causing about 50% death in 2 h (LC50) as measured by the trypan blue 
exclusion assay (Figure 1). N-methylthiourea caused cell death in lower concentrations 
than the parent drug. The LC50 dose for N-methylthiourea was found 1 mM (Figure 2). 

An optimum effective dose of taurine that provided appropriate protection was found 
(200 µM). Hepatocytes were treated with taurine 30 minutes before adding methimazole or 
N-methylthiourea. It was found that taurine effectively prevented cell death induced by 
methimazole or N-methylthiourea (Figure 3). 

Markers such as ROS formation, lipid peroxidation, cellular glutathione content, and 
mitochondrial membrane potential were assessed to investigate the mechanism by which 
taurine protected hepatocytes against methimazole-induced toxicity and to elucidate the 
cause of cell death induced by methimazole. 

A significant amount of reactive oxygen species were formed when hepatocytes were 
treated with methimazole, but N-methylthiourea did not cause any ROS formation 
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(Figure 4). Pretreatment of isolated hepatocytes with taurine reduced methimazole-
induced ROS formation (Figure 4). 
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Fig. 1.  Dose-response of methimazole-induced cytotoxicity in rat hepatocytes. Data 

represent Mean±SE for at least three independent experiments. * P<0.05 
indicates significant difference as compared to control group. 
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Fig. 2.  N-methylthiourea cytotoxicity in isolated rat hepatocytes. Data given as 

Mean±SE for at least three separate experiments. * P<0.05 shows significant 
difference as compared to control group. 
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Fig. 3.  Protective effect of taurine against cell death induced by methimazole 

N-methylthiourea in isolated rat hepatocytes. Taurine (200 µM) was added 30 
minutes before other agents. Data represent Mean±SE for three separate 
experiments.  
a: Significantly different from control group (P<0.001). 
b: Significantly different from methimazole-treated group (P<0.01). 
c: Significantly different from N-methylthiourea treated group (P<0.01). 
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Fig. 4.  Methimazole-induced ROS formation in isolated rat hepatocytes and the 

protective effect of taurine. Taurine (200 µM) was added 30 minutes before 
other agents. Data are given as Mean±SE for at least three separate 
experiments. 
a: Represents significant difference as compared to control group (P<0.05). 
b: Represents significant difference as compared to Methimazole-treated group 
(P<0.05). 
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As previously mentioned, it has been found that taurine could act as an antioxidant and a 
radical scavenger [14]. Hence, the reactive oxygen species formed during methimazole 
metabolism were scavenged by taurine and this may have had a role in its protective 
effects in methimazole cytotoxicity. N-methylthiourea was unable to increase ROS 
formation in rat hepatocytes (Figure 4). This could indicate that other methimazole 
metabolites other than N-methylthiourea are responsible for ROS formation induced by 
this drug. In previous investigations, it has been shown that the N-methylthiourea 
produced during methimazole metabolism is further metabolized to reactive metabolites, 
which are capable of causing cytotoxicity [16, 17]. The protective effect of taurine against 
N-methylthiourea cytotoxicity in rat hepatocytes could be capable of inactivating these 
reactive metabolites. 

Lipid peroxidation is usually one of the consequences of ROS formation and oxidative 
stress in biological systems [18]. Methimazole caused lipid peroxidation in isolated rat 
hepatocytes, but there was no difference between N-methylthiourea-treated groups and 
control groups in lipid peroxidation (Figure 5) which is not unusual, as N-methylthiourea 
did not cause any significant ROS formation. It was found that taurine effectively prevented 
lipid peroxidation in methimazole-treated cells (Figure 5). The role of taurine in attenuating 
the lipid peroxidation induced by methimazole may have been due to its effects in 
modulating the oxidative stress caused by this drug. As shown in Figure 5, N-methyl-
thiourea did not cause lipid peroxidation in rat hepatocytes and this might suggest that 
other methimazole metabolite(s) were responsible for the lipid peroxidation induced by this 
drug. 
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Fig. 5.  Methimazole-induced lipid peroxidation and the effect of taurine. Data given as 

Mean±SE for three separate experiments as measured after 120 minutes of 
incubation time. Taurine (200 µM) was added 30 minutes before other agents. 
a: Indicates significant difference as compared to control group (P<0.001). 
b: Indicates significant difference as compared to methimazole-treated group 
(P<0.001). 
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The effect of methimazole and N-methylthiourea on hepatocyte glutathione reservoirs was 
studied. Both methimazole and N-methylthiourea caused a significant reduction in cellular 
glutathione content (Figure 6). Glutathione is a vital molecule that prevents the deleterious 
effects of oxidative stress. Furthermore, glutathione conjugates with different xenobiotics 
and detoxifies them [19]. A reduction in cellular glutathione by methimazole or its 
metabolite leaves hepatocytes defenseless against different stresses such as ROS 
formation. This may have a role in methimazole-induced toxicity in hepatocytes. Taurine 
can react with free radicals or reactive metabolites produced during methimazole 
metabolism, and hence prevent glutathione consumption and a reduction in hepatocytes. 
Preventing the depletion of glutathione reservoirs could be another mechanism by which 
taurine attenuates the toxicity of methimazole or its reactive metabolites in hepatocytes. 
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Fig. 6.  Effect of methimazole and N-methylthiourea on hepatocytes GSH content and 

the role of taurine. Data are shown as Mean±SE for three independent 
experiments. Hepatocytes were preincubated with taurine (200 µM), 30 minutes 
before adding other agents. 
*: Represents difference between control and drug treated groups (P<0.001). 
a: Significant as compared to methimazole-treated group (P<0.05). 
b: Significant as compared to N-methylthiourea treated group (P<0.05). 

GSH reduction caused by methimazole was accompanied with a significant increase in the 
amount of oxidized glutathione (GSSG) in rat hepatocytes (Figure 7) indicating that GSH 
depletion might be mainly due to its oxidation to GSSG. Treating rat hepatocytes with 
taurine significantly reduced the amount of GSSG formed after methimazole administration 
(Figure 7). It was found that there was no significant difference between the 
N-methylthiourea-treated group and control group in GSSG levels (Figure 7). The increase 
in cellular GSSG suggests the occurrence of oxidative stress. Hence, methimazole-
induced elevation in cellular GSSG contents may be due to its ability in inducing ROS 
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formation and oxidative stress in hepatocytes. Since there was no oxidative stress in 
N-methylthiourea-treated cells (Figure 4), it is justifiable that the level of GSSG in these 
cells was not significantly different from that in the control groups (Figure 7). Reducing the 
level of oxidized glutathione formed during methimazole toxicity could be attributed to the 
role of taurine in preventing oxidative stress and the oxidation of GSH to GSSG. 

The effect of methimazole and its metabolite on the mitochondria as the energy-producing 
and key organelle of hepatocytes was evaluated. It was found that methimazole caused 
mitochondrial membrane potential reduction (Figure 8). N-methylthiourea caused no 
significant changes in mitochondrial membrane potential (Figure 8). Taurine attenuated the 
reduction in mitochondrial membrane potential caused by methimazole (Figure 8). This 
effect may be due to the ability of taurine in scavenging the reactive metabolites produced 
during methimazole metabolism.  

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 200

He
pa

to
cy

te
s G

SS
G 

co
nt

en
t (

%
 o

f c
on

tr
ol

)

Time (min)

Control

Methimazole 10 mM

N-methylthiourea 1 mM

Methimazole 10 mM + Taurine 200 µM

*

* *

a

a

a

# # #

 
Fig 7. Cellular oxidized glutathione (GSSG) content after treating isolated rat 

hepatocytes with methimazole or N-methylthiourea. 
*: Significant difference as compared to control group (P<0.001). 
a: Significant difference as compared to the methimazole-treated group 
(P<0.01). 
#: N-methylthiourea caused no significant changes in cellular GSSG content as 
compared to the control group. 

Our data show that methimazole cytotoxicity in rat hepatocytes is accompanied by an 
increase in reactive oxygen species, which suggests that methimazole induces hepato-
toxicity through oxidative stress. The induction of oxidative stress by xenobiotics is usually 
accompanied by lipid peroxidation and a reduction in cellular glutathione reservoirs as it 



994 R. Heidari, H. Babaei, and M. A. Eghbal:  

Sci Pharm. 2012; 80: 987–999 

was found in methimazole toxicity. The collapse in mitochondrial membrane potential 
seems to be another mechanism through which methimazole causes toxicity. Mito-
chondrial damage could be a consequence of oxidative stress in cells [20]. The 
methimazole metabolite did not induce oxidative stress in hepatocytes, but the reduction in 
glutathione reservoirs showed that this metabolite is reactive or may produce reactive 
species. 

It has been shown that N-methylthiourea is metabolized to sulfenic acids, which are very 
reactive [16, 17]. These reactive metabolites could conjugate with glutathione and get 
detoxified or may react with other targets such as proteins and induce cellular damage. 
The protective effects of taurine in N-methylthiourea-induced toxicity might be due to 
conjugating these reactive metabolites.The effect of taurine against the cytotoxicity 
induced by methimazole and its metabolite makes this amino acid the subject of further 
studies for developing an effective protective agent against different kinds of drug-induced 
liver damage.  
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Fig. 8. Effect of methimazole and N-methylthiourea on mitochondrial membrane 

potential and the protective role of taurine.  
*: Different as compared to control (P<0.001). 
a: Different as compared to methimazole-treated group (P<0.05). 

Experimental 
Chemicals 
Taurine, (4-(2-hydroxyethyl)-1-piperazine-ethanessulfonic acid (HEPES), 2-vinyl pyridine, 
triethanolamine, and oxidized glutathione (GSSG) were obtained from Acros (New Jersey, 
USA). Methimazole was purchased from Medisca pharmaceutique incorporation 
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(Montreal, Canada). Albumine bovine type was purchased from the Roche diagnostic 
corporation (Indianapolis, USA). Rhodamine 123, 5,5′-dithiobis(2-nitrobenzoic acid) 
(DTNB), 2',7'-dichlorofluorescin diacetate, glutathione reductase from baker’s yeast, β-
Nicotinamide adenine dinucleotide (NADPH), and collagenase from clostridium 
histolyticum, were obtained from Sigma Aldrich (St. Louis, USA). Ethylene glycol-
bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), N-methylthiourea, trichloroacetic 
acid (TCA) and trypan blue were obtained from Merck (Darmstadt, Germany). 
Thiobarbituric acid (TBA) was obtained from SERVA (Heidenberg, New York). All salts 
used for preparing buffer solutions were of analytical grade and obtained from Merck 
(Darmstadt, Germany). 

Experimental animals 
Male Sprague-Dawley rats (250–300 g) were kept in ventilated plastic cages over 
hardwood bedding. There was an ambient temperature of 21–23 °C with a 50–60% 
relative humidity. Animals were fed a normal chow diet and water ad libitum. Collagenase 
perfusion via the portal vein was used to isolate rat hepatocytes as described previously 
[21]. This technique is based on liver perfusion with collagenase after the removal of 
calcium ions (Ca2+) with a chelator (EGTA 0.5 mM). The livers were perfused with different 
buffer solutions through the portal vein. The collagenase-containing buffer solution 
destructed liver interstitial tissue and caused hepatocytes to be easily isolated in the next 
steps. Isolated hepatocytes (10 mL, 10 6 cells/mL) were incubated in the Krebs-Henseleit 
buffer (pH 7.4) in continuously rotating 50 mL round bottom flasks, under an atmosphere 
of carbogen gas (95% O2 and 5% CO2) in a 37 °C water bath. 
Cell viability 
After the hepatocyte isolation process, cell viability was assessed by the extent of plasma 
membrane intactness as determined by the trypan blue (0.1%, w/v) exclusion test 
microscopically [22]. Only the cell preparations with a viability above 85% were used. 
Hepatocyte viability was determined at scheduled time intervals during the experiment. In 
all experiments, taurine was added 30 minutes before other agents. 

Mitochondrial membrane potential assay 
The fluorescent dye, rhodamine 123 accumulated in intact mitochondria by facilitated 
diffusion. When the mitochondrion was damaged and the mitochondrial membrane 
potential was reduced, there was no facilitated diffusion and the amount of rhodamine 123 
in the supernatant increased. At the given times, 1 mL samples of the cell suspension 
were taken and centrifuged at 1000 rpm for 1 minute. Then the cell pellet was 
resuspended in 2ml of Krebs-Henseleit buffer containing 1.5 µM rhodamine 123 and 
incubated at 37 °C in a water bath with gentle shaking. Hepatocytes were separated by 
centrifugation at 3000 rpm for 1 minute and the amount of rhodamine 123 appearing in the 
incubation medium was measured fluorimeterically using a Jasco FP-750 fluorescence 
spectrophotometer (490 nm excitation and 520 nm emission wavelengths). The capacity of 
mitochondria to take up the rhodamine 123 was calculated as the difference in 
fluorescence intensity between the control and treated cells and was expressed as the 
percentage of the control [23]. 
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Lipid peroxidation  
During the degradation of lipids, thiobarbituric acid reactive substances (TBARS) such as 
malondialdehyde (MDA) are formed [24]. Lipid peroxidation in hepatocytes was 
determined by measuring the amount of TBARS. Briefly, 1 ml aliquots of hepatocyte cell 
suspensions (106 cells/ml) were treated with 250 µL trichloroacetic acid (70% w/v) and 
centrifuged at 3000 rpm for 15 min. Then 1mL of thiobarbituric acid (0.8% w/v) was added 
and boiled for 20 minutes. The developed color was read at 532 nm using a Pharmacia 
Biotech Ultrospec 2000 spectrophotometer. TBARS formation was expressed as µM 
TBARS 106 cells −1. 

Cellular GSH/GSSG content 
The hepatocyte glutathione (GSH) content was determined by the method of Ellman [25]. 
A 1 ml aliquot of the cell suspension (106 cells) was taken and 2 ml of 5% TCA was added 
and centrifuged. Then 0.5 ml of Ellman’s reagent (0.0198% DTNB in 1% sodium citrate) 
and 3 ml of the phosphate buffer (pH 8.0) were added. The absorbance of the developed 
color was measured at 412 nm using a Biotech Pharmacia Ultrospec® 2000 spectro-
photometer. Cell samples were reduced with potassium borohydride (KBH4) to prevent 
GSH oxidation during the experiment [26]. The enzymatic recycling method was used to 
assess the hepatocyte oxidized glutathione (GSSG) level [27], where cellular GSH content 
was covalently bonded to 2-vinylpyridine at first. Then the excess 2-vinylpyridine was 
neutralized with thriethanolamine, and GSSG was reduced to GSH using the glutathione 
reductase enzyme and NADPH. The amount of GSH formed was measured as already 
described for GSH using the Ellman reagent (0.0198% DTNB in 1% sodium citrate). 

Reactive oxygen species (ROS) formation  
To determine the rate of hepatocyte ROS generation during methimazole metabolism, 
2',7'-dichlorofluorescein diacetate (1.6 µM) was added to the hepatocyte incubate. 
DCFH-DA became hydrolyzed to non-fluorescent dichlorofluorescein (DCFH) in 
hepatocytes. Dichlorofluorescin then reacted with reactive oxygen species to form the 
highly fluorescent dichlorofluorescein. 1ml (106 cells) of hepatocytes was taken and the 
fluorescence intensity of the ROS product was measured using a Jasco FP-750 
spectrofluorometer with excitation and emission wavelengths of 500 and 520 nm, 
respectively [28]. 

Data analysis 
The results are shown as the Mean±SE for at least three independent experiments. 
Statistical analysis for the control and experimental groups was performed by a one-way 
ANOVA (analysis of variance) test. A P < 0.05 was considered as a significant difference. 
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