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Abstract 
An acceleration of free radical formation within human system exacerbates the 
incidence of several life-threatening diseases. The systemic antioxidants often 
fall short for neutralizing the free radicals thereby demanding external 
antioxidant supplementation. Therein arises the need for development of new 
antioxidants with improved potency. In order to search for efficient antioxidant 
molecules, the present work deals with quantitative structure-activity 
relationship (QSAR) studies of a series of antioxidants belonging to the class of 
phenolic derivatives bearing NO donor groups. In this study, several QSAR 
models with appreciable statistical significance have been reported. Models 
were built using various chemometric tools and validated both internally and 
externally. These models chiefly infer that presence of substituted aromatic 
carbons, long chain branched substituents, an oxadiazole-N-oxide ring with an 
electronegative atom containing group substituted at the 5 position and high 
degree of methyl substitutions of the parent moiety are conducive to the 
antioxidant activity profile of these molecules. The novelty of this work is not 
only that the structural attributes of NO donor phenolic compounds required for 
potent antioxidant activity have been explored in this study, but new compounds 
with possible antioxidant activity have also been designed and their antioxidant 
activity has been predicted in silico. 
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Introduction 
Free radicals (reactive oxygen species) like superoxide and hydroxyl radicals are 
generated as a result of partial reduction of molecular oxygen [1]. Free radicals are 
constitutively produced during various metabolic functions of the body. In addition to the 
lethal actions, they bear several beneficial effects also. The immune system utilizes these 
free radicals for detection of foreign invaders or damaged tissues that are needed to be 
eliminated from the human system [2]. However, excessive free radical production 
resulting from heavy exercise, exposure to environmental pollutants, smoking etc may 
endanger healthy livelihood through an aggravation of their deleterious effects. Recent 
research implicates a close association of the free radicals (reactive oxygen species 
accumulating within the human system) with the etiology and/or progression of a number 
of diseases as well as aging [3]. Most of the fatal degenerative diseases like Parkinson’s 
disease [4], atherosclerosis involving cardiovascular damage [5] etc have their origin from 
the deadly effects of these toxic free radicals. The free radicals are also involved in DNA 
damage [6], induction of lipid peroxidation in cell membranes and inactivation of 
membrane-bound enzymes.  

The free radical attack to the human system can be controlled to a large extent through 
utilization of antioxidants. Antioxidants [7] are molecules which can safely interact with free 
radicals and terminate the chain reaction before vital molecules are damaged. To prevent 
free radical damage, the body has a defense system of antioxidants. But this endogenous 
antioxidant supply falls short under conditions of excessive oxidative stress. Although 
there are several enzyme systems within the body that scavenge free radicals, the 
principle micronutrient (vitamin) antioxidants are vitamin E, beta-carotene and vitamin C 
[8]. Epidemiologic observations show lower cancer rates in people whose diets are rich in 
fruits and vegetables suggesting that such diets rich in antioxidants protect the human 
system against the development of cancer. Antioxidants are also thought to have a role in 
slowing the aging process and preventing heart disease and strokes. At the molecular 
level, the antioxidant mechanism of action can be explained based on the electron–proton 
transfer theories: (a) hydrogen atom transfer (HAT), (b) single-electron transfer–proton 
transfer (SET-PT) and (c) sequential proton loss electron transfer (SPLET) [9].  

The structural features and properties of a molecule determine its biological activity profile. 
Quantitative structure-activity relationship (QSAR) is a method of studying a series of 
molecules of different structures with varying observed properties and attempting to find 
empirical relationships between structure and property or activity [10]. Starting from the 
period of Hansch [11], QSAR has been widely used for lead optimization and drug 
discovery process. This technique has also been used by several researchers for 
designing of newer antioxidant molecules with improved activity. Rastija et al. [12] 
modeled antioxidant activity of wine polyphenols using QSAR technique with descriptors 
calculated from 2D and 3D representation of the molecules and inferred that arrangement 
of free hydroxyl groups on the flavonoid skeleton, or on the phenolic ring together with the 
shape, size, mass and steric properties of the molecules bear considerable effects on the 
activity profile of these molecules. Ray et al. [13] performed QSAR modeling using 
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electrotopological state atom (E-state) parameters in order to determine the antiradical 
properties of flavonoids as studied in a methanolic solution of DPPH (2,2-diphenyl-
1-picrylhydrazil) and the antioxidant activity of flavonoids in a beta-carotene-linoleic acid 
model system and revealed the importance of the substituent effect and structural changes 
for optimal antioxidant activity of the flavonoids. In order to determine the key chemical 
features imparting antioxidant activity to this class of molecules, Mitra et al. [14] performed 
pharmacophore mapping of arylamino-substituted benzo[b]thiophenes as free radical 
scavengers. Various QSAR models of antioxidant molecules have been recently reviewed 
[15].  

Viewing the immense utility of antioxidants for fighting the array of present day diseases, in 
the present work, an attempt has been made to develop models capable of assessing the 
structural attributes of a series of molecules required for exhibiting potent antioxidant 
activity. A series of phenolic compounds with NO donor functions in the molecular 
structure having significant antioxidant activity was used for QSAR model development in 
the present work. Besides internal validation, the models developed were validated 
externally using compounds not included in the model development process. A 
comparison of the developed QSAR models with a previously reported model for this class 
of phenolic derivatives has also been performed in the present work. It may be noted that 
in the previous QSAR report, lower number of compounds were used for model 
development than those considered in the present work. Based on the QSAR models 
developed here, a new series of compounds has been designed and their possible 
antioxidant activity has been predicted in silico. The novelty of this QSAR study is not only 
that the structural requirements for antioxidant activity have been explored in this work, but 
the developed models have also been used for design of new molecules with possible 
potent antioxidant activity. 

Materials and methods 
The dataset 
The data used for this analysis has been collected from the reports of Boschi et al. [16], 
Chegaev et al. [17] and Cena et al. [18]. The dataset comprises of 33 phenolic 
compounds, most of them bearing the NO donor functions, exhibiting a wide range of 
antioxidant activity. The antioxidant activities of the compounds were reported to be 
measured using the TBARS (Thiobarbituric acid reactive substance) assay method. For 
the present work, the IC50 (50% inhibitory concentration) values of the compounds were 
expressed in millimolar units and converted to negative logarithmic scale (pIC50). The 
observed and calculated/predicted activities of the compounds together with their 
structures are summarized in Tab. 1. 
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Tab. 1.  Molecular structure together with the observed and predicted activity data of the 
33 phenolic derivatives. 
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[16–18] 

Activity 
predicteda 

Activity 
predictedb 

1 A H CH3  0.538 −0.405 0.639 
2 A OCH3 CH3  1.745  1.760 1.700 
3 A t-Bu CH3  2.770  3.039 2.732 
4* B H –  3.770  3.475 3.451 
5* C OEt SO2Ph  0.959  1.403 1.367 
6 A H ONO2  0.845  1.275 0.932 
7 A OCH3 ONO2  2.229  2.434 2.180 
8 A t-Bu ONO2  2.699  2.583 2.817 
9 B O ONO2 –  3.824  4.064 3.452 

10 A H ONO2

ONO2

 
 0.733  0.780 0.910 

11* A OCH3 ONO2

ONO2

 
 2.268  2.031 2.057 

12 A t-Bu ONO2
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 2.585  2.408 2.688 
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 1.328  1.277 1.132 
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Tab. 1.  (Cont.) 

Compd. No. / 
Structure R R' / n 

pIC50 
[log(1/IC50)] 

[16–18] 
Activity 

predicteda 
Activity 

predictedb 
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 2.469  2.676 2.310 

15 A t-Bu 
N

O
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+
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 2.699  2.490 3.039 
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–  3.310  3.649 3.448 

17 A t-Bu 
N

O
N

+

CONH2

O
-

N
 2.921  2.519 3.218 

18 B 
N

O
N

+

CONH2

O
-

N

 

–  3.854  4.063 3.626 

19 D H –  1.770  2.021 1.626 
20* D OCH3 –  1.699  2.006 2.170 
21* D O ONO2 –  2.469  2.254 2.171 

22 D ONO2O  –  2.678  2.964 2.280 

23* D ONO2O

ONO2

 
–  2.538  2.532 2.348 

24* E Ph 1  2.886  3.023 2.936 
25 E SO2Ph 1  2.420  2.617 2.341 
26 E CONH2 0  2.102  1.810 2.169 
27 E CN 0  2.237  2.004 2.254 
28 F ONO2 0.343 −0.128  0.829  
29 F ONO2 1.097  1.327  0.803  

30 F ONO2

ONO2

 
1.553  2.115  0.869  

31 F 
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1.770  2.074  1.361  
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1.097  1.422  0.865  

33 G 
N

O
N

+

Ph

O
-

O

 

0.407 −0.914  1.548  

* Compounds selected as test set based on k-means clustering;  
a,b Activity predicted (LOO predicted for the training set) based on Eqs. 8 and 10, respectively. 
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Descriptor calculation 
The molecular structures of the compounds were drawn using the ACD Lab software [19] 
and were exported to the Cerius2 software [20] for the calculation of descriptors. Initially, 
conformational analysis of the molecules was performed using ‘optimal search method’ 
within the Cerius2 software. This method allows the automatic selection of the best 
method to generate the lowest-energy conformers for structures in the study table. This 
selection is done among the three methods (grid scan, random sampling and Boltzmann 
jump) available for conformer generation in the Cerius2 software. Grid scan [20] method 
performs a simple systematic search in which each specified torsion angle is varied over a 
grid of equally spaced values. Random sampling [20] perturbs the starting conformation of 
a structure by randomly altering values of all variable torsion angles and the Boltzmann 
jump [20] method involves random change of the torsion angles of a molecule within a 
specified angle window. The lowest energy conformers were energy minimized using the 
smart minimizer under open force field and the subsequent charge calculation of the 
lowest energy conformer was performed using Gasteiger method [20]. Followed by this, 
descriptors belonging to different categories were calculated using the Descriptor+ module 
of the Cerius2 software version 4.1 [20] (listed in Tab. 2). The calculated topological 
indices include descriptors like Wiener, Zagreb, Balaban J, connectivity indices (0χ, 1χ, 2χ, 
3χP, 3χC, 0χv, 1χv, 2χv, 3χv

P, 3χv
C), kappa shape indices (1қ, 2қ, 3қ, 1қam,2қam, 3қam) and E-state 

parameters. Besides these, spatial (Jurs charged partial surface area descriptors and 
shadow indices), structural, physicochemical and electronic descriptors were also 
calculated [20]. After excluding those descriptors having variance lower than 0.0001, a 
total of 86 descriptors were chosen. The values of the significant descriptors for all 33 
compounds are given in supplementary materials (Tab. S1). Initially a QSAR model was 
built based on the entire dataset of 33 compounds. Considering the small size of the 
dataset, full leave-one-out cross-validation [21] has been performed for the model. This 
was followed by splitting of the dataset into training and test sets for further validation and 
determination of the external predictive ability of the derived models. 

Tab. 2.  List of descriptors used for present work. 
Category of descriptors Descriptor type 
Topological indices Wiener, Zagreb, Balaban, connectivity indices, kappa shape 

indices, E-state parameters 
Structural Hbond acceptor, Hbond donor, Rotlbonds, Chiral centers 
Thermodynamic LogP, AlogP, AlogP98, Molar refractivity 
Spatial Jurs descriptors, Shadow indices, Radius of Gyration, 

Molecular surface area, Density, Principal moment of inertia, 
Molecular volume. 

Electronic Dipole moment, HOMO (Highest occupied molecular orbital 
energy), LUMO (Lowest unoccupied molecular orbital energy), 
Superdelocalizability (Sr). 

 

Selection of training set 
The training set was utilized for the development of the QSAR model while the test set was 
used for the external validation purpose. The selection of the training and test sets serves 
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as a critical step in the QSAR model development process. The selection of the training 
set should be such that it captures all the features and characteristics of the whole set of 
molecules. It should also span the activity range of the entire dataset. For the present 
work, the selection of the training set was done based on the k-means clustering 
technique. Cluster analysis [22] is a method of arranging objects into groups. It divides 
objects into groups in such a manner that the degree of association between two objects is 
maximum if they possess same group and otherwise minimum. There are two types of 
clustering techniques: (a) hierarchical and (b) non-hierarchical. k-Means clustering is one 
of the best known non-hierarchical clustering techniques [22]. In this method, clustering 
starts randomly and then cluster means are calculated in the descriptor space. Molecules 
are reassigned to clusters whose means are closer to the position of the molecules. In the 
present work, clustering was performed with the standardized descriptor matrix using 
about 25% of the whole dataset compounds as the test set and the remaining as the 
training set. 

Chemometric tools 
Stepwise multiple linear regression (MLR) technique was used for the QSAR model 
development using the entire dataset. Stepwise MLR method is based on forward 
selection and backward elimination techniques for inclusion and rejection of descriptors. 
The selection of the significant descriptors for developing the model was done according to 
the 'stepping criteria' [23] (F) with F = 4 for inclusion and F = 3.9 for exclusion. The F-value 
used for inclusion or exclusion of a variable in the stepwise regression process is a test for 
partial regression coefficient and it is obtained by dividing the difference between 
reductions of sum of squares with and without the variable being included or excluded with 
error mean square of the equation [23]. The F-value for inclusion or exclusion of a variable 
in a MLR equation during stepwise process is square of the t-value of the regression 
coefficient of the variable being included or excluded. 

For the development of the QSAR models using the training set data, two different 
chemometric tools were employed, viz., GFA (genetic function approximation) and G/PLS 
(genetic partial least squares). A genetic algorithm (GA) is a search technique [24] 
employed as a computational tool to find out exact or approximate solutions to optimization 
and search problems. Genetic function approximation was originally conceived from: (i) 
genetic algorithm originally developed by Fraser and others (later popularized by Holland) 
and (ii) Friedman’s multivariate adaptive regression splines (MARS) algorithm. In this 
technique, an initial population of equations is built by random selection of descriptors 
followed by cross over between pairs of those equations. The progeny equations thus built 
are again subjected to cross over and the fitness of the final equations is assessed based 
on the lack of fit (LOF) value (given by Eq. 1). The model quality improves as the value of 
LOF diminishes.  

Eq. 1. 2  1 ⎟
⎠
⎞

⎜
⎝
⎛ ×+
−

=

m
pdc

LSELOF  

Here, LSE is the least square error, c is the number of basis functions, d is the smoothing 
parameter which was set at the default value of 1, p is the number of descriptors and m is 
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the number of observations in the training set. In effect, ‘d’ is the user’s estimate of how 
much detail in the training data set is worth modeling. Smaller equations are obtained for 
larger values of ‘d’. Since the GFA technique builds a population of equations, the range of 
variations in this population gives added information on the quality of fit and importance of 
the descriptors. GFA builds models not only with linear polynomials but also uses higher-
order polynomials, splines and other nonlinear functions. 

G/PLS technique [25] is the combination of (i) genetic function approximation and (ii) 
partial least squares methods. These are valuable analytical tools for QSAR modeling 
where number of descriptors is more than samples. The variables are selected using the 
GFA technique and the PLS regression method is used to weigh the relative contributions 
of the selected variables in the final model. Application of G/PLS allows the construction of 
larger QSAR equations while avoiding overfitting and eliminating most variables. Moreover 
the PLS technique takes into consideration a large number of noisy and collinear 
variables. Additionally, PLS provides a description of the available data using minimum 
number of adjustable parameters and consequently, maximum precision and stability of 
regression model is achieved using this technique. 

Model quality 
Various statistical parameters are calculated in order to assess the fitness of the 
developed model. The correlation coefficient, R, measures how closely the observed data 
tracks the fitted regression line and thus helps to quantify any variation in the calculated 
data with respect to the observed data. The F statistic, calculated from R2 and the number 
of data points, determines the statistical significance of the regression equation at 
specified degrees of freedom (df). Other statistical parameters used to test the quality of 
generated regression equations include the standard error of the estimate (s) and adjusted 
R2 (Ra

2) [23]. Although the value of R2 increases with the addition of descriptors to the 
developed QSAR model but this may not necessarily indicate that the predictive ability of 
the model improves. Thus, to check the predictive potential of the developed models, 
internal and external validation experiments are performed on them. 

Model validation 
The QSAR models thus developed were validated using both internal and external 
validation techniques. In case of internal validation, the predictive ability of the models is 
judged based on the training set compounds. On the contrary, external validation deals 
with a new set of compounds which are not included in the QSAR model building process. 
Hence, the latter technique measures the ability of the model to predict the activity of a 
new series of compounds. 

Internal validation 
This technique involves calculation of cross-validated squared correlation coefficient (Q2) 
(Eq. 2) and predicted residual error of sum of squares (PRESS) [23] based on the 
observed and predicted activity data of the training set molecules. In the present work, 
leave-one-out (LOO) cross-validation technique was used for determination of Q2. For the 
calculation of LOO-Q2, each of the compounds of the training set is deleted once and 
models are built with the remaining compounds. The activity of the deleted compound is 
thus predicted using the model developed. The cycle is repeated until all the compounds 
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are deleted at least once and the predicted activity data obtained for all the training set 
compounds are used for the calculation of above mentioned internal validation 
parameters. 

Eq. 2. 
( )
( )∑

∑
−

−
−= 2

)(

2
)()(2 1

trainingtrainobs

trainpredtrainobs

YY

YY
Q  

Here, Yobs(train) is the observed activity, Ypred(train) is the predicted activity and Y training is the 
mean observed activity of the training set compounds. A model is considered to be 
satisfactory if the value of Q2 exceeds the stipulated value of 0.5.  

External validation 
The value of Q2 signifies the ability of the model to predict the activity of molecules which 
are very much alike the training set ones. But to determine the predictive potential of the 
QSAR model for a new set molecules differing in some aspects from the training set ones, 
external validation is needed to be performed. In this case, the predictive capacity of a 
model is judged by its application for prediction of activity values of the test set compounds 
and subsequent calculation of Q2

ext, i.e., predictive R2 (R2
pred) [26] value as given by Eq. 3: 

Eq. 3. 
( )
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∑
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In the above equation, Yobs(test) and Ypred(test) are the observed and predicted activity data of 
the test set compounds. A value of R2

pred (given by Eq. 3) greater than the stipulated value 
of 0.5 reflects efficient prediction for the test set molecules by the developed model. 

Calculation of rm
2 metrics 

It can be inferred from Eq. 3 that the value of the external predictive parameter (R2
pred) 

primarily depends on the mean activity value of the training set compounds and its 
distance from the activity values of the test set compounds. Now, since the value of R2

pred 
is dependent on the sum of squared differences between the observed activity data of the 
test set compounds and the training set mean, the value of R2

pred increases as these 
differences for individual compounds increase. Thus, compounds with a wide range of 
activity data may exhibit a large value for this parameter, but this may not indicate that the 
predicted activity values are very close to those observed. In such a case, there remains a 
considerable difference between these values although they maintain a good overall 
correlation. Thus, to obviate this error and to better indicate the model predictive ability, 
the rm

2 metrics [27] with threshold values of 0.5 (Eq. 4) were calculated. 

Eq. 4. ( )( )2
0

222 1  rrrrm −−×=  
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In Eq. 4, r2 and r0
2 are the squared correlation coefficient values between the observed 

and predicted activity data [LOO predicted activity of training set compounds in case of 
rm

2
(LOO) and the predicted activity of the test set compounds in case of rm

2
(test)] with and 

without intercept respectively. As the above equation (Eq. 4) suggests, the value of rm
2 

depends solely on the observed and predicted activity data of the molecules and hence, 
any large deviation between these values is well be reflected though the rm

2 parameter. 
Similarly, based on the predicted activity values of both the training and test sets, values of 
rm

2
(overall) [27] were calculated. The parameter rm

2 has been used by different groups of 
authors to check external predictability of QSAR models [28]. 

Randomization tests 
Validation of the developed models was also performed using the randomization or 
Y-scrambling technique. In this technique, the Y column (activity data) is permuted 
keeping the remaining X matrix (descriptors) unchanged. Thereafter, models are built 
based on this scrambled matrix and average squared correlation coefficient of the 
randomized models (Rr

2) was calculated. Two types of randomization was performed in 
the present work, namely, process and model randomization. In case of process 
randomization, the entire descriptor matrix was used and scrambling of data was done 
using the total pool of descriptors at 90% confidence level. This technique ensures the 
reliability and robustness of the process employed for the development of the QSAR 
model. In addition to this, model randomization was also performed at 99% confidence 
level using the descriptors occurring in the respective models in order to verify whether the 
developed QSAR model was the outcome of a chance correlation or not. Values of Rr

2 
lower than those of R2 for the respective model signify a robust model. However, since no 
guideline is given as to how much this difference should be, another parameter, Rp

2 
(threshold value=0.5) [27, 29] was calculated (Eq. 5). This parameter penalizes the model 
R2 for small differences between the values of R2 and Rr

2. Thus, models having an 
acceptable value for this parameter (>0.5) are considered to be robust enough and are not 
obtained merely by chance. 

Eq. 5. ( )2222   rp RRRR −×=  

However, in an ideal case, the average value of R2 for the randomized models should be 
zero, i.e. Rr

2 should be zero. Consequently, in such a case the value of Rp
2 should be 

equal to the value of R2 for the developed QSAR model. Thus, the corrected formula of Rp
2 

(cRp
2) as proposed by Todeschini [29] is given as (Eq. 6): 

Eq. 6. ( )222   rp
c RRRR −×=  

Applicability domain 
The domain of applicability constitutes an important concept in QSAR analysis that 
enables estimation of uncertainty in the prediction of a particular molecule based on its 
similarity to the compounds used for developing the model [30, 31]. It refers to a chemical 
space as defined by the molecular descriptors and the modeled response. A QSAR model 
exhibits reliability in prediction only for molecules lying within this defined chemical space 
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referred to as its applicability domain. Thus, for a dissimilar compound lying outside the 
domain of applicability, reliable prediction of activity becomes unlikely. Consequently, a 
QSAR should only be used for making predictions of molecules within the specified 
domain by interpolation thereby enabling avoidance of any unjustified extrapolation for 
activity prediction. The need to characterize the model applicability domain is also 
reflected in the OECD guidelines for QSAR model validation [32, 33]. In the present work, 
applicability domain of the best model selected according to the rm

2
(overall) criterion has 

been assessed. Since the model has been developed based on the G/PLS technique, the 
DModX method [25] implemented in the SIMCA software [34] has been utilised for 
detecting the applicability domain of the developed model. In this technique, the residuals 
of Y and X are used as diagnostic values for ensuring the quality of the model [25]. The 
standard deviation (SD) of the X-residuals of the corresponding row of the residual matrix 
E is proportional to the distance between the data point and the model plane in X-space, 
often called DModX (distance to the model in X-space). Here, X is the matrix of predictor 
variables, of size N×K [where, N is number of objects (cases, observations) and k is the 
index of X-variables (k=1, 2, … K)], Y is the matrix of response variables of size N×M [m is 
the index of Y-variables (m=1, 2, … M)] and E is the N×K matrix of X-residuals. A DModX 
value larger than around 2.5 times the overall SD of the X-residuals (corresponding to an 
F-value of 6.25) indicates that the observation is outside the applicability domain of the 
model [25].  

Results and discussion 
Initially, an attempt was made to develop a QSAR model using stepwise regression 
applied on the whole dataset. This was followed by division of the dataset into training and 
test sets. Models were developed based on the training set and the developed models 
were used for prediction of test set activity. Using two different chemometric techniques 
(GFA and G/PLS), three types of QSAR models were developed based on different combi-
nation of descriptors: (a) models developed with topological, structural and thermodynamic 
descriptors, (b) models developed with spatial, electronic and thermodynamic descriptors 
and (c) models developed using combined set of descriptors. All the significant models 
developed in the present work are summarized in Tab. 3. The critical F values at different 
degrees of freedom at 98% significance level are given at the end of Tab. 3. The results 
infer that since the F value for each of the QSAR models developed is higher than the 
corresponding critical value, all the developed models are statistically significant. However, 
among all the developed models, models developed with the spatial, electronic and 
thermodynamic descriptors are of poor statistical quality in comparison to the other two 
types of models. The GFA models were developed using 5000 iterations considering both 
linear and spline options. The models thus developed are nonlinear, and the spline terms 
are expressed as truncated power splines and denoted with angular brackets. E. g. <f(x) - 
a > is equal to zero if the value of f (x) - a is negative, else it is equal to f(x) - a. The 
constant 'a' is called the knot of the spline. G/PLS was performed with 1000 iterations, 
scaled variables and with the option of no fixed length of equation. The maximum number 
of components or latent variables (LVs) fixed for variable selection was 3. These 
components are the functions of the original descriptors and they encode data as 
represented by the descriptors. Following the model development step, new compounds 
were designed in silico based on the information available from all the developed models 
(vide infra). The activities of all the newly designed compounds were predicted using all 
the developed QSAR models and their consensus activity values were reported (Tab. 4).  
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Tab. 3.  Comparison of the statistical quality of the various QSAR models developed in 
the present work. 

Using topological, structural and thermodynamic descriptors 
Mod. Stat.  Eq.  Descriptors LVs ntrain. s R2 R2

a F* PRESS

A1 GFA- 
linear – SC-0, S_aaCH, 

S_dssC, S_dO – 25 0.369 0.889 0.867  40.07 4.756 

A2 GFA- 
spline 8 

<SC-3_P-20>, 
3χp , <1.79401-

S_sCH3>, 
S_aasC 

– 25 0.315 0.919 0.903  56.95 3.021 

A2a GFA- 
spline 9 

3χp, (3χp)2, 
<1.79401-
S_sCH3>, 
S_aasC 

– 25 0.369 0.889 0.867  40.17 4.557 

A3 G/PLS-
linear – 

S_aaCH, 
S_aasC, S_dsN, 
S_sOH, MolRef

2 25 0.401 0.856 0.843  65.48 5.150 

A4 G/PLS- 
spline 10 

<6.68154-1χ >, 
3χp , <1.98556-

S_sCH3>, 
S_aasC 

2 25 0.323 0.906 0.897 106.44 3.022 

Mod. Stat.  Eq.  Descriptors Q2 rm
2
(LOO) ntest R2

pred rm
2
(test) rm

2
(overall) 

A1 GFA- 
linear – SC-0, S_aaCH, 

S_dssC, S_dO 0.806 0.676 8 0.859 0.839 0.685 

A2 GFA- 
spline 8 

<SC-3_P-20>, 
3χp , <1.79401-

S_sCH3>, 
S_aasC 

0.877 0.757 8 0.924 0.899 0.777 

A2a GFA- 
spline 9 

3χp, (3χp)2, 
<1.79401-
S_sCH3>, 
S_aasC 

0.814 0.677 8 0.917 0.818 0.711 

A3 G/PLS-
linear – 

S_aaCH, 
S_aasC, S_dsN, 
S_sOH, MolRef

0.790 0.771 8 0.879 0.887 0.790 

A4 G/PLS- 
spline 10 

<6.68154-1χ >, 
3χp , <1.98556-

S_sCH3>, 
S_aasC 

0.877 0.870 8 0.884 0.812 0.872 
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Tab. 3.  (Cont.) 

Using spatial, electronic, and thermodynamic descriptors 
Mod. Stat.  Descriptors LVs ntrain. s R2 R2

a F* PRESS

B1 GFA- 
linear MR, Jurs-TASA – 25 0.443 0.824 0.808 51.55 5.271 

B2 G/PLS-
linear 

MR, Jurs-SASA, Jurs-
PPSA-3, Jurs-TASA 3 25 0.434 0.839 0.816 36.41 5.516 

B3 G/PLS- 
spline 

<55.0428-MR>, Jurs-PNSA-
2, <121.354-Jurs-WNSA-1>, 

Jurs-WPSA-3, <472.813-
Jurs-TASA> 

3 25 0.397 0.865 0.846 44.88 4.901 

Mod. Stat.  Descriptors Q2 rm
2
(LOO) ntest R2

pred rm
2
(test) rm

2
(overall) 

B1 GFA- 
linear MR, Jurs-TASA 0.785 0.645 8 0.754 0.683 0.639 

B2 G/PLS-
linear 

MR, Jurs-SASA, Jurs-
PPSA-3, Jurs-TASA 0.775 0.754 8 0.773 0.661 0.775 

B3 G/PLS- 
spline 

<55.0428-MR>, Jurs-PNSA-
2, <121.354-Jurs-WNSA-1>, 

Jurs-WPSA-3, <472.813-
Jurs-TASA> 

0.800 0.787 8 0.678 0.525 0.761 

Using combined descriptors 
Mod. Stat.  Descriptors LVs ntrain. s R2 R2

a F* PRESS

C1 GFA-
linear 

3χc
v , Zagreb, S_aaCH, 

Jurs-RPSA – 25 0.284 0.935 0.921 71.35 2.237 

C2 GFA-
spline 

<4.19273-1χv >, S_aasC, 
<1.83917-S_sCH3>, 

RadOfGyration 
– 25 0.304 0.925 0.910 61.31 2.756 

C3 G/PLS-
linear 

0χv , S_aaCH, S_aasC, 
S_sOH, Jurs-TASA, HOMO 2 25 0.362 0.883 0.872 82.95 5.205 

C4 G/PLS- 
spline 

<1.78363-S_sCH3>, 
<S_aasC-1.50199>, 

<5.22431-RadOfGyration>, 
<133.005-Jurs-WPSA-2> 

1 25 0.294 0.919 0.915 260.7 3.064 

Mod. Stat.  Descriptors Q2 rm
2
(LOO) ntest R2

pred rm
2
(test) rm

2
(overall) 

C1 GFA-
linear 

3χc
v , Zagreb, S_aaCH, 

Jurs-RPSA 0.909 0.808 8 0.894 0.834 0.822 

C2 GFA-
spline 

<4.19273-1χv >, S_aasC, 
<1.83917-S_sCH3>, 

RadOfGyration 
0.888 0.768 8 0.892 0.826 0.791 

C3 G/PLS-
linear 

0χv , S_aaCH, S_aasC, 
S_sOH, Jurs-TASA, HOMO0.788 0.758 8 0.880 0.800 0.785 

C4 G/PLS- 
spline 

<1.78363-S_sCH3>, 
<S_aasC-1.50199>, 

<5.22431-RadOfGyration>, 
<133.005-Jurs-WPSA-2> 

0.875 0.848 8 0.800 0.737 0.829 

* Critical values of F distribution (two-tailed) at 98% significance level: F4, 20 = 4.431, F2, 22 = 5.719, F3, 21= 4.874, 
F1, 23 = 7.881 
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Tab. 4.  Activity predicted for the newly designed compounds based on the 11 QSAR 
models developed in the present work. 

Cpd.  
No. 

Model 
A1 

Model 
A2 

Model 
A3 

Model 
A4 

Model 
B1 

Model 
B2 

Model 
B3 

Model 
C1 

Model 
C2 

Model 
C3 

Model 
C4 APA*

N1 4.085 9.362 4.281 3.915 3.213 2.697 3.282 4.900 7.824 3.851 8.831 5.113
N2 4.245 10.777 4.368 3.945 3.818 3.170 3.055 4.497 9.414 4.117 10.525 5.630
N3 3.414 7.474 3.644 3.493 3.533 3.254 3.652 3.971 6.578 3.493 7.281 4.526
N4 3.567 8.805 3.731 3.560 3.278 3.038 3.481 4.041 7.506 3.508 8.386 4.809
N5 3.517 7.759 3.696 3.558 3.594 3.278 3.911 3.982 6.929 3.557 7.759 4.685
N6 3.674 9.155 3.785 3.600 3.558 3.249 3.739 4.011 8.023 3.635 9.012 5.040
N7 3.678 9.276 3.783 3.633 3.592 3.261 3.736 4.110 8.044 3.646 9.053 5.074
N8 3.834 10.614 3.872 3.665 3.526 3.186 3.567 4.067 9.171 3.711 10.338 5.414
N9 3.772 10.125 4.738 4.387 4.727 4.039 2.878 4.405 9.143 4.500 9.643 5.669
N10 3.931 11.553 4.825 4.416 3.462 2.898 2.950 4.368 9.469 4.211 10.740 5.711
N11 3.787 8.678 4.513 4.362 4.300 3.708 3.063 3.858 7.928 4.153 8.685 5.185
N12 3.948 10.130 4.599 4.402 4.330 3.754 2.886 3.936 9.029 4.248 9.979 5.567
N13 3.844 8.990 3.749 3.566 3.494 3.154 3.676 3.816 7.809 3.591 8.747 4.949
N14 3.624 8.496 4.364 4.291 4.113 3.561 3.233 3.668 7.546 3.974 8.492 5.033
N15 3.784 9.786 4.449 4.323 3.239 2.816 3.107 4.069 8.181 3.798 9.347 5.173

*.average predicted activity. 
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In the above equation, n is the number of compounds used for developing the QSAR 
model. Standard errors of the regression coefficients are shown in parentheses. Eq. 7 was 
developed with the entire dataset of molecules using stepwise regression method [23]. A 
value of internal predictive variance (Q2 = 0.866) above the stipulated value of 0.5 for the 
developed model signifies its predictive ability. The positive coefficients for S_aasC and 
Jurs TASA descriptors indicate that the antioxidant activities of these molecules increase 
with an increase in the values of these descriptors. The S_aasC descriptor refers to the 

summation of E-state values for the 
C

 (aromatic carbon) fragments. Jurs TASA (total 
hydrophobic surface area) is calculated as the sum of solvent-accessible surface areas of 
atoms with absolute value of partial charges less than 0.2. An increase in the value of 
S_aasC descriptor indicates increase in substitution on the aromatic nucleus while an 
increase in the value of Jurs TASA indicates an increase in surface area with reduced 
partial charge. Again, negative coefficients for MR, 3χv

c, S_ddsN and Jurs RPCG 
descriptors signify that the antioxidant activity of these molecules is inversely proportional 
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to the values of these descriptors. MR refers to the molar refractivity of the molecule and 
gives a measure of the size and volume of the molecule. The parameter, 3χc

v is a 
topological descriptor [20] belonging to the category of molecular connectivity indices and 
defined as the third order cluster index based on valance count. It encodes the number of 
branch points in a molecule indicating a decrease in branching of the molecule for a 
decrease in its value. The parameter, Jurs RPCG (relative positive charge) is a spatial 
descriptor obtained by dividing the partial charge of the most positive atom with the total 
positive charge. S_ddsN is a topological descriptor and refers to the summation of E-state 

value for the nitrogen atom of type 
N

. In this data set, it has referred to the nitrogen of 
the N-oxide fragment of the oxadiazole ring. It has been observed that the descriptor, 
S_ddsN, assumes a negative value when the 5 position of the oxadiazole ring is 
substituted with a group containing more electronegative atoms. In such cases, the impact 
of S_ddsN becomes positive on the activity (the coefficient of S-ddSN in Eq. (7) is actually 
negative).  

The opposite signs for the coefficients of Jurs TASA and MR descriptors infer that 
although an increase in hydrophobic surface area of the molecules favours their activity, 
the total volume of the molecule should small enough so that the MR descriptor attains a 
lower value. Thus, the increase in hydrophobic surface area should be up to a specific 
limit. Interestingly, MR assumes a positive coefficient in the absence of the Jurs TASA 
descriptor. Again, according to the order of significance, the descriptors occurring in Eq. 
(7) can be ranked as: (i) Jurs TASA, (ii) S_aasC, (iii) 3χc

v, (iv) MR, (v) S_ddsN and (vi) Jurs 
RPCG. The weightage of these descriptors once again signifies that the Jurs TASA 
descriptor has a greater impact on the activity profile these molecules compared to the MR 
descriptor. Compound numbers (nos.) 4 and 9 bearing conducive values for all these 
descriptors exhibit maximum activity. Again compound nos. 16, 17 and 18 despite having 
large values for the MR and 3χc

v descriptors exert high range of activity, since these 
descriptors rank lower in terms of the weightage of the descriptors. Although compound 
nos. 1, 10 and 28 satisfy the requirements for most of the descriptors, these compounds 
exhibit the lowest activity range due to unsatisfactory values of the two most significant 
descriptors, Jurs TASA and S_aasC. 

It has been argued that in case of a small dataset, considerable amount of information is 
lost in division of dataset into training and test sets. Alternatively, ‘true rm

2
(LOO)’ calculated 

based on the whole dataset may efficiently reflect the predictive potential of a model. Thus, 
the value of ‘true rm

2
(LOO)’ [21] (threshold value = 0.5) was also calculated for this dataset. 

For the calculation of this parameter, each molecule in the dataset was deleted once and 
the variable selection strategy was applied and a new model was built with the remaining 
molecules. The activity of the deleted molecule was thereafter predicted using the 
developed model. The cycle was continued till all the molecules in the dataset were 
deleted at least once. The activity predicted thus for all the molecules was used for the 
calculation of this ‘true rm

2
(LOO)’ parameter. Thus, in the calculation of ‘true rm

2
(LOO)’ metric, 

new variables are selected in each cycle based on the leave-one-out technique. 
Consequently, this parameter reflects the external predictive ability of the model especially 
in case of such a small dataset where splitting may result in loss of an appreciable amount 
of chemical information. In this case, statistically significant result was obtained for the 
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‘true rm
2
(LOO)’ (0.578) parameter indicating ability of the model to predict the activity of new 

series of molecules of this class.  

Models developed from training set data 
To indicate the external predictivity of developed models, the dataset was further divided 
into training and test sets. Subsequent models were built based on the training set and 
were externally validated based on the test set. Three different types of models were built 
using the training set compounds such as: (i) models developed with topological, structural 
and thermodynamic descriptors, (ii) models developed with spatial, electronic and 
thermodynamic descriptors and (iii) models developed with combined set of descriptors. 
The predictive ability of the models was judged based on the internal and external 
validation parameters which are summarized in Tab. 3. All the models bear acceptable 
values of Q2 and R2

pred which are considerably greater than the stipulated value of 0.5. In 
terms of internal predictivity (Q2 = 0.909), model C1 developed with the combined set of 
descriptors was the better compared to the other ones. But since internal validation alone 
fails to judge the ability of a model to predict the activity of new series of molecules, values 
of R2

pred were also taken into consideration. Thus, in terms of both internal (Q2 = 0.814) 
and external (R2

pred = 0.917) predictive parameters, model A2a developed with the 
topological, structural and thermodynamic descriptors shows maximum statistical 
significance. However, the value of R2

pred alone fails to judge whether the range of 
predicted activity data lies within the desired observed activity range. Hence, values of rm

2 
metrics were calculated. The rm

2
(overall) value determines the degree of proximity between 

the observed and corresponding predicted activity data for both the training and test set 
molecules. Thus, in terms of all the three parameters (Q2 = 0.877, R2

pred = 0.884, rm
2
(overall) 

= 0.872), model A4 developed with topological, structural and thermodynamic descriptors 
exhibits maximum statistical significance. It can be inferred from Tab. 3 that the models 
developed with spatial, electronic and thermodynamic descriptors were inferior in terms of 
their predictive ability compared to the remaining ones and hence are not described below.  

The repeated occurrence of the E-state descriptors in the developed QSAR models 
signifies the importance of the various structural fragments for optimal antioxidant activity 
of these molecules. The S_aaCH and S_aasC descriptors refer to the summation of E-

state values for unsubstituted (
CH

) and substituted (
C

) aromatic carbon fragments 
respectively while S_sCH3 descriptor refer to the summation of E-state values for the 
methyl groups (-CH3) present within the molecular structures. Thus, presence of these 
descriptors signifies the influence of these structural fragments for the activity profile of 
these molecules. The parameter S_aasC also appeared in Eq. 7 obtained for the whole 
dataset. Again repeated occurrence of the Jurs descriptors and the various types of 
connectivity (χ) descriptors indicate that the charged surface area of the molecules as well 
as their extent of branching influence the antioxidant activity profile of these molecules.  

Due to space limitation, only the GFA and G/PLS models (models A2, A2a and A4) 
obtained using spline option from topological, structural and thermodynamic descriptors 
are described here.  
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GFA model  

Eq. 8. 
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The acceptable values of the internal (Q2 = 0.877) and external (R2
pred = 0.924) predictive 

parameters reflect the predictability of the developed model. Moreover, statistically 
significant results for all the rm

2 metrics indicate that the predicted activity values of all the 
compounds are close to the corresponding observed activity data. Although the model 
exhibits high predictive ability, there exists significant intercorrelation between two 
descriptors namely, SC-3_P (number of third-order subgraphs in the molecular graph) and 
3χp (molecular connectivity index). Intercorrelation matrix (Tab. 5) for all the descriptors 
appearing in Eq. 8 signifies that there may exist a parabolic relationship between the 
activity values and these descriptors. Thus, to better express the parabolic behaviour of 
the developed model, the SC-3_P descriptor was replaced with a second order function of 
the 3χp descriptor. 

Tab. 5.  Intercorrelation matrix for Eq. 8 (model A2) 
Descriptor SC-3_P 3χp S_sCH3 S_aasC 
SC-3_P 1.000 0.989 −0.133 0.020 
3χp  1.000 −0.062 −0.027 
S_sCH3   1.000 −0.566 
S_aasC    1.000 

 

Eq. 9. 

711.0,818.0,917.0

,8,677.0,814.0,557.4

),20,4(17.40,867.0,889.0,369.0,25
_79401.1)057.0(539.0_)110.0(300.0

)()009.0(0225.0)147.0(497.0448.0

)(
2

)(
22

)(
22

22
3

2
p

3
p

3
50

===

====

=====

>−<×±−×±+

×±−×±+−=

overallmtestmpred

testLOOm

atraining

rrR

nrQPRESS

dfFRRsn

sCHSaasCS
χχpIC

 

Eq. 8 is thus modified to Eq. 9 in order to express the parabolic relationship of the 
developed QSAR model with respect to 3χp descriptor. 3χp [20] is the weighted count of 
four atom (three-bond) fragments and it reflects the degree of branching at each of the four 
atoms in the fragment. In the above equation, a positive coefficient of the 3χp descriptor 
signifies that the antioxidant activity of these molecules increases with an increase in the 
value of this descriptor. Thus, it can be inferred that an increase in the degree of branching 
in these molecules favours their antioxidant activity profile. Maximum antioxidant activity 
profile of compound nos. 9, 16 and 18 can be explained by their large 3χp descriptor values 
while the reduced activity of compound nos. 1, 6, 10 and 28, may be attributed to the small 
values of 3χp descriptor. The optimum value of 3χp for this series of compounds is 11.044 
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which approximately matches with the value of this descriptor for the most active 
compound (compound no. 18). This in turn explains the parabolic relationship between 
activity and 3χp descriptor. The S_aasC descriptor refers to the summation of E-state 

values for the 
C

 (aromatic carbon) fragments. Since the S_aasC descriptor bears a 
positive coefficient, an increase in its value leads to an improvement in the antioxidant 
activity profile of these compounds as observed in case of compound nos. 9, 16, 17 and 
18. Thus, as the number of such fragments increase, an increase in the activity data of 
these molecules is observed. The S_sCH3 descriptor refers to the summation of E-state 
values for the –CH3 (methyl group) fragments. In the above equation, a negative 
coefficient of the spline term with this descriptor indicates that for any value of this 
descriptor greater than 1.79401, the spline term >−< 3_79401.1 sCHS , exerts zero 
contribution and the compounds show an improvement in activity data as exemplified in 
compound nos. 9, 16, 17 and 18. On the contrary, compound nos. 6, 10, 28 and 33 with 
zero values of the S_sCH3 descriptor exhibit lowest activity range. Thus it can be 
suggested that presence of methyl substituents favours the antioxidant activity profile of 
these molecules.  

G/PLS model  
A statistically significant QSAR model was also obtained using the G/PLS technique 
together with the spline option. 

Eq. 10. 
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The predictive power of the developed model is reflected through the statistically 
significant values of the internal (Q2 = 0.877) and external (R2

pred = 0.884) validation 
parameters as well as the rm

2 metrics. Among all the developed equations, this equation 
gives a maximum value of the rm

2
(overall) (0.872) parameter indicating that the predicted 

activity values of all the dataset compounds are in very close proximity to the 
corresponding observed data. These results signify that the model can be efficiently used 
for activity prediction of new compounds of this class. The predicted activity values (LOO 
predicted values for the training set) according to Eq. (10) are given in Tab. 1. According to 
the order of significance, the descriptors occurring in Eq. (10) can be arranged as: (i) 
<1.98556-S_sCH3>, (ii) S_aasC, (iii) 3χp and (iv) <6.68154-1χ>. Similar to the previous 
equation (Eq. 9), 3χp and S_aasC descriptors bear positive coefficients indicating that the 
antioxidant activity increases with an increase in the values of these descriptors. 
Consequently, this observation infers that a high degree of branching (as indicated by high 

values of 3χp) and large number of 
C

 fragments present within the molecular structure 
of these NO donor phenolic compounds favour their antioxidant activity profile.  
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Again, negative coefficients of the spline terms with the S_sCH3 and 1χ imply that for zero 
values of these spline terms, the compounds show high activity range. This, in turn, 
suggests that values of S_sCH3 descriptor greater than 1.98556 and that of 1χ descriptor 
greater than 6.68154 account for zero contribution of the spline function and hence explain 
the high activity range for compounds with such values. This is because a negative value 
of a spline term indicates zero contribution of the corresponding spline term. 1χ [20] is a 
topological descriptor referring to simple connectivity index obtained by one bond 
dissection of the molecule. Since the descriptor encodes the number of non-hydrogen 
atoms in a molecule, values of this descriptor reflect the size and volume of the molecule 
along with the degree of branching. Thus the results suggest that an increase in the 
number of methyl substitution (–CH3 fragment) as well as an increase in the volume and/or 
branching of the molecule favours their antioxidant activity. This increase in size can be 
well correlated with the observation of Eq. 7, which infers that increase in total hydrophobic 
surface area of these molecules up to a definite limit favors their antioxidant activity profile. 
Compound nos. 9, 16, 17 and 18 fulfilling all these necessary structural requirements exert 
maximum activity range. In case of compound nos. 6, 10 and 28, although the <6.68154-
1χ> descriptor attains zero value, the other highly significant descriptors do not meet the 
necessary criteria and subsequently, results in a lowering of their activity profile. Similarly, 
compound no. 33 shows reduced activity despite having zero value for the <6.68154-1χ> 
descriptor and a large value of the 3χp descriptor due to a lower weightage of these 
descriptors compared to the others.  

Major observations from other models 
The remaining equations which are not described in detail here also reveal some 
interesting structure-activity relationships for optimum antioxidant activity of these 
molecules. The S_dsN descriptor appearing in model A3 refers to the summation of 
E-state values for the –N= fragment of the pyrazolone ring. The positive coefficient of this 
term indicates that the presence of this fragment in the molecular structure favours the 
activity range of these compounds. However, being a descriptor of less relative 
importance, it does not significantly contribute to the activity profile of these compounds. 
Again, both models C2 and C4 bear the Rad of Gyra descriptor (abbreviation for radius of 
gyration, which is a size descriptor denoting the distribution of atomic masses in a 
molecule and measures of molecular compactness and symmetry for long-chain 
molecules) inferring that long chain unsymmetrical substitution of the parent molecule 
leads to an increase in their activity profile. Besides these, most of the models signify that 
an increase in the activity profile of these molecules is achieved with an increase in the 
degree of methylation and substituted aromatic carbon fragments in their molecular 
structure.  
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Tab. 6.  Results of validation based on randomization. 

Process randomization 
Models with topological, structural and thermodynamic descriptors 

Model No. Statistical 
tool R2 R Rr Rr

2 cRp
2 

A1 GFA-linear 0.889 0.943 0.531 0.282 0.735 
A2 GFA-spline 0.919 0.959 0.533 0.284 0.764 
A3 G/PLS-linear 0.856 0.925 0.669 0.448 0.591 
A4 G/PLS-spline 0.906 0.952 0.808 0.653 0.479 

Models with spatial, electronic and thermodynamic descriptors 

Model No. Statistical 
tool R2 R Rr Rr

2 cRp
2 

B1 GFA-linear 0.824 0.908 0.467 0.218 0.707 
B2 G/PLS-linear 0.839 0.916 0.671 0.450 0.571 
B3 G/PLS-spline 0.865 0.930 0.778 0.605 0.474 

Models with combined set of descriptors 

Model No. Statistical 
tool R2 R Rr Rr

2 cRp
2 

C1 GFA-linear 0.935 0.967 0.646 0.417 0.696 
C2 GFA-spline 0.925 0.962 0.715 0.511 0.619 
C3 G/PLS-linear 0.883 0.940 0.686 0.471 0.603 
C4 G/PLS-spline 0.919 0.959 0.795 0.632 0.514 

Model randomization 
Model No. R2 R Rr Rr

2 cRp
2 

A2 0.919 0.959 0.379 0.144 0.844 
A3 0.856 0.925 0.058 0.003 0.854 
A4 0.906 0.952 0.12 0.014 0.899 
C1 0.935 0.967 0.368 0.135 0.865 
C2 0.925 0.962 0.377 0.142 0.851 
C4 0.919 0.959 0.113 0.013 0.913 

 

Results of validation based on randomization tests 
Further validation of the developed models was done using the randomization technique in 
order to check the robustness of the genetic QSAR models. Process randomization was 
performed using the whole descriptor matrix to assess the fitness of the process employed 
for the development of the QSAR models. Besides this, model randomization was also 
performed in order to determine whether the model was developed by chance or not. 
Based on the randomized data, values of Rr

2 were calculated. For all the developed 
models, the values of Rr

2 were much lower than that of the model R2 implying the 
robustness of the developed model. However, since no guideline is given as to how much 
this difference should be in order to obtain a robust QSAR model, values of cRp

2 were 
computed [29] (Tab. 6). Models having cRp

2 values greater than 0.5 are considered to be 
statistically robust. The cRp

2 values of most of the models obtained for the process 
randomization technique exceed the threshold value of 0.5. The cRp

2 values for all the 
models described above are well above the stipulated value with model A4 (0.899) and 
model C4 (0.913) exhibiting maximum values. This indicates that the models developed 
are not merely the outcome of chance. 
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Design of new compounds 
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Fig. 1.  Structures of the designed compounds 

The statistically significant QSAR models developed above thus determine the required 
structural attributes for maximum antioxidant activity. The equations primarily suggest that 
the presence of substituted aromatic carbon within the molecular structure together with 
extensive methyl substituent favours the antioxidant activity profile of this series of 
molecules. Additionally charged surface area and polar surface are of the molecules also 
play significant role in determining the potency of these molecules indicating that an 
increase in surface area and volume of the molecules up to a specific limit favours their 
activity profile. Besides these, charged positive and charged polar surface areas play an 
important role for activity prediction of these molecules. Moreover, long chain compounds 
with reduced symmetry and an optimum volume may favour the activity profile of these 
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compounds. An extensive occurrence of the connectivity descriptors in the above 
equations signify that proper branching of the molecules essential for potent antioxidant 
activity of these molecules. Again, the developed QSAR models also suggest that an 
oxadiazole-N-oxide ring substituted with an electronegative atom containing group at the 5 
position may exert a positive impact on the activity of the molecules. Based on these 
structural attributes, 15 new molecules were designed and their activity was predicted 
using all the developed models. With the predicted activity obtained for all the developed 
models, a consensus for predicted activity was computed and it was observed that all the 
compounds exhibited potent activity profile which was in close proximity to that of the 
highly active compounds of the present dataset. All the 15 designed compounds and their 
in silico predicted activity data are listed in Fig. 1 and Tab. 4. 

Test for applicability domain 
According to the rm

2
(overall) criterion, Eq. (10) is the best model among all the developed 

models. The applicability domain Eq. 10 (G/PLS model) was checked based on the 
DModX [25] approach. A bar diagram for the DModX values of the 8 test set compounds 
as well as the designed compounds for Eq. (10) is shown in Fig. 2. The DModX values 
thus obtained for all the test compounds as well as the 15 newly designed compounds are 
below the critical value of 3.225 calculated at the 99% significance level. So, none of the 
compounds are outside the applicability domain of Eq. (10) and predictions for all the 
compounds are acceptable with confidence. Moreover, acceptable DModX values for the 
designed compounds indicate that predictions for antioxidant activity for these compounds 
according to Eq. (10) are reliable. 

 
Fig 2.  Bar diagram showing the DModX values of the 8 test set compounds and the 15 

designed compounds calculated at 99% significance level with the thick 
horizontal line signifying the critical DModX value (3.225) for Eq. (10).  

The best model [Eq. (10)] thus built obeys the 5 guidelines for acceptability of QSAR 
models laid by the Organisation for Economic Co-operation and Development (OECD) 
[35]: (i) the model has been built based on an unambiguous algorithm; (ii) a definite 
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response, viz., antioxidant activity using the TBARS (Thiobarbituric acid reactive 
substance) assay method has been modeled in the present work; (iii) the molecules 
predicted using the developed model are rightly located within the model applicability 
domain; (iv) goodness of fit, robustness and predictivity of the developed models have 
been appropriately checked using different validation measures and (v) the model provides 
a suitable mechanistic interpretation for assessing the necessary structural attributes of 
the molecules for exhibiting optimum response. Hence, the developed model can be 
satisfactorily used from the regulatory point of view. 

Comparison with previously reported work on NO donor phenols 
Previously, structure–antioxidant activity relationships for a series of NO-donor phenols 
have been reported by Tosco et al. [36]. 17 out of the 33 NO donor phenols used in the 
present work were modeled by Tosco et al. based on their partition coefficient and bond 
dissociation enthalpy values. Tosco et al. reported structure-activity relationships of these 
molecules purely based on their internal validation parameters. They developed a bilinear 
model with 17 compounds and obtained a Q2 of 0.94. However, as Tosco et al. used 
limited number of compounds for QSAR model development and did not perform external 
validation, a direct comparison of these models with those developed by us is not possible. 
Unlike the present work, they did not report any data regarding external validation and 
randomization of the dataset. 

Overview and conclusion 
In the present work, QSAR models were built using a dataset (n=33) comprising phenolic 
derivatives but chiefly constituting compounds with the NO donor functions. For the 
development of the QSAR models different statistical tools and software were employed. 
The major chemometric tools used for the present work include the GFA and G/PLS 
techniques. Initially QSAR model was developed using the entire dataset using stepwise 
regression and value of “true rm

2
(LOO)” was calculated in order to determine the predictive 

ability of the dataset. In order to determine the external predictive ability of models, the 
dataset was divided into training and test sets using the k-means clustering technique and 
external validation was done based on the activity prediction of the test set compounds. 
Eq. 9 (0.917) with maximum value of the R2

pred parameter indicates significant ability of the 
developed model to predict the activity of new compounds belonging to this series of 
phenolic derivatives. Besides these, the rm

2 metrics were also calculated to determine the 
distance of the predicted activity data from the corresponding observed ones. A high value 
of rm

2
(overall) for Eq. 10 (0.872) implies that the activity data predicted for the test set 

compounds using the model satisfies the desired range of observed activity data. To check 
the reproducibility of the developed models, validation was done using both process and 
model randomization techniques. The results of model randomization test reveal that the 
cRp

2 values [37] for all the models exceed the stipulated value of 0.5. Maximum cRp
2 values 

for model A4 and model C4 infer that the developed models are sufficiently robust and not 
the outcome of mere chance. 

Analysis of the QSAR models developed in the present work reveal the structural 
requirements of these molecules for exhibiting maximum antioxidant activity. The repeated 
occurrence of the S_aasC and S_CH3 descriptors in different models signifies that the 
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presence of the 
C

 fragment and methyl substituents within the molecular structure of 
these phenolic derivatives is conducive to the antioxidant activity profile of these 

compounds. The presence of an aromatic carbon without a substitution (
CH

) hinders the 
activity profile of these compounds. The presence of an oxadiazole-N-oxide ring with an 
electronegative atom containing group substituted at the 5 position are conducive for the 
antioxidant activity of these compounds. Besides these, increase in the positively charged 
surface area and the volume of the molecules favours the antioxidant activity profile of 
these compounds. Long chain branched substituents lacking symmetry about the centre of 
mass of the molecule exhibit improved antioxidant activity. Based on this structural 
information, 15 new compounds were designed and their activity was predicted using the 
QSAR models developed in the present work. Since the qualities of the models are good 
and the observed and predicted activity values of the test set compounds are in good 
agreement, we can presume that the designed compounds may show potent experimental 
antioxidant activity as also predicted by the developed models. Thus, the statistically 
significant QSAR models developed in the present work can be satisfactorily used for 
activity prediction of new series of molecules of this class. Moreover, the compounds 
designed in the present work can be utilized further for experimental work.  
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