Enantioseparation with Capillary Electrophoresis (CE) as Evidence of Chirality Retention during Kolbe Electrolysis of Amino Acids

B. DÖRNER, B. LACHMANN, M. KRATZEL

Department of Medicinal Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria

E-mail: bernd.doerner@univie.ac.at (B. Dörner)

Sci Pharm. 2009; 77: 208

doi:10.3797/scipharm.oephg.21.PO-09

The radical Kolbe electrolysis can be applied to synthesize non-proteinogenic amino acids starting from L-glutamic acid (or L-aspartic acid, respectively). Using suitable protecting groups for both amino and carboxy functionalities, the retention of chirality at the α -carbon atom can be expected.

Z-L-Norleucine was prepared by cross reaction of *Z*-L-glutamic acid and propionic acid. Then, the carboxylic acid protecting group was removed to obtain a charge carrier function which is necessary for a separation via CE.

Electrochemical synthesis of Z-L-norleucine via Kolbe electrolysis

 β -Hydroxypropyl-cyclodextrin was used as chiral additive in the mobile phase to obtain chiral selectivity [1]. The composition of the mobile phase and other operation parameters were varied to enhance peak resolution until a baseline separation of the two enantiomers was achieved. 50 mM Boraxbuffer (pH 10,5) with 10 mM β -hydroxypropyl-cyclodextrin and 5% methanol at 20 °C and 20 kV impressed voltage turned out to be optimal convenient.

Z-L-Norleucine, obtained by Kolbe electrolysis as described above, was compared to L-norleucine and D,L-norleucine which are commercially available. Racemization could not be observed. In a further experiment, the Kolbe product was treated with aq. NaOH for about 24 hours to force racemization. In that case, *Z*-D-norleucine could also be detected.

- [1] Issaq HJ. A decade in capillary electrophoresis. Electrophoresis. 2000; 21: 1921–1939. doi:10.1002/1522-2683(20000601)21:10<1921::AID-ELPS1921>3.0.CO;2-Y
- [2] Salami M, Jira T, Otto HH. Capillary electrophoretic separation of enantiomers of amino acids and amino acid derivates using crown ether and cyclodextrin. Pharmazie. 2005; 60: 181–185. PMid:15801669