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Abstract 
Three dehydrogenases – (R)-alcohol dehydrogenase from L. kefir, (S)-aromatic 
alcohol dehydrogenase from T. sp. and (S)-alcohol dehydrogenase from T. 
brockii – were tested for the preparation of enantiopure hydroxyl metabolites of 
pentoxifylline (PTX), propentofylline (PPT) and denbufylline (DBF). These 
metabolites have an important pharmacological significance. The experimental 
conditions were optimized for biocatalytic reactions. LKADH produced the chiral 
secondary alcohols: (R)-OHPTX, (R)-OHPPT and (R)-OHDBF, in an anti-
Prelog’s rule configuration. In contrast, TBADH and SAADH also generated 
chiral secondary alcohols, but according to Prelog’s rule, giving (S)-OHPTX, 
(S)-OHPPT and (S)-OHDBF respectively. All the ADHs tested were 
characterized by a high enantioselectivity (ees of 99–100%), but the yield of 
bioconversion was only satisfactory for the reactions performed using LKADH, 
being in the 96–98% range for PPT and PTX respectively. 
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Introduction 
Enzymes are being used ever more widely in industrial synthetic chemistry as excellent 
catalysts. Enzymes allow the omission not only of the tedious blocking and deblocking 
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steps that are common in enantioselective and regioselective organic synthesis, but also 
avoid the waste of fossil fuels required for preparing high-temperature and high-pressure 
consolidations. Thus, from the economic and environmental point of view, enzymes are 
considered more satisfactory than conventional catalysts. 

Chiral alcohols are very useful materials in the specialty chemical and pharmaceutical 
industries. Enantiomerically pure alcohols are valuable chiral building blocks for industrial 
fine chemicals. For example, the compounds act as key intermediates in the production of 
pharmaceuticals, fine chemicals and natural products. Examples of pharmaceuticals with 
chiral alcohols as intermediates are antihypertensive drugs, calcium and potassium 
channel blocking drugs, antiarrhythmic agents, β3-receptor agonists, anticholesterol and 
antiviral drugs.The interconversion of a ketone to the corresponding chiral alcohol and vice 
versa represents one of the most common redox-reactions in organic chemistry. Whereas 
traditional synthetic methods predominantly use toxic metals and expensive complex 
hydrides, biotransformations offer some significant advantages. Various chiral alcohols 
can be produced by biocatalysis using two methods: kinetic resolution of the racemic 
starting material [1, 2], or direct synthesis from a prochiral compounds [3–6]. The 
asymmetric reduction of prochiral carbonyl substrate is one example of direct synthesis. 
The vast majority of dehydrogenases and reductases used for ketone reduction and 
alcohol oxidation require nicotinamide cofactors, such as NADH and NADPH. 

For the synthesis of chiral alcohols, commercially available alcohol dehydrogenases 
(ADHs) isolated from yeast (NADH dependent YADH), horse liver (NADH dependent 
HLADH) or Thermoanaerobium brockii (NADPH-dependent TBADH) can be used for 
different substrate structures. Horse-liver ADH can be used for the reduction of a broad 
range of cyclic ketones and 2- or 3-ketoesters [7], while open-chain methyl and ethyl 
ketones are the preferred substrates for T. brockii ADH [8]. An NADPH-dependent ADH 
from Rhodococcus erythropolis (READH) was found that reduces a broad variety of 
ketones with specific activity, giving (S)-alcohols [9, 10]. Furthermore, an NADPH-
dependent ADH was found in Lactobacillus that converted similar ketone structures but 
formed (R)-alcohols [11–13]. Lactobacillus kefiri produces an (R)-ADH (LKADH) that 
accepts a broad variety of ketone substrates – including acetophenone and derivatives 
(ring halogenated), aliphatic, open-chain ketones, 2-, 3-ketoesters, and cyclic ketones – 
with a high specific activity. In the majority of cases enzymatic and microbial reductions of 
the alkyl aryl ketones proceed according to Prelog’s rule [14, 15] generating alcohols in the 
(S)-configuration.The majority of enzymes, such as HLADH, YADH, TBADH and ADH from 
R. erythropolis, follow this rule, while only a few (e.g. LKADH) have been described as 
possessing enzymes of the opposite specificity, i.e. anti-Prelog’s specificity [16]. 

In this study we present the results of the enantioselective bioreduction of drugs i.e. 
pentoxifylline (PTX), propentofylline (PPT) and denbufylline (DBF) (Fig. 1) using the 
commercially available dehydrogenases: (R)-alcohol dehydrogenase from L. kefir, (S)-
aromatic alcohol dehydrogenase from T. sp. and (S)-alcohol dehydrogenase from T. 
brockii. The drugs tested possess a methyl ketone moiety in their structures which was 
reduced biocatalytically by alcohol dehydrogenases. The chiral products obtained are 
important, pharmacologically significant metabolites [17-23]. For example (R)-hydroxy 
metabolite of PTX ((R)-OHPTX), known as lisofylline, is a drug candidate that has been 
under investigation for acute respiratory distress syndrome (ADRS), acute lung injury 
(ALI), septic shock, and mucositis. Moreover, it may prevent neutropenic infections in 
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cancer patients receiving high dose chemotherapy [24], and it has also been found to be 
effective in the prevention and treatment of Type 1 diabetes [25]. In contrast, the 
enantiomeric antipode of lisofylline ((S)-OHPTX) is considered to be pharmacologically 
inactive. Studies have shown also, that the racemic mixture and the stereoisomers of 
OHPPT demonstrates biological activity. Hydroxy metabolites of PPT inhibited 
[3H]nitrobenzylthioinosyne binding in rat brains with a similar affinity to propentofylline, and 
also inhibited [3H]adenosine uptake by transport as effectively as propentofylline. Since 
inhibition of adenosine transport appears to be important for the neuroprotective effect of 
PPT, the hydroxy metabolites may also provide neuroprotection [26]. 

Results and Discussion 
Configuration 
The bioconversion of PTX, PPT and DBF (Fig. 1) was carried out using three 
commercially-available alcohol dehydrogenases. One of them, LKADH, produced the 
chiral secondary alcohols, (R)-OHPTX, (R)-OHPPT and (R)-OHDBF, through 
enantioselective bioreduction, giving an anti-Prelog’s rule configuration. The two remaining 
dehydrogenases, TBADH and SAADH, also generated chiral secondary alcohols, but 
according to Prelog’s rule, giving (S)-OHPTX, (S)-OHPPT or (S)-OHDBF, respectively. 
The product configuration and the enantioselectivity of the enzymatic reduction were 
determined using chiral HPLC comparison of the reduction product with the reference 
agents which we had previously obtained [27–29]. 

Bioreduction conditions 
In all the assays the substrate concentration was kept in the 2.5–4.0 mM range. 
Bioreductions were performed under different conditions: pH 7.0–7.5, cofactor 
concentration 1.25–2.0 mM, cofactor regeneration system: 2-propanol 6-8 % v/v. The 
secondary alcohol, 2-propanol, performs a dual role: firstly, it serves to recycle the 
cofactor, and secondly it improves the solubility of the substrate in the aqueous medium. 
DBF was poorly soluble in the reaction mixture in comparison to PTX or PPT. 
Unfortunately, even the 2-propanol used to recycle the NADP did not improve the solubility 
of DBF. In this case, therefore, it was necessary to use a cosolvent, DMSO (2–2.5%), to 
ensure an appropriate solubility of DBF in the reaction medium. The results are 
summarized in table 1. All the ADHs tested displayed enantioselective activity (ee 99–
100%), but only the yield of bioconversion of the reactions performed using LKADH was 
satisfactory, in the 96–98% range. For TBADH and SAADH the yield was very low and 
reached a level of only 5–10%. 

Unsatisfactory results were observed for bioreductions using SAADH. This enzyme was 
characterized by a high enantioselectivity for PTX and PPT but a very low yield of 
bioconversion, reaching at maximum level of 5%. SAADH was inactive in regard to DBF. 
Not even a trace was obtained of a DBF bioconversion product. 
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Fig. 1.  The bioreduction pathway of xanthine with methyl alkyl ketone moiety. 

Tab. 1.  Bioreduction of PTX, PPT and DBF with different ADHs. 

ADHs Substrate Product HPLC yield (%) ee (%) 
LKADH PTX R-OHPTX 96 >99 
 PPT R-OHPPT 98 >99 
 DBF R-OHDBF 11 >99.9 
TBADH PTX S-OHPTX 10 100 
 PPT S-OHPPT 9 100 
 DBF S-OHDBF 8 >99.9 
SAADH PTX S-OHPTX 5 >99.9 
 PPT S-OHPPT 5 >99.9 
 DBF — 0 — 

 

The results presented in this paper show that commercially available dehydrogenases can 
be tools for the preparation of enantiopure hydroxyl metabolites of PTX, PPT and DBF. 
The highest activity with regard to the drugs tested was shown by LKADH. The tested 
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agents were converted by this enzyme to appropriate (R)-hydroxy metabolites with a high 
yield. The procedure using LKADH can be an alternative to the whole cell methodology 
using Lactobacillus kefiri, which we previously described (Table 2) [11, 28]. Using whole 
cells of L. kefiri DMS 20587 as a source for (R)-specific ADH we obtained (R)-OHPTX, 
(R)-OHPPT and (R)-OHDBF with a biotransformation yield in the 98-100% range and ee 
values in the 95–98% range. Accordingly, the procedure using LKADH should be 
employed in cases where the highest enantiopurity is necessary e.g. in pharmaco-
kinetic/pharmacodynamic studies [23]. The other enzymes studied, TBADH and SAADH, 
displayed a high enantioselectivity, but unfortunately a low yield of bioconversion (5–10%). 
DBF was not found in the substrate board of SAADH as no bioreduction process was 
observed to take place. 

Tab. 2.  Comparative data for the bioreduction of the drugs tested when using the whole 
cell methodology. 

Drugs Biocatalyst yield (%) ee (%) 
(configuration) 

PTX L. kefiri 
Yeast 

100 
68 

98 (R) [11] 
94 (S) [29] 

PPT L. kefiri 
Yeast 

98 
67 

96 (R )a 

78 (S) [27] 

DBF L. kefiri 
Yeast 

98 
48 

95 (R) [28] 
72 (S)a 

a unpublished data. 

 

From analysis of the data presented for bioreduction using the whole cell methodology 
with yeast (Table 2) [27, 29] it follows that it would be possible to obtain (S)-OHPTX, 
(S)-OHPPT and (S)-OHDBF with biotransformation yields in the 48–68% range and with 
ee values in the 72–94% range. In all the cases of bioreduction conducted using 
commercially-available ADHs it was necessary to make use of a very expensive cofactor: 
NADPH. This is a very interesting methodology, but from an economic point of view is 
expensive and less attractive. 

Experimental 
Chemicals 
Some of the drugs used in this research were obtained as gifts from pharmaceutical 
companies (pentoxifylline from Polpharma, Poland; propentofylline from Intervet, 
Gemany), while the denbufylline comes from the University of Bonn, Germany. Alcohol 
dehydrogenase from L. kefir (LKADH), (S)-aromatic alcohol dehydrogenase from T. sp., 
alcohol dehydrogenase from T. brockii (TBADH) and NADPH were purchased from Sigma-
Aldrich, USA. The HPLC grade dichloromethane, n-hexane, and 2-propanol were from 
Merck, Germany. All the other chemicals were of analytical reagent grade and were also 
obtained from Merck and Fluka, Germany. 
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Enzyme Assays 
LKADH assay: 10 mg of NADPH, 660 μL (8 %) of 2-propanol, 0.02 mmol of an appropriate 
ketone substrate and 20 mg of LKADH (~1 U/mL) were added to a flask containing 8 mL of 
50 mM phosphate buffer (pH 7). In the case of DBF, which was insoluble in water, 200 μl 
DMSO (2.5 %) was used as a cosolvent. The mixtures were then incubated for 36 h at 
25 °C and 180 rpm. Samples (200 μL) were drawn at regular time intervals. The aqueous 
layer was extracted using dichloromethane, 3 x 200 μL. The combined and dried (Na2SO4) 
organic layers were evaporated to a residue which was then dissolved in 2-propanol and 
analyzed using HPLC. 

TBADH assay: 10 mg of NADPH, 500 μL of 2-propanol, 0.02 mmol of an appropriate 
ketone substrate and 20 mg of TBADH (~4.5 U/ mL) were added to a flask containing 5 
mL of 100 mM phosphate buffer (pH 7.8). In the case of DBF, which was insoluble in 
water, 100 μL DMSO (2 %) was used as a cosolvent. The mixtures were then incubated 
for 48 h at 40 °C and 180 rpm. Samples (200 μl) were drawn at regular time intervals. The 
aqueous layer was extracted using dichloromethane, 3 x 200 μl. The combined and dried 
(Na2SO4) organic layers were evaporated to a residue which was then dissolved in 
2-propanol and analyzed using HPLC. 

SAADH assay: 10 mg of NADPH, 500 μL of 2-propanol, 0.02 mmol of an appropriate 
ketone substrate (PTX or PPT) and ~1 U/ mL of SAADH were added to a flask containing 
5 mL of 100 mM phosphate buffer (pH 7.8). The mixtures were then incubated for 48 h at 
40 °C and 180 rpm. Samples (200 μl) were drawn at regular time intervals. The aqueous 
layer was extracted using dichloromethane, 3 x 200 μl. The combined and dried (Na2SO4) 
organic layers were evaporated to a residue which was then dissolved in 2-propanol and 
analyzed using HPLC. 

HPLC analysis 
The yields of transformation and enantiomeric excess (ee) were determined using HPLC 
analysis on a Chiralpak AD Column. The high-performance liquid chromatograph (Dionex 
Corporation, USA) consisted of an isocratic solvent delivery system (Dionex HPLC Pump 
Series P580), an inlet equipped with a 20 μl loop and a variable wavelength UV (Dionex 
UV/VIS detector UVD 170S/340S) set at 275 nm. The analytical chiral column was a 250 
mm x 4.6 mm i.d. Daicel Chiralpak AD (Chemical Industries, France), protected with a 20 
mm x 4.6 mm LC-Si guard-column (Supelco, Inc., Bellfonte, PA, USA). The temperature 
was set at 25 oC. The mobile phase, consisting of n-hexane/ and 2-propanol (78:22 v/v, or 
92:8 v/v), was vacuum-degassed before use and pumped at a flow rate of 1 ml min−1 for 
PTX and PPT and their bioreduction products, and 0.5 ml min−1 for DBF and its 
bioreduction product. Under these conditions the approximate retention times were: 
7-(2-chloroethyl)-1,3-dimethylxanthine (internal standard): 11.80 min; PTX: 22.45 min; 
(R)-OHPTX: 25.45 min; (S)-OHPTX: 28.87 min; PPT: 16.12 min; (R)-OHPPT: 14.25 min; 
(S)-OHPPT: 18.20 min; DBF: 35.98 min, (R)-OHDBF: 25.45 min; (S)-OHDBF: 28.87 min. 
No interference was observed at the retention times in question. 
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