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Abstract

Antibodies are a cornerstone of the adaptive immune response, serving as key defenders
against viral infections; however, they can also act as a double-edged sword, contributing
to immune-mediated pathologies. This review advances a “Yin-Yang” framework to
integrate the dual activities of antibodies. The protective ‘Yin’ functions are driven by
high-affinity antibodies generated through processes like somatic hypermutation and
class-switch recombination. These antibodies execute viral neutralization, activate the
complement system, and engage Fc receptors (FcRs) to drive antibody-dependent cellular
cytotoxicity (ADCC) and phagocytosis. These mechanisms form the immunological basis
of effective vaccines, which aim to elicit durable and functionally specialized antibody
isotypes like IgG and mucosal IgA. Conversely, the pathogenic ‘Yang’ of the response can
be detrimental. This includes antibody-dependent enhancement (ADE) of infection, notably
observed with flaviviruses, and the development of autoimmunity through mechanisms
like molecular mimicry and bystander activation, which can lead to conditions such as
multiple sclerosis and Guillain-Barré Syndrome. The balance between protection and
pathology is tipped by a confluence of factors. These include viral evasion strategies
like antigenic mutation and glycan shielding, as well as host-based determinants such as
genetic polymorphisms in FcRs, immune history, and the gut microbiome. Understanding
these molecular determinants informs the rational design of next-generation interventions.
Promising strategies, such as Fc-region glyco-engineering and the design of tolerogenic
vaccines, aim to selectively promote protective functions while minimizing pathological
risks, offering a clear path forward in combating viral threats.

Keywords: antibody; infectious diseases; humoral immunity; antibody effector functions;
vaccine-induced immunity

1. Introduction
The humoral immune response, which is part of the adaptive immune response along-

side the T-cell-mediated responses, is mediated by B cells [1]. Naive B cells express IgM
or IgD on their surface, serving as receptors for antigen recognition. After immunization
or infection, activated naive B cells undergo class switching recombination (CSR), which
involves a change in the heavy-chain constant (C) region to another isotype. This results in a
change in the B-cell surface antibodies from IgM/IgD to secretable IgG, IgE, or IgA [2]. CSR
is guided by cytokines, T-cell help, antigen presentation, B-cell receptor engagement, and

Diseases 2025, 13, 341 https://doi.org/10.3390/diseases13100341

https://doi.org/10.3390/diseases13100341
https://doi.org/10.3390/diseases13100341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diseases
https://www.mdpi.com
https://orcid.org/0009-0003-6258-5059
https://orcid.org/0000-0002-8360-9537
https://orcid.org/0000-0002-5645-7048
https://doi.org/10.3390/diseases13100341
https://www.mdpi.com/article/10.3390/diseases13100341?type=check_update&version=1


Diseases 2025, 13, 341 2 of 19

transcription factors. These signals determine the eventual antibody isotype, customizing
the effector function of the antibody and enhancing its ability to eliminate the specific
pathogen that induced the response [3,4]. Activated B cells can also undergo another
process known as somatic hypermutation (SHM), which involves introducing mutations in
the variable (V) region of the heavy and light chains of the immunoglobulin. This process
leads to the production of antibodies with increased affinity and avidity for their target
antigen [5].

The significance of antibodies is further underscored by their status as a key output
of vaccination, with most vaccines relying on the generation of protective antibodies to
confer immunity against infectious diseases [6]. The emphasis on eliciting robust antibody
responses through vaccination highlights the critical importance of these molecules in
preventing infection and disease. However, the complex relationship between antibodies
and pathogens is a double-edged sword [7]. On one hand, antibodies can provide life-
saving immunity against deadly diseases. On the other hand, they can also contribute
to immune evasion, antibody-dependent enhancement of infection, and autoimmune
disorders [7] (Figure 1). Despite these challenges, advances in antibody engineering and
technology have opened up new avenues for the development of antibody-based therapies,
offering hope for the prevention and treatment of emerging infectious diseases [8].

 

Figure 1. Schematic diagram illustrating the immune interaction between the host and virus, con-
ceptualized as an immune “Yin and Yang”. It provides a visual framework for understanding the
dynamic process of immune attack and defense in infectious diseases. (A) On the left is the hu-
man host with its immune response shaped by factors such as genetics, intestinal flora, immune
baseline levels, diet, and lifestyle. (B) The right side represents viruses employing strategies like
high-frequency mutation, antigen simplification, inhibition of antiviral molecules, and structural
rearrangement to evade the host‘s immunity. Antibodies play a crucial role in the immune responses,
mediating the interaction between the host and the pathogen. The outcome of this dynamic interac-
tion depends on the antibody activities, either (C) host protective driving virus elimination through
neutralization, complement activation, phagocytosis and antibody dependent cellular cytotoxicity
(ADCC), or (D) virus exploitative, leading to onset of autoimmunity, or enhanced infection mediated
through antibody-dependent enhancement (ADE). This concept metaphorically describes the bifunc-
tional roles of antibodies in immune responses, where the equilibrium between the host’s immune
defenses and a pathogen’s evasion strategies determines the outcomes (health or disease).

Despite extensive research, critical gaps remain in our understanding of the precise
molecular and cellular switches that dictate whether an antibody response is protective
or pathogenic. For instance, how do subtle variations in antibody glycosylation or FcγR
genetics tip the balance during a secondary flavivirus infection? Furthermore, how can
vaccine design be optimized to selectively induce protective functions while minimizing
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the risk of ADE or autoimmunity? The primary objective of this review is to address these
questions by synthesizing evidence from diverse viral systems under a unifying ‘Yin-Yang’
framework. We will explore the molecular determinants of antibody function and discuss
how this knowledge can be leveraged for the rational design of safer and more effective
immunotherapies and vaccines.

2. Materials and Methods
This manuscript is a narrative and descriptive literature review designed to synthe-

size the dualistic ‘Yin-Yang’ roles of antibodies in viral infectious diseases. A structured,
conceptually driven literature search was conducted across PubMed, Scopus, and Google
Scholar using keywords related to antibody functions. The search prioritized publications
from January 2015 to present to ensure currency while also including seminal foundational
articles for historical context. Selection was limited to peer-reviewed original research and
authoritative reviews in English, excluding articles with poorly described methodologies.
The selected evidence was then thematically synthesized, organizing findings to first estab-
lish the protective ‘Yin’ mechanisms (e.g., neutralization, ADCC) and subsequently explore
the detrimental ‘Yang’ roles (e.g., ADE, autoimmunity), thereby constructing a coherent
narrative that connects fundamental immunology to clinical implications and the design of
future interventions.

3. Role of Antibodies in Viral Infections
Antibodies play an important role in the immune response against viral infections.

Their functions extend beyond simple neutralization, encompassing mechanisms such
as complement activation, phagocytosis, and antibody-dependent cellular cytotoxicity
(ADCC). Depending on the pathogen, some antibodies confer long-term immunity, while
others wane over time, affecting reinfection susceptibility and vaccine efficacy [9]. While
antibodies are primarily protective, under certain circumstances, they contribute to disease
pathology. These pathogenic effects arise due to unintended immune activation, molecular
mimicry, or immune complex formation, leading to complications such as autoimmune
diseases, antibody-dependent enhancement (ADE) of infection, and ineffective immune
responses due to antigenic variation. Understanding these mechanisms will be crucial for
mitigating the risks associated with antibody-based therapies and vaccines, and aid in the
future development of safer and more effective treatments.

3.1. Protective Role of Antibodies in Viral Infections
3.1.1. Neutralization

Neutralization is one of the primary mechanisms by which antibodies confer pro-
tection against pathogens. The process of neutralization involves antibodies binding to
viruses, blocking their ability to attach to host cells [10]. This type of neutralization is
termed “steric hindrance”, where the physical presence of the antibody blocks viral entry
points [10,11]. Another significant mechanism is through either the induction or blocking
of conformational changes on the virus, rendering the virus non-infectious [11,12]. These
conformational changes can either directly block the virus’s ability to interact with host cell
receptors or expose the virus to other components of the immune system, such as comple-
ment proteins, which can further inactivate the virus [11]. Antibodies can also facilitate
the aggregation of viruses, making it more difficult for the viruses to navigate to and infect
host cells [10,13]. This aggregation also makes it easier for immune cells to recognize and
eliminate the virus. In this process, antibodies act as opsonins, which mark the viruses for
downstream destruction [14]. In addition, antibodies can also block endosomal cleavage
or endosomal receptor binding. This is critical for viruses that enter endosomes. In an
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indirect context of neutralization, antibodies can block viral egress, leading to the accu-
mulation of virus progenies at the surface of the infected cells [12]. Robust neutralization
of respiratory syncytial virus (RSV) has been achieved with site-IV–targeting F-protein
monoclonal antibodies such as 5B11 [15]. In a phase 1b/2a trial, a single prophylactic dose
reduced RSV viral load by >95% and cut hospitalizations in infants by ~70% compared with
placebo, showing that high-affinity F-protein IgG can translate into clinically meaningful
protection [15].

3.1.2. Tailoring the Response: Class-Switch Recombination and Fc-Mediated
Effector Functions

While high affinity is essential for antigen binding, the functional capacity of an
antibody to eliminate a viral threat is determined by its isotype, which is dictated by the
constant (C) region of its heavy chain [16]. Within the germinal center, B cells undergo
a second crucial DNA modification process known as class-switch recombination (CSR).
CSR replaces the default Cµ gene (encoding IgM) with a downstream Cγ, Cα, or Cε gene,
leading to the production of IgG, IgA, or IgE isotypes, respectively [17]. This process is
precisely directed by the cytokine milieu established by Tfh cells and other local immune
cells in response to the specific viral challenge. For instance, the cytokine interferon-gamma
(IFN-γ) promotes switching to IgG subclasses (like IgG1, IgG2a and IgG2c in mice), which
are potent inducers of cell-mediated cytotoxicity, while transforming growth factor-beta
(TGF-β) is critical for switching to IgA, the primary isotype for mucosal immunity [18,19].

The structural differences in the Fc region of each antibody isotype allow the immune
system to tailor its effector response. These Fc regions engage with a diverse family of FcRs
expressed on various immune cells, thereby bridging the humoral and cellular arms of
immunity. For example, IgG antibodies, like IgG1 and IgG3, are powerful mediators of
ADCC, where they coat virus-infected cells and engage Fcγ receptors on NK cells, triggering
the release of cytotoxic granules [20]. Furthermore, IgG and IgM can activate the classical
complement pathway, leading to the formation of a membrane attack complex that can lyse
enveloped viruses or infected cells [21]. IgA, which is secreted across mucosal surfaces,
acts as a first line of defense by neutralizing viruses at entry portals, a process known as
immune exclusion [22]. The strategic deployment of different antibody isotypes, each with
a distinct Fc-mediated functional profile, is therefore indispensable for a comprehensive
and effective antiviral defense.

3.1.3. Activation of the Complement System

The complement system is an integral component of the innate immune response,
consisting of over 50 proteins that interact in a highly regulated manner to combat infec-
tions [23]. Activation of this system leads to a cascade of events that initiates key immune
processes such as the recruitment of inflammatory cells, opsonization of pathogens, and
formation of the membrane attack complex [23]. These processes enhance pathogen clear-
ance and bridge innate and adaptive immunity [23]. While complements are generally
protective against infectious agents, it is worthwhile to note that complements have also
been implicated in the modulation of ADE of flavivirus infections [24]. A comprehensive
review of this phenomenon was previously published by Byrne and Talarico [24].

3.1.4. Antibody-Mediated Phagocytosis

Another protective mechanism of antibodies is through antibody-mediated phago-
cytosis, in which antibodies act as opsonins to enhance the recognition and uptake of
pathogens by immune cells such as macrophages and neutrophils [14]. This process is
initiated when antibodies interact with the Fc receptors (FcRs) expressed on the surface of
the immune cells. This interaction triggers downstream signaling pathways that promote
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the engulfment of antibody-coated particles. Among the key FcRs, Fcγ receptors (FcγRs)
are known to mediate phagocytosis. FcγRs are classified into several classes in humans,
including FcγRI (CD64), FcγRIIa (CD32a), FcγRIIb (CD32b), FcγRIIc (CD32c) FcγRIIIa
(CD16a) and FcγRIIIb (CD16b), which differ in their affinity for IgG and their ability to
mediate inflammatory or anti-inflammatory responses. Except for FcγRIIb and FcγRIIIb, all
other FcγRs contain intracellular immunoreceptor tyrosine-based activating motifs (ITAM).
Instead, FcγRIIb contains the immunoreceptor tyrosine-based inhibitory motifs (ITIM) and
FcγRIIIb is a decoy receptor and lacks intracellular signaling motifs [25,26].

Interestingly, it was reported recently that other host factors could affect FcγRs func-
tion. In an animal model of rheumatoid arthritis, it was determined that Dectin-1, a C-type
lectin receptor, enhances the binding of IgG to the low-affinity FCγRIIb. This interaction
reprograms the monocytes, ultimately causing an inhibition of osteoclastogenesis [27].
Other factors, such as glycosylation, could also impact the functions of antibodies and their
binding to the FcRs [28]. The role of glycosylation of antibodies in the context of infectious
diseases [29] and vaccine designs [30] has been comprehensively reviewed.

3.1.5. Antibody-Dependent Cellular Cytotoxicity (ADCC)

Antibodies can also participate in the elimination of virus-infected cells through a
mechanism known as antibody-dependent cellular cytotoxicity (ADCC), which leverages
the immune system’s effector cells. During viral infections, antibodies bind to viral anti-
gens on the surface of infected cells and immune cells, such as natural killer (NK) cells,
macrophages, neutrophils, and eosinophils, which recognize these antibody-coated targets
through their surface FcRs. This triggers a response that ultimately leads to the infected
cell’s death [31]. Specifically, NK cells express FcγRIIIa that binds to the Fc region of IgG an-
tibodies, inducing the release of cytotoxic granules containing perforin and granzymes [32].
This mechanism is crucial in controlling viral infections, including influenza, which is
notorious for its high mutation rate in the viral glycoprotein, hemagglutinin (HA) [33].
Notably, it was reported that ADCC-mediating antibodies targeting a specific 14 amino
acid fusion peptide sequence at the N-terminus of the HA2 subunit are able to induce
ADCC against a wide range of influenza viruses [34,35]. Interestingly, the binding affinity
between the antibodies and FcγRIII on NK cells determines the strength of ADCC. Recently,
it was reported that afucosylation of broadly neutralizing antibodies targeting human
immunodeficiency virus (HIV)-1 envelope glycoprotein potentiates activation and degran-
ulation of NK cells, marked by the increase in CD107+IFNγ+ cells. It was also reported
that afucosylated antibodies could overcome the inhibitory signals in exhausted PD-1+ and
TIGIT+ NK cells, leading to their activation, thereby amplifying ADCC and accelerating
viral clearance [36]. In dengue infection, afucosylation of IgG is associated with severe
dengue disease and has been associated with thrombocytopenia leading to significant loss
of platelets [37]. Nevertheless, in addition to fucose, IgG antibodies can also be modified
via the addition of other glycan moieties such as galactose and sialic acid [38]. However,
the effects of both galactosylation and sialylation on IgG functions remain debatable, as
contradictory effects have been reported [29], exemplifying the importance of gaining a
greater understanding of glycosylation on antibody function in human diseases [39].

3.2. Detrimental and Pathological Roles of Antibodies in Viral Infections
3.2.1. Autoimmunity and Autoantibodies

Autoimmunity can arise when viral infections induce immune responses that mis-
takenly target host tissues through mechanisms such as dysregulation of FcγR-mediated
pathways, autoantibody production, molecular mimicry, bystander activation, and epitope
spreading [40].
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Dysregulation of FcγR-mediated pathways has been linked to autoimmune diseases
such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and anti-neutrophil
cytoplasmic antibody (ANCA)-associated vasculitis. In these conditions, autoantibodies
mediate pathology through distinct mechanisms. They form pathogenic immune complexes
in SLE [41], engage activating FcγRs to drive joint inflammation in RA [42], and activate
neutrophils to cause vascular injury in ANCA-associated vasculitis [43].

Autoantibodies generated during infections can be transient, resolving after clearance
of the pathogen, or persist long-term, leading to chronic autoimmune conditions [40]. For
example, autoantibodies against interferon-gamma (IFN-γ) generated during SARS-CoV-2
infection can persist, exacerbating long COVID-19 and contributing to severe acute respira-
tory syndrome (SARS) by impairing host immune responses [44]. Clinical studies indicate
that the presence and higher titers of anti-IFN-γ autoantibodies correlate significantly
with severe or critical COVID-19 cases, suggesting their potential role as biomarkers for
predicting disease severity [45]. These autoantibodies can functionally neutralize IFN-
γ by effectively inhibiting its signaling pathways, which phosphorylate STAT1, thereby
impairing critical antiviral defenses and exacerbating disease outcomes [45].

Molecular mimicry, which depends on structural similarity between viral antigens
and host proteins, is mediated by cross-reactive antibodies produced by the B cells during
the infection. A notable example is Epstein–Barr Virus (EBV) (Table 1), where antibodies
generated against EBV nuclear antigen 1 (EBNA1) cross-react with similar epitopes found
on host myelin proteins. This cross-reactivity results in autoreactive B cell activation and
production of pathogenic autoantibodies, contributing to autoimmune pathology such as
multiple sclerosis (MS) [46]. In fact, molecular mimicry between EBNA1 and other CNS
proteins such as anoctamin-2 (ANO2) [47], alpha-B crystallin (CRYAB) [48] and myelin
basic protein (MBP) [49] has also been described.

It was also recently reported that children with multisystem inflammatory syndrome
(MIS-C), develop a unique immune response following SARS-CoV-2 infection, targeting
a distinct domain within the viral nucleocapsid protein that bears sequence similarity
to the self-protein SNX-8 [50]. Likewise, arboviruses like Zika virus (ZIKV) and dengue
virus (DENV) have also been implicated in autoimmunity through the production of
autoantibodies and molecular mimicry [51]. For instance, ZIKV neutralizing antibodies
have been shown to cross-react with neuronal membrane gangliosides in ZIKV-associated
Guillain-Barré Syndrome (GBS) cases, suggesting that molecular mimicry is a potential
mechanism used by ZIKV to cause neurological damage [52]. In these GBS patients,
autoantibodies against host glycolipids were detected [52]. Similarly, in DENV, it was
reviewed by Zhou et al. (2025) that molecular mimicry could lead to the production of
autoantibodies targeting platelets, endothelial cells and coagulatory factors, ultimately
affecting thrombocytopenia and plasma leakage during severe dengue [51].

Bystander activation describes the non-specific stimulation of immune cells dur-
ing infection, which can inadvertently activate autoreactive B and T cells. Chronic cy-
tomegalovirus (CMV) infection exemplifies this mechanism by persistent immune activa-
tion, potentially leading to autoimmune diseases such as systemic lupus erythematosus
(SLE) and rheumatoid arthritis (RA) [53]. In COVID-19 patients, bystander activation of
polyclonal autoreactive B cells has been reported. Activation leads to the production of
a broad range of autoantibodies, albeit none of the elevated autoantibodies were associ-
ated with disease severity [54]. Likewise, infection with either SARS-CoV-2 or influenza,
led to an expansion of CCR6+CXCR3− bystander memory B cells (MBCs) alongside the
CCR6+CXCR3+ virus-specific MBCs in the lungs of the infected animals. These bystander
MBCs differ in their origin and transcriptional programs and elicit antibodies that are
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non-specific and offer no protection [55]. The role of such bystander cells in the context of
infection should be further studied.

Epitope spreading refers to the progressive diversification of immune responses, ini-
tially targeting a limited antigenic site and subsequently extending to other epitopes within
the same or different antigens. For example, in hepatitis C virus (HCV) infection, initial
immune responses may broaden over time, contributing to autoimmune manifestations
like cryoglobulinemia and Sjögren’s syndrome [56]. Interestingly, in the context of EBV
infection, Sattarnezhad and team hypothesized intramolecular epitope spreading as a mech-
anism to increase the breadth of antibody responses against glial cell adhesion molecule
(GlialCAM), potentially increasing its potential to cause harm [57]. In mice, injections with
EBNA1 peptides of different length elicited cross-reactive antibodies to dsDNA, different
from the cross-reactive epitope [57,58].

To balance antibody protection with safety, we regard the reduction in antibody-
mediated autoimmunity as a core design objective rather than an afterthought. We recom-
mend three complementary measures: (i) Fc-region glyco-engineering and judicious IgG
subclass selection to bias Fcγ-receptor engagement toward inhibitory or anti-inflammatory
pathways [59]; (ii) tolerogenic adjuvants and epitope choices that minimize molecular
mimicry of self-antigens [60]; and (iii) proactive immunomonitoring to detect early signs
of autoreactivity in at-risk recipients [61]. Integrating these safeguards will help ensure
that next-generation vaccines and therapeutic antibodies deliver maximal benefit while
maintaining an acceptably low autoimmune liability.

Table 1. Examples of Virus-Induced Autoantibodies and Associated Autoimmune Diseases. This
table summarizes select autoimmune diseases and conditions linked to viral infections. For each
condition, it lists the associated viruses, the specific autoantibodies produced or the self-antigens
they target, and the proposed immunopathogenic mechanisms responsible for the development
of autoimmunity.

Autoimmune
Disease/Condition Associated Virus(es) Autoantibodies/

Autoantigen Targets

Proposed
Immunopathogenic

Mechanism(s)

Systemic Lupus
Erythematosus (SLE) Epstein–Barr Virus (EBV) [62]

Anti-nuclear antibodies (ANA),
anti-dsDNA, anti-Sm,
anti-CL/beta2-GPI complex,
anti-RNP, anti-Ro/SSA,
anti-La/SSB, antiphospholipid
antibodies (aPL) [63]

FcγR
dysregulation [64]

Rheumatoid
Arthritis (RA)

Epstein–Barr Virus (EBV) [65],
Cytomegalovirus (CMV) [66]

Rheumatoid Factor (RF) [42],
anti-citrullinated protein
antibodies (ACPAs) [67]

Bystander
activation [68]

ANCA-Associated
Vasculitis

Epstein–Barr Virus (EBV) [69],
Hepatitis B Virus (HBV) [70]

Anti-neutrophil cytoplasmic
antibodies (ANCAs) [43]

Neutrophil
activation [71]

Multiple Sclerosis (MS) Epstein–Barr Virus (EBV) [72]
Oligoclonal IgG bands (CSF); no
single disease-defining serum
autoantibody [73]

Molecular mimicry;
Epitope
spreading [74]

Guillain-Barré
Syndrome (GBS)

Epstein–Barr Virus (EBV) [75],
Cytomegalovirus (CMV) [76],
Influenza [77], Zika Virus
(ZIKV) [52]

Anti-ganglioside antibodies [52] Molecular
mimicry [51]
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Table 1. Cont.

Autoimmune
Disease/Condition Associated Virus(es) Autoantibodies/

Autoantigen Targets

Proposed
Immunopathogenic

Mechanism(s)

Multisystem
Inflammatory Syndrome
in Children (MIS-C)

SARS-CoV-2 [50]
Antibodies targeting viral
nucleocapsid cross-reactive with
self-protein SNX-8 [50]

Molecular
mimicry [50]

Thrombocytopenia/
Plasma Leakage Dengue Virus (DENV) [37] NS1 mimicry, endothelial and

platelet autoimmunity [78]
Molecular
mimicry [78]

Sjögren’s Syndrome Epstein–Barr Virus (EBV) [79],
Hepatitis C Virus (HCV) [56]

Anti-Ro/SSA (Ro52, Ro60),
Anti-La/SSB, RF, ANA [80]

Epitope
spreading [81]

3.2.2. Therapeutic Strategies to Mitigate Antibody-Mediated Pathologies

Recent advancements in protein and vaccine engineering have paved the way for inno-
vative strategies aimed at reducing the pathogenic potential of antibodies. One promising
approach is Fc-region glyco-engineering, which involves modifying the glycan structures
on the antibody’s Fc domain. By altering these glycans, it is possible to shift the antibody’s
binding preference from activating FcγRs to the inhibitory receptor FcγRIIb. This shift ef-
fectively dampens inflammatory responses, transforming a potentially pathogenic antibody
into a therapeutic agent [82]. For instance, increasing the sialylation of the Fc region has
been shown to enhance affinity for FcγRIIb, thereby promoting anti-inflammatory activ-
ity [83]. This strategy is being explored for the treatment of autoimmune and inflammatory
diseases where antibody-mediated pathology is a key driver.

In parallel with modifying existing antibodies, significant efforts are being directed
towards the rational design of tolerogenic vaccines. These vaccines are engineered to avoid
epitopes with high sequence or structural homology to self-antigens, which is a crucial
step in minimizing the risk of inducing cross-reactive autoantibodies through molecular
mimicry [84]. Furthermore, the development of engineered therapeutic antibodies has
provided a powerful tool for targeted intervention in autoimmune conditions. These
monoclonal antibodies can be designed to specifically deplete autoreactive B cells. An
example is Rituximab, an anti-CD20 antibody that effectively removes B cells and is used
to treat various autoimmune diseases [85]. Other engineered antibodies are designed to
block key inflammatory pathways, such as those targeting cytokines like TNF-α or IL-6,
offering a more direct approach to controlling inflammation [86]. These strategies represent
the forefront of efforts to control antibody-mediated pathologies.

3.2.3. Antibody-Dependent Enhancement (ADE)

ADE occurs when non-neutralizing or sub-neutralizing antibodies facilitate viral at-
tachment (extrinsic ADE) or entry (intrinsic ADE) into host cells, paradoxically worsening
the infection [87,88]. This phenomenon has been extensively studied in the context of
Flavivirus infections, such as DENV. Antibodies generated against one serotype of DENV
can bind but fail to neutralize a different serotype, forming immune complexes that interact
with FcγRs on monocytes, macrophages, or dendritic cells. This process enhances viral
uptake and replication, leading to severe disease manifestations like dengue hemorrhagic
fever and dengue shock syndrome [89]. Clinically, this mechanism can significantly increase
disease severity and contribute to severe complications such as myocarditis, characterized
by elevated cardiac enzymes, arrhythmias, heart failure, and increased mortality risk [90].
In a clinical setting, patients experiencing antibody-dependent enhancement of dengue
infection demonstrated notably higher levels of inflammatory markers like C-reactive
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protein (CRP), prolonged prothrombin time (PT), and activated partial thromboplastin
time (aPTT), as well as an increased requirement for intensive care unit admission and
longer hospital stays [90]. Furthermore, related viruses can induce cross-reactive antibodies
that may impact the outcome of infection caused by other viruses within the same viral
family. For example, it was reported that the presence of Japanese encephalitis virus (JEV)
neutralizing antibodies was associated with an increased presence of DENV symptomatic
infection compared to asymptomatic infection, with the symptomatic infection also lasting
for a longer duration [91]. Likewise, in a separate study, vaccination with a single dose of
inactivated Vero cell-derived JEV vaccine led to production of antibodies capable of enhanc-
ing DENV infection at sub-neutralizing levels [92]. Interestingly, pre-existing immunity
elicited by the JEV SA14-14-2 vaccine conferred in vivo protection against Zika virus in a
mouse model [93]. However, the presence of antibodies to both DENV and West Nile virus
(WNV) was found to enhance ZIKV infection [94,95]. These examples show that ADE is a
complex and dynamic phenomenon that needs to be better understood, particularly in the
context of viral infection and vaccine development.

Nevertheless, ADE has also been observed in other viral infections, including those
caused by coronaviruses. During the COVID-19 pandemic, some studies suggested that
antibodies generated against the SARS-CoV-2 spike protein might enhance viral entry under
certain conditions. These effects are mediated through FcγRIIa and FcγRIIIa expressed
on immune cells, which bind to antibody-virus complexes and facilitate endocytosis [96].
While evidence of ADE in SARS-CoV-2 infection remains limited and controversial, it raises
concerns about the design of vaccines and monoclonal antibody therapies, particularly in
populations previously exposed to the virus or related coronaviruses [23,96].

Beyond flaviviruses and coronaviruses, ADE has been demonstrated for other viruses
such as respiratory syncytial virus (RSV) [97], measles virus [98], Ebola virus [99], and
alphaviruses [100,101]. The underlying mechanisms of ADE differ among viruses, but they
generally involve FcR-mediated viral entry and increased inflammatory responses leading
to tissue damage [102]. Understanding the molecular determinants of ADE is essential
to designing safer vaccines and therapeutic antibodies that avoid this adverse immune
phenomenon. Moreover, vaccine designs should focus on eliciting robust neutralizing
antibody responses while reducing non-neutralizing antibodies. Similarly, antibody concen-
trations can also dictate the functional outcome of antibodies. When present in inadequate
levels, neutralizing antibodies could shift their role from protection to enhancement of
infection severity via ADE. This underscores the need for vaccines to induce and maintain
high-titer neutralizing antibodies. Other factors to consider include the careful selection
of antigens, coupled with the optimization of vaccine formulations and consideration of
immune responses in diverse populations, including those with pre-existing immunity
to related viruses, which will be crucial in the development of safer and more effective
vaccines against viruses where ADE is a concern [103]. This is especially important in
regions with a high prevalence of viral infections and limited access to healthcare resources.

4. Non-Neutralizing Antibodies (NNAbs)
Non-neutralizing antibodies (NNAbs) constitute an immunologically versatile subset

whose activities can tip toward either host protection or pathology. When properly reg-
ulated, NNAbs engage FcγRs and complement to drive ADCC, phagocytosis, and other
Fc-effector mechanisms that enhance the neutralizing response and broaden protection.
Conversely, the same Fc-mediated interactions can facilitate ADE of infection, promote
immune-complex deposition, or fuel autoreactive inflammation, thereby worsening disease.

A significant function of NNAbs is antibody-dependent cellular phagocytosis (ADCP).
This mechanism involves the opsonization of pathogens or infected cells by NNAbs,
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effectively marking them for engulfment by phagocytic cells such as macrophages and
neutrophils [104]. The Fc regions of NNAbs bind to FcRs on phagocytes, enabling the
internalization and degradation of immune complexes. ADCP has been identified as a
crucial protective mechanism in various infections, including HIV, where NNAbs help
control viral replication and restrict the spread of the virus [105].

Additionally, NNAbs play crucial roles in vaccine-induced immunity. The RV144
HIV vaccine trial identified NNAbs as correlates of protection, highlighting their ability to
reduce viral loads and transmission via FcR-mediated functions. Such findings emphasize
the importance of eliciting NNAbs through vaccine strategies, complementing neutralizing
antibody responses [105].

Beyond these effector functions, NNAbs are involved in modulating immune re-
sponses by enhancing antigen presentation by dendritic cells. Immune complexes formed
by NNAbs bind to Fc receptors (FcRs) on dendritic cells, facilitating the uptake, processing,
and subsequent presentation of antigens to T cells [104]. This interaction not only promotes
dendritic cell maturation but also enhances adaptive immune responses, bridging innate
and adaptive immunity. Notably, glycan-reactive monoclonal antibodies 2G12, PTG126,
and PTG128 that arise during HIV-1 infection recognize the S protein of SARS-CoV-2 yet
remain non-neutralizing, and have not been linked to ADE or adverse COVID-19 out-
comes [106]. However, 2G12 can bind to analogous oligomannose motifs on influenza A
hemagglutinin and can neutralize the virus, showing that glycan-focused cross-reactivity
may confer heterologous protection [106]. Such observations emphasize the role of NNAbs
in infectious disease outcomes and vaccine strategy design.

NNAbs can also mediate detrimental effects through ADE. At sub-neutralizing levels,
NNAbs can bind to viral antigens without effectively preventing viral entry. This binding
forms virus-antibody complexes that interact with FcγRs on immune cells, including mono-
cytes, macrophages, or dendritic cells. These interactions facilitate increased internalization
of viruses, enhancing viral replication within these cells [23]. Furthermore, NNAbs can trig-
ger complement activation, leading to inflammation and tissue damage. Such mechanisms
have been notably observed in viral infections like dengue virus, highlighting a critical risk
factor in vaccine development [23].

5. Factors Influencing Antibody-Mediated Immunity
Pathogens employ various immune evasion strategies to circumvent detection and

elimination by the host’s immune system. These mechanisms ensure their survival, persis-
tence, and ability to establish long-term infections.

5.1. Viral-Based Factors

Pathogens employ various strategies to evade the host immune system. Pathogens
like influenza and SARS-CoV-2 undergo frequent mutations in their surface proteins, al-
lowing them to evade antibody recognition. For example, mutations in the Spike protein
of SARS-CoV-2 enable the viruses to escape neutralizing antibodies [23]. This mechanism
is also prominent in the influenza virus, which undergoes antigenic drift and shift in its
hemagglutinin and neuraminidase proteins [107]. Similarly, human immunodeficiency
virus (HIV) continuously mutates its envelope glycoprotein (gp120), creating a moving
target for the immune system and thwarting the development of effective neutralizing
antibodies [108]. This may lead to prolonged or severe disease and increases the trans-
mission of these viruses. As such, it is important that researchers are actively monitoring
pathogen evolution, which will help in predicting the emergence of new strains and inform
vaccine development.
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Epstein–Barr Virus (EBV) achieves immune evasion by entering a latent state during
which it minimizes its antigenic profile. In latency, EBV expresses a limited set of viral
proteins, such as EBNA-1 and LMP-2, avoiding detection by host antibodies and cytotoxic
T cells [109]. Another mechanism utilized by EBV employs the viral protein BGLF5 to
degrade host RNA and inhibit the expression of key antiviral molecules. This reduces the
efficiency of antigen presentation and neutralizing antibody production, enabling the virus
to evade both innate and adaptive immunity [109].

Pathogens can also directly interfere with antibody-mediated responses. Herpes sim-
plex virus (HSV) encodes glycoproteins such as gE and gI, which form a complex that binds
to the Fc region of IgG. This Fc-binding activity prevents the interaction of IgG with FcRs
on phagocytes, effectively neutralizing antibody-dependent cellular phagocytosis [110].

It is also possible for viruses to protect key epitopes from antibody recognition through
glycan shielding or structural rearrangements. HIV is a prominent example, as it incor-
porates a dense glycan shield over its envelope protein, preventing antibody binding to
conserved epitopes [111]. Additionally, structural rearrangements in the spike protein of
coronaviruses, including SARS-CoV-2, conceal receptor-binding domains during specific
stages of the viral life cycle, reducing antibody access [112].

5.2. Host-Based Factors

The duration and effectiveness of antibody responses vary among individuals due to
genetic differences [113,114], immune history [115–117], and co-existing conditions [118].
Some individuals generate long-lasting protective antibodies, while others exhibit rapid
waning, influencing susceptibility to reinfection and vaccine efficacy [118]. Factors such as
HLA haplotypes, Fc receptor polymorphisms [119], and baseline inflammation levels [120]
can modulate the quality and persistence of antibody responses. Interestingly, in a recent
report on how immune history could affect antibody responses, Lv et al. demonstrated
that in mice, antibodies raised against pre-2009 H1N1 strains can significantly affect both
anti-HA and anti-NA antibody responses when these animals were exposed to the 2009
pandemic H1N1 strain [117].

The gut microbiome, which participates in immune system development and function,
can affect the quality and magnitude of the host’s humoral responses to an infection [121].
Dysbiosis, which is an imbalance in the gut microbiome, compromises immune function,
and this could substantially reduce the effectiveness of antibody responses. Consequently,
future research should prioritize modulating the host microbiome to bolster immune
function for better vaccine efficacy [122].

Non-genetic factors such as diet, lifestyle, infection history, and vaccination status
can also influence antibody-mediated immunity [117,123–125]. For example, nutritional
deficiencies in vitamin D and zinc have been linked to impaired B cell function and
suboptimal vaccine responses [126]. Immune imprinting, rooted in the fundamentals of
immunological memory, can impact vaccination-induced antibody responses, especially
against viruses that undergo rapid evolution (e.g., SARS-CoV-2) [125]. Additionally, chronic
infections involving tuberculosis or helminth infestations can skew immune responses
toward a regulatory phenotype, affecting vaccine efficacy and antibody durability [127,128].
Adequate rest, effective stress management, regular physical activity, avoidance of smoking,
moderation in alcohol consumption, and minimal exposure to environmental pollutants
are crucial factors that further influence the immune system’s functionality. Understanding
these interactions is critical for developing strategies to enhance immune resilience and
improve vaccine outcomes.
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6. Conclusions
The antibody response to viral infection is a delicate balance, a true ‘Yin-Yang’ of pro-

tection and pathology. This review has synthesized how fundamental immune processes—
from germinal center dynamics to class-switch recombination—generate a functionally
diverse antibody arsenal. These antibodies serve as the cornerstone of antiviral defense,
neutralizing virions and orchestrating potent Fc-mediated effector functions like ADCC
and complement activation, which form the basis of effective vaccination.

On the other hand, this same response can become detrimental. We have highlighted
how these antibodies can drive pathologies like antibody-dependent enhancement or,
through mechanisms like molecular mimicry, trigger the production of autoantibodies
that lead to debilitating autoimmune conditions such as Guillain-Barré Syndrome and
virus-induced Systemic Lupus Erythematosus. The final outcome is not random but is
tipped toward protection or harm by a complex interplay of host genetics, immune history,
and viral evasion tactics.

Harnessing this dualistic understanding is therefore crucial for the next generation
of medical interventions against viral threats. Looking forward, the rational design of
safer vaccines and immunotherapies depends on our ability to selectively promote pro-
tective functions while minimizing harm. Promising strategies, such as Fc-region glyco-
engineering to dampen inflammatory signals and designing tolerogenic vaccines to avoid
cross-reactivity with self-antigens, represent the forefront of this effort. Ultimately, by
embracing the complexity of the antibody’s ‘Yin-Yang’ nature, we can develop more precise
and effective tools to control viral diseases.
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ADCC Antibody-Dependent Cellular Cytotoxicity
ADCP Antibody-Dependent Cellular Phagocytosis
ADE Antibody-Dependent Enhancement
ANO2 Anoctamin-2
aPTT Activated Partial Thromboplastin Time
BGLF5 EBV Ribonuclease Protein
CCR6 C-C chemokine receptor type 6
CD107 Lysosomal-Associated Membrane Protein 1
CD16a FcγRIIIa
CD16b FcγRIIIb
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CD32a FcγRIIa
CD32b FcγRIIb
CD32c FcγRIIc
CD64 FcγRI
CMV Cytomegalovirus
CRP C-Reactive Protein
CRYAB Alpha-B Crystallin
CSR Class Switching Recombination
CXCR3 C-X-C Chemokine Receptor Type 3
DENV Dengue Virus
dsDNA Double-Stranded DNA
EBNA1 Epstein–Barr Nuclear Antigen 1
EBV Epstein–Barr Virus
FcγR Fc Gamma Receptor
FcγRI Fc Gamma Receptor I
FcγRIIa Fc Gamma Receptor IIa
FcγRIIb Fc Gamma Receptor IIb
FcγRIIc Fc Gamma Receptor IIc
FcγRIIIa Fc Gamma Receptor IIIa
FcγRIIIb Fc Gamma Receptor IIIb
FcRs Fc Receptors
GBS Guillain-Barré Syndrome
GlialCAM Glial Cell Adhesion Molecule
gp120 Glycoprotein 120
HA Hemagglutinin
HA2 Hemagglutinin Subunit 2
HBV Hepatitis B Virus
HCV Hepatitis C Virus
HIV Human Immunodeficiency Virus
HLA Human Leukocyte Antigen
HSV Herpes Simplex Virus
IFN-γ Interferon-Gamma
IgA Immunoglobulin A
IgD Immunoglobulin D
IgE Immunoglobulin E
IgG Immunoglobulin G
IgM Immunoglobulin M
IL-6 Interleukin-6
ITAM Immunoreceptor Tyrosine-Based Activation Motif
ITIM Immunoreceptor Tyrosine-Based Inhibitory Motif
JEV Japanese Encephalitis Virus
LMP-2 Latent membrane protein 2
MBP Myelin Basic Protein
MBCs Memory B Cells
MIS-C Multisystem Inflammatory Syndrome in Children
MS Multiple Sclerosis
NNAbs Non-Neutralizing Antibodies
NK Natural Killer
NS1 Non-structural protein 1
PD-1 Programmed Cell Death Protein 1
PT Prothrombin Time
RA Rheumatoid Arthritis
RSV Respiratory Syncytial Virus
SARS Severe Acute Respiratory Syndrome
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SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SHM Somatic Hypermutation
SLE Systemic Lupus Erythematosus
SNX8 Sorting Nexin 8
STAT1 Signal Transducer and Activator of Transcription 1
Tfh T follicular helper cells
TGF-β Transforming growth factor-beta
TIGIT T Cell Immunoreceptor with Ig and ITIM Domains
TNF-α Tumor necrosis factor-alpha
WNV West Nile Virus
ZIKV Zika Virus
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