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Abstract: A number of studies have recently demonstrated the effectiveness of CO2 laser irradiation
for the repair and regeneration of scar tissue from injuries or surgical wounds. However, such studies
of the oral mucosa are highly limited. Previous studies using CO2 laser irradiation have indicated
that two factors contribute to esthetic healing, namely, artificial scabs, which are a coagulated and
carbonized blood layer formed on the wound surface, and photobiomodulation therapy (PBMT) for
suppressing wound scarring and promoting wound healing. This review outlines basic research and
clinical studies of esthetic healing with the use of a CO2 laser for both artificial scab formation by
high-intensity laser therapy and PBMT in the treatment of injuries and surgical wounds with small
parenchymal defects in oral soft tissues. The results showed that the wound surface was covered by an
artificial scab, enabling the accumulation of blood and the perfusion necessary for tissue regeneration
and repair. Subsequent PBMT also downregulated the expression of transformation growth factor-b1,
which is involved in tissue scarring, and decreased the appearance of myofibroblasts. Taken together,
artificial scabs and PBMT using CO2 lasers contribute to the suppression of scarring in the tissue
repair process, leading to favorable esthetic and functional outcomes of wound healing.

Keywords: CO2 laser; high-intensity laser therapy; photobiomodulation therapy; scar; mucosal
epithelium; open lip; socket preservation; free gingival graft

1. Introduction

During the healing of injuries and surgical wounds with small parenchymal defects in
oral soft tissues, scarring (e.g., formation of hypertrophic scars, contracture and epithelial
concavity) sometimes occurs, affecting esthetic and functional outcomes. Scarring and
associated problems can also occur due to suturing performed to achieve early wound
closure and prevent wound infections [1,2] and due to the use of a wound dressing [3,4].

Recently, the effectiveness of CO2 lasers (a fractional CO2 laser, in particular) for
the treatment of epithelial scars from trauma, surgical wounds and acne was reported in
clinical studies using biopsy samples [5–9], in studies using a scar scale or a visual analog
scale [10–16] and in basic studies using experimental animals [17–24].

We have been studying CO2 laser treatment of tooth extraction sockets and reported
basic research results such as the promotion of wound healing, preservation of the alveolar
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crest and suppression of mucosal scarring around the extraction sockets [25–28]. We
also reported clinical research results on CO2 laser treatment that suppressed scarring
during the healing of open lip vermillion wounds caused by injuries, resulting in esthetic
tissue regeneration [29]. Two factors contribute to the esthetic wound healing achieved
by CO2 laser treatment. One is the presence of “artificial scabs” formed by coagulation
and carbonization of the surface of blood accumulated in injuries and surgical wounds
by high-intensity laser therapy (HILT). The other is photobiomodulation therapy (PBMT),
which is expected to promote wound healing and suppress scar formation.

This review outlines basic research and clinical studies on esthetic healing by use of a
CO2 laser for both artificial scab formation by HILT and PBMT in the treatment of injuries
and surgical wounds with small parenchymal defects in oral soft tissues and provides key
points of treatment procedures based on the findings from some clinical case examples.

First, we briefly explain scar formation in primary healing and secondary healing.

2. Wound Healing and Scarring

The presence of myofibroblasts is essential for the closure of injuries and surgical
wounds. Myofibroblasts, which have smooth muscle cell-like contractile activity, are
differentiated from fibroblasts in granulation tissue upon expression of TGF-b1. Then,
scarring and scar contracture occur, and early wound closure is promoted by total coverage
of wounds by epithelia [30–33].

However, this healing mechanism can cause unfavorable esthetic and functional
outcomes because of the development of hypertrophic scars, scar contracture and epithelial
concavity on the wound surface [34–36]. The degree of scar formation varies depending on
the size, area and depth of parenchymal defects.

2.1. Primary Healing and Scar Formation

Primary wound healing occurs when an incision made by a scalpel is closed by
tight suturing of the dermal edges. In principle, primary healing can be achieved when
wounds are not contaminated and do not require debridement. However, it is possible
after thorough debridement if the wound is closed by suturing the dermal edges without
leaving dead space. Also, when suturing, it is important to carefully align the epithelium
on one dermal edge with that of the other and the submucosa on one dermal edge with
that of the other.

The following problems are associated with primary healing: (1) a linear scar forms at
the surface plane of the closed wound edges because of the scar tissue involved and contrac-
tion of the wound surface; (2) when suturing or reefing of the muscle layers is performed,
the wound surface and surrounding tissue are pulled, leading to motor dysfunction due
to contracture and tension in the future; and (3) when suturing or reefing of the wound
edges is not tight enough, dead space forms subcutaneously or at the deep position beneath
the wound, and then granulation tissue forms to fill the dead space, which is eventually
replaced by scar tissue.

2.2. Secondary Healing and Scar Formation

Secondary healing occurs in open wounds that lack epithelia. After thorough debride-
ment, blood on the wound surface coagulates, and defects are filled by the granulation
tissue formed via the deposition of fibroblasts and angiogenesis. Then, fibroblasts differen-
tiate into myofibroblasts in granulation tissue, and the granulation tissue is replaced by
scar tissue, resulting in repair and regeneration. At the same time, the epithelium around
the wound extends to cover the entire area of the wound, leading to healing.

Recently, to prevent scar formation like that described above, dressing therapy, where
the wound is covered by a dressing, has been used for open wounds [3,4]. This facilitates
early wound healing by keeping the wound surface adequately moist, or more precisely, by
keeping blood and effusion containing cytokines that induce migration, division and prolif-
eration of cells within the wound, and by protecting regenerated immature epithelia and
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granulation tissue from contamination and infection (Figure 1a). However, the following
problems are associated with this treatment: (1) there is a risk of aggravation of infection in
the closed environment (main causes are the presence of bacteria, inadequate debridement,
oxygen deficiency); (2) epithelial healing may be inadequate due to the accumulation of
excessive effusion in the highly closed conditions; (3) there is a risk of damage to the
wound surface upon removal of the wound dressing; and (4) fixation of a wound dressing
over highly mobile tissue is difficult, causing misalignment or opening of wound edges,
which may result in dead space formation and consequent formation of a large amount of
scar tissue.
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Figure 1. Dressing therapy with wound dressing and wound covering with an artificial scab formed
using a CO2 laser: (a) wound dressing; (b) artificial scab.

Next, we take into account the characteristics of CO2 lasers and explain to what extent
the CO2 laser treatment can suppress scar formation in primary healing and secondary
healing of injuries and surgical wounds with small parenchymal defects in oral soft tissues.

3. Characteristics of CO2 Laser

Dental CO2 lasers emit long-wavelength light (10.6 mm) that is strongly absorbed
by water. Therefore, upon irradiation of the skin, the thermal energy of a CO2 laser is
mostly absorbed before reaching a depth of 0.05 mm beneath the skin surface, causing no
impact on the deep tissue [37–39]. Similarly, in the irradiation of blood, coagulation and
carbonization occur only at the surface, and blood under the surface layer is unaffected.

However, excessive CO2 laser irradiation due to inappropriate conditions (e.g., output,
irradiation mode, irradiation time, irradiation distance) and inappropriate maneuvers can
cause irreversible changes and delayed healing.

4. Secondary Healing-like Effect Using a CO2 Laser

The two factors of artificial scabs and PBMT are involved in achieving secondary
healing using a CO2 laser. We explain these factors below.

4.1. Presence of Artificial Scabs

Artificial scabs, formed by coagulation and carbonization of blood at the wound
surface by HILT, are necessary for the repair and regeneration of parenchymal defects
associated with injuries and surgical wounds to obtain the original tissue form [25–29].
These artificial scabs play a role similar to that of wound dressings in dressing therapy
(Figure 1b). They have a “space-making effect” to retain effusion and blood required for
repair and regeneration of tissue to its original form, preserve the moist condition for moist
wound healing and protect immature epithelial and granulation tissues from contamination
and infection, thereby facilitating early wound healing. Problems associated with wound
dressings, explained in Section 2.2, are absent in the case of artificial scabs: problems (1)
and (2) are unlikely because artificial scabs are breathable; problem (3) is unlikely because
they fall off naturally rather than requiring forced removal; and problem (4) is unlikely
because laser soldering of artificial scabs formed over the mobile tissue to the surrounding
tissues reduces the risk of peeling [40,41].
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4.2. Preventive Effect of PBMT on Scarring

PBMT is expected to promote wound healing and prevent scar formation. This review
focuses on scar prevention by PBMT in the healing of oral soft tissue. Those who are
interested in the promotion of healing by PBMT are encouraged to refer to our previous
studies [25–27]. PBMT inhibits differentiation of fibroblasts to myofibroblasts in granulation
tissue and inhibits or improves scarring.

Recently, the effectiveness of PBMT using a CO2 laser for inhibiting or improving
scar formation associated with trauma, burns, surgical wounds and acne in skin tissue
was demonstrated in clinical studies using a biopsy or a scar scale. Pathohistological and
biochemical examination of wound biopsy samples showed inhibition of collagen fiber pro-
duction [5,6,9], normalization of collagen fiber orientation [5], normal regeneration of and
increases in dermal collagen with elastic fibers [8,10], thinning in the stratum corneum [5,9]
and downregulation of expression of TGF-b1 involved in differentiation of fibroblasts into
myofibroblasts [5,7,9]. With respect to appearance, studies of scar healing, such as those
using the Vancouver Scar Scale or ultrasound measurement, have demonstrated improve-
ments in the hardness [10,14], thickness [11,16] and flexibility and elasticity [10,14] of scars.
In studies of motor function at scar sites [12], studies using the Patient Scar Assessment
Questionnaire showed improvements in appearance and scar awareness [10–16].

Basic studies using experimental animals with artificially formed scar tissue in skin
tissue have shown that scar formation can be alleviated by PBMT through downregulation
of TGF-b1 expression [17,20,21], which decreases expression of the myofibroblast marker
α-smooth muscle actin (α-SMA) [21,22], decreases the amount and density of excessive
collagen fibers produced in granulation tissue [17–21], decreases the disruption of fiber
orientation [19,20], decreases the scar elevation index [21], decreases the micro-vessel
density [18] and thins the fiber layer [20]. Also, PBMT induces downregulation of fibroblast
expression in scar tissue [18,19,21], where basic fibroblast growth factor (bFGF) plays a role.
During the maturation phase of wound healing, a scar forms when many fibroblasts are
present in the tissue. Secretion of bFGF induces apoptosis of fibroblasts, thereby inhibiting
and reducing scar tissue formation due to the production of excessive collagen fibers. On
the other hand, during the inflammatory and proliferative phases, bFGF promotes cell
division to increase fibroblasts, thereby promoting repair and regeneration of the wound.
During these phases, PBMT stimulates bFGF secretion to promote repair and regeneration
of normal tissue without scarring [23,24].

The relationship between PBMT and TGF-b1 has been studied with respect to sup-
pression of scarring and promotion of wound healing. Laser beams affect mitochondrial
cytochrome-C oxidase, thereby influencing the production of adenosine triphosphate (ATP),
which is a major source of energy for cell functions. These responses include the generation
of reactive oxygen species (ROS) that activate nuclear factor-κB, which plays a role in
the signaling cascade, including wound shrinkage, fibroblast differentiation and collagen
production. ROS induces extracellular activation of TGF-b1. Also, downregulation of
TGF-b1 signaling enhances the formation of keloids and hypertrophic scars. However,
PBMT increases ATP production, but the level of ROS remains low. As a result, the down-
regulation of TGF-b1 by PBMT affects the reduction and inhibition of profibrotic gene
synthesis and collagen synthesis. These are likely to indicate the suppression of wound
tissue scarring [42,43]. On the other hand, TGF-b1 is a potent regulator of inflammatory
responses and is usually upregulated in the early phase of wound healing. However,
when comparing treatment with and without PBMT, we found no significant differences
in TGF-b1 expression in the inflammatory phase but a significant decrease by PBMT in
the proliferative phase of wound healing, indicating a suppressive effect on wound tissue
scarring [26,28].

After PBMT, TGF-b2, like TGF-b1, is also involved in recruiting fibroblasts and immune
cells from the circulation and wound edges to the wounded area, thereby promoting
granulation tissue formation and collagen synthesis [44]. On the other hand, a different
study showed the appearance of apoptotic epithelial cells and fibroblasts after PBMT [45].
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This phenomenon is likely to show suppression of tissue scarring through a reduction
in excessive collagen production associated with wound healing. In contrast to TGF-b1
and TGF-b2, TGF-b3 possibly reduces scarring in adults and promotes scarless healing in
fetuses, but no study has provided evidence on TGF-b3 in relation to PBMT. Basic studies
on PBMT using a CO2 laser and TGF-b are limited, and future studies are awaited.

Taken together, both clinical and basic studies have demonstrated that PBMT is
effective in suppressing scar tissue formation. At present, although suppression of scar
formation has been verified, complete healing is difficult solely with PBMT using a CO2
laser. To address this, combination with a laser of a different wavelength or an agent has
been studied to improve the reliability of treatment effectiveness [7,9,17–21].

As described above, studies of scars in the oral mucosa, including our studies, are
limited compared with those of scars in skin tissue. This can be explained by the rarity of
scar formation in the oral mucosa due to differences in turnover (a few days to 2 weeks
for the oral mucosa vs. approximately 4 weeks for skin tissue). However, depending on
the treatment procedures used, mucosal concavity and recession occur, influencing the
esthetic outcomes and motor functions of the tongue, lips and cheeks. Also, it is important
to understand that the lips are complex tissues with a transition between oral mucosa and
skin tissue.

Next, we describe secondary healing achieved in clinical cases by treatment procedures
using a CO2 laser (Figure 2).
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(c) an artificial scab formed on the surface of the resection wound; (d) immediately after open lip
vermillion wounds; (e) artificial scab formed in open lip vermillion wound; (f) 6 months after open lip
vermillion wound; (g) the extraction socket fully filled with blood immediately after tooth extraction;
(h) an artificial scab formed on the surface of blood filled in the extraction socket; (i) day 2 after tooth
extraction; (j) preoperative; (k) an artificial scab formed after the donor site of a gingival flap filled
with blood clots; (l) 1 month after surgery. Photos by (d–i) co-author Dr. H. Fukuoka and (j–k) Dr.
Funakoshi. Consent was obtained from the patients in all cases. Reproduced from [29] under Creative
Commons CC BY-NC 4.0.

5. Treatment of the Lips Using a CO2 Laser

Achieving favorable esthetic outcomes is crucial in the facial area, including the lips,
so careful postoperative treatment is important.

5.1. Mucocele of the Lip

A mucocele of the lip is thought to be caused by impaired outflow of mucus from
a minor salivary gland due to damage to the opening of the minor salivary gland duct
present under the labial mucosa.

In conventional mucocele removal, infiltration anesthesia is applied to the area around
the mucocele, and an incision is made on the normal mucosa without damaging the
mucocele using a scalpel. Then, the lesion is fully enucleated from the surrounding tissue
using a surgical scalpel, mucosal elevator or mosquito forceps, and lastly, suturing is
performed (Figure 3a–e) [46].

On the other hand, in mucocele removal using a CO2 laser, tissues are cut and vapor-
ized by a CO2 laser instead of being cut by a scalpel, and basically, no suturing is required.
The most important point of this method is to retain blood in the space generated after
mucocele removal and along the lip morphology and to form an artificial scab on the
surface. Then, artificial scabs are strongly soldered to the surrounding tissues to avoid
detachment [40,41], and PBMT is subsequently applied several times before the end of
the procedure (Figures 2a–c and 3a,f–k). This method frees surgeons from suturing and
also frees patients from pain associated with suturing and uncomfortable symptoms such
as tension and contracture of the lip. The surgical procedure for hemangioma resection,
although we have not performed it, is basically the same as that described above [47].

Recently, clinical studies have shown that this treatment procedure can reduce bleeding
and pain, requires a short time and is associated with almost no or no recurrence [48,49].
However, findings regarding esthetic and motor function outcomes associated with scar
formation in treated tissue have not yet been reported in detail.

Clinical studies using lasers of other wavelengths have also been reported [50,51], but
no studies using biopsy have yet been reported. Also, there are specific problems associated
with the use of lasers. For example, when a laser tip is in direct contact with the skin for
vaporization and cutting in treatment using a laser that penetrates tissue (e.g., a diode laser),
bleeding during the treatment is reduced, but heating of the surrounding tissue induces
protein coagulation, which is associated with a risk of delayed wound healing and some scar
formation [52,53]. Compared with CO2 lasers, when Er.YAG (erbium-yttrium-aluminum-
garnet) lasers, which are absorbed at the surface, are used, more bleeding is expected, albeit
without the effect of heating the surrounding tissue during treatment [39,52,54].
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Figure 3. Removal of mucocele using a CO2 laser: (a) before removal of mucocele; (b–e) conventional
surgical method; (f–k) surgical method using CO2 laser; (b) designing a spindle incision line over the
mucocele along a lip wrinkle and making a submucosal incision; (c) removing a mucocele without
damaging it; (d) hemostatic suturing; (e) high likelihood of formation of a linear scar and a mucosal
concavity along the sutured wound edges; (f) making an incision in the shape of the mucocele using a
CO2 laser; (g) removing a mucocele as in (c); (h) letting blood accumulate in the shape of the resection
wound, and forming an artificial scab on the surface; (i) sagittal cross section of (h); (j) performing
PBMT; (k) high likelihood of healing without scar formation.

5.2. Open Lip Vermillion Wounds

The lips are the part of the face most prone to injury. Treatment of open lip vermillion
wounds includes thorough debridement of contaminated tissue at the injured site and then
advanced suturing (e.g., V-Y advancement flap [1,2]) that achieves esthetic and functional
reconstruction of the lips. Although debridement is necessary, it must be kept to a minimum
when treating tissues (e.g., the face) where favorable esthetic outcomes are particularly
important. It is highly likely that forceful reefing results in scar formation along the wound
edges that are closed and consequent interruption of the vermillion border (Figure 4a–e).
Similar findings were shown in suturing in the surgery of the cleft lip [55,56]. Also, because
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the lips are highly mobile, wound dehiscence and the formation of dead space in the deep
part beneath the wound may occur, as described in problem (4) of Section 2.2.
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Figure 4. Treatment of open lip vermillion wounds using a CO2 laser: (a–c) procedures common to
both hemostatic suturing and treatment with a CO2 laser; (d,e) treatment with hemostatic suturing
only; (f–k) treatment using CO2 laser; (a) immediately after injury; (b) after debridement; (c) before
hemostatic suturing; (d) suturing with prioritization of wound closure but without consideration
of esthetic outcomes of the lip; (e) an interrupted inferior vermillion border of the upper lip, with a
high possibility of healing with a linear scar; (f) minimum suturing to make an uninterrupted inferior
vermillion border of the upper lip; (g) letting blood accumulate in the shape of a parenchymal defect
in the tissue; (h) sagittal cross section of (g); (i) forming an artificial scab on the blood at the wound
surface; (j) performing PBMT; (k) high likelihood of healing without mucosal scars. A dotted line
indicates the inferior vermillion border of the lip.

On the other hand, in treatment using a CO2 laser, debridement and artificial scab
formation are accomplished. In this procedure, after minimum vaporization of contami-
nated tissue by the laser, blood is allowed to accumulate in the dead space formed at the
site of the tissue defect and along the lip morphology, and artificial scabs are formed on
the blood surface and strongly soldered to the surrounding tissues [40,41]. Then, PBMT is
performed several times (Figures 2d–f and 4a–c,f–k). It should be noted that the formation
of artificial scabs without careful consideration results in irregular closure of the lip wound
edges, potentially causing concavity, unevenness and hypertrophic scar formation. Thus,
it is important to align and close the lip wound edges by light suturing and then to form
artificial scabs [29].

6. Treatment Using a CO2 Laser after Tooth Extraction

The guidelines for use of dental lasers formulated by the U.S. Food and Drug Admin-
istration recommend the “coagulation of extraction sites” using a CO2 laser.

In the tooth extraction procedure using a CO2 laser, tooth extraction is performed in
the conventional manner, but hemostasis is achieved by laser coagulation. Suturing or
compression are mainly used for hemostasis in tooth extraction, but wound closure by
suturing causes excessive tension in the surrounding mucosa and a consequent reduction
in the height of the alveolar mucosa, and the gauze pieces and dental cotton rolls used
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for compression hemostasis absorb blood. Thus, with these conventional hemostasis
procedures, an adequate amount of blood, which is necessary for alveolar bone regeneration
in the extraction socket, cannot be secured in the extraction socket, resulting in vertical
alveolar bone resorption and a mucosal concavity at the site of the extraction wound
(Figures 5a,b and 6a–e).
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Figure 5. Differences in the amount of blood accumulated in the tooth extraction socket due to
different hemostasis methods: (a) suturing of the extraction wound; (b) compression hemostasis with
a cotton roll; (c) blood coagulation by artificial scab using a CO2 laser. The broken line indicates the
position of the blood surface layer within the tooth extraction socket.

On the other hand, in the treatment using a CO2 laser, an artificial scab is formed after
letting blood accumulate to the height of the surrounding mucosa of the extraction socket,
and it is soldered to the surrounding mucosa [40,41], and PBMT is then performed several
times (Figures 2g–i, 5c and 6f–j).

These scabs prevent the extension and invagination of the surrounding mucosa into
the extraction socket, thereby playing a role in space-making for bone regeneration within
the extraction socket. Subsequent PBMT is also important for treating extraction wounds. It
suppresses the contracture of a scar developed on the mucosal epithelium through marked
downregulation of TGF-b1 and α-SMA in the mucosal epithelium of extraction wounds,
as shown in our previous studies [26,28] and described in Section 4.2. PBMT also plays a
role in the abovementioned space-making. In rats, we also demonstrated that activation
of bone remodeling and formation of new bone with a cross-linking pattern occurred in
the shallow layer of an extraction socket at the depth of the CO2 laser light penetration.
Such new bone with a cross-linking pattern serves as a bone lining under the mucosa of
the extraction wound, thereby preventing extension of the mucosal epithelium into the
extraction socket and making space for bone regeneration [25–27].

Taken together, artificial scabs and PBMT contribute to preserving alveolar bone height
to the greatest extent possible and also to preventing the formation of a mucosal epithelial
concavity at the site of the extraction wound.

Note that when marked alveolar bone resorption is present due to periodontal diseases
or other conditions, an adequate height of the extraction socket wall, which is a part of
the alveolar bone supporting a dentition, cannot be secured. Consequently, an adequate
amount of blood cannot be accumulated. This results in a reduction in the regenerated
bone height, causing mucosal concavity at the site of the extraction wound.
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Figure 6. Comparison of tooth extraction wound healing between compression hemostasis and artifi-
cial scab formation with a CO2 laser: (a–e) the wound healing process after compression hemostasis
with a cotton roll; (f–j) wound healing process with an artificial scab; (a,f) coagulation stage; (b,g) gran-
ulation tissue stage; (c,h) temporary bone stage; (d,i) healing stage; (e,j) histopathological image of a
tooth extraction wound 7 days after tooth extraction in a rat (corresponds to the temporary bone stage
in humans); (a) the amount of blood in the extraction socket is decreased due to blood absorption by
dental cotton rolls; (b) the space-making effect of bone regeneration is decreased due to extension and
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invagination of mucosal epithelium surrounding the extraction wound into the extraction socket and
depression of the extraction wound with contraction of the epithelial scar; (c) new bone is regener-
ated from the bottom of the extraction socket; (d) alveolar bone height is decreased and a dish-like
concavity forms in the mucosa of the extraction wound; (e) histopathological image of a rat tooth
extraction socket at the temporary bone stage after compression hemostasis; (f) formation of an artifi-
cial scab lets blood accumulate to the height of the mucosa around the extraction wound, followed
by PBMT; (g) the space-making effect for bone regeneration by the artificial scab prevents extension
and invagination of mucosal epithelium around the extraction wound into the extraction socket, in
combination with suppression of contraction of the mucosal epithelial scar by PBMT. Also, due to
the healing-promoting effect of PBMT, the appearance of cells involved in bone regeneration in the
shallow layer of the extraction socket and the production of collagen fibers were promoted, followed
by the migration of osteoblasts on those collagen fibers; (h) new bone forms with a cross-linking
pattern in the shallow and middle layers of the extraction socket, in addition to bone regeneration
from the bottom of the extraction socket; (i) alveolar crest height is preserved and there is no concavity
of the mucosal epithelium, due to the newly generated bone with a cross-linking pattern that serves
as a bone lining under the mucosal epithelium of the extraction wound; (j) histopathological image
of a rat tooth extraction socket in temporary bone stage after covering with artificial scab. The broken
line in (e) and (j) indicates the height of the alveolar bone. Reproduced from [26,27] under Creative
Commons CC BY-NC 4.0.

7. Free Gingival Grafting Using a CO2 Laser

In this treatment, for cases with no or little attached gingiva, a gingival flap harvested
from a donor site (e.g., part of the palatal mucosa) is transplanted to a recipient site to
increase the width of the attached gingiva or to cover a root with gingival recession. A
gingival flap is placed firmly in the recipient site to avoid the formation of dead space and
is then sutured to the surrounding mucosa. Currently, the main procedure for exposed
donor sites is covering them with a periodontal pack or artificial dermis.

On the other hand, a CO2 laser can be used in this treatment to form artificial scabs
on the surface of blood accumulated at the donor site. These scabs, like a periodontal
pack or artificial dermis, are likely to play a role similar to that of a wound dressing (see
Section 4.1). A CO2 laser can also be used after suturing for soldering wound edges in the
spaces between suture points [40,41]; the treatment is completed after performing PBMT
several times (Figures 2j–l and 7). We use a scalpel, but not a CO2 laser, when harvesting a
gingival flap to avoid a risk of protein coagulation by heating due to laser irradiation at the
margins of the flap edges.

Studies of CO2 lasers in this treatment are very limited. In one study, gingival flaps of
good quality without thermal protein denaturation were harvested, and high root coverage
and significant gains in keratinized gingiva were achieved [57]. In another study, recession
of the gingival flap 1 year after grafting was significantly decreased by postgraft irradiation
of the recipient site [58]. However, basic research investigating whether CO2 lasers promote
the healing of mucosal epithelial wounds and whether they influence scar formation at
donor and recipient sites has not yet been reported.

PBMT using a laser that penetrates tissue as an adjunct to wound repair markedly
accelerated re-epithelization and contributed to wound pain relief [59]. It was noted
that PBMT using a Nd:YAG laser increased the expression of TGF-b1 at the donor site
to stimulate fibroblasts to close the wound in the early phase of wound healing, but the
TGF-b1 expression was decreased in the late phase [60]. As described in Section 4.2, PBMT
may work to avoid scar formation as wound healing progresses to the maturation phase.
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Figure 7. Free gingival graft using a CO2 laser: (a–e) donor site; (f–h) recipient site; (a) determine the
area for a gingival flap; (b) harvest the gingival flap; (c) after harvesting the flap, let blood accumulate
on the tissue surface of the donor site to the height of the surrounding mucosa; (d) form artificial
scabs; (e) perform PBMT; (f) place the gingival flap firmly in the recipient site to avoid formation of
dead space between them, and then suture the flap to the surrounding mucosa; (g) solder the wound
edges in the spaces between suture points with HILT; (h) perform PBMT.
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8. Conclusions

The following are important points and effects of using a CO2 laser for secondary
healing of small parenchymal defects in oral soft tissues:

1. Blood is allowed to accumulate at the exact site of a small parenchymal defect, and
the blood surface is coagulated and carbonized by HILT to form an artificial scab.

2. The artificial scab is soldered to the surrounding mucosa so that it will not separate
from the surrounding mucosa.

3. Artificial scabs have a space-making effect for the accumulation of blood and effusion
necessary for tissue regeneration.

4. Artificial scabs facilitate the accumulation of blood and effusion, thereby preserving a
moist environment (a moist wound-healing-like effect).

5. Artificial scabs protect wounds from contamination and infection.
6. PBMT contributes to suppressing scar formation at the wound site and to promoting

wound healing.

Taken together, the use of a CO2 laser contributes to the suppression of scar formation,
leading to favorable esthetic and functional outcomes of wound healing. However, cases
where lasers can be used must be chosen based on a good understanding of the laser
characteristics, and evidence-based medicine is essential for choosing suitable cases for
laser use, as laser treatment without evidence from clinical and basic research may cause
wound healing failure.
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37. Tuncer, I.; Özçakır-Tomruk, C.; Şencift, K.; Çöloğlu, S. Comparison of conventional surgery and CO2 laser on intraoral soft tissue

pathologies and evaluation of the collateral thermal damage. Photomed. Laser Surg. 2010, 28, 75–79. [CrossRef]
38. Bornstein, M.M.; Winzap-Kälin, C.; Cochran, D.L.; Buser, D. The CO2 laser for excisional biopsies of oral lesions: A case series

study. Int. J. Periodontics Restor. Dent. 2005, 25, 221–229.
39. Suter, V.G.A.; Altermatt, H.J.; Bornstein, M.M. A randomized controlled clinical and histopathological trial comparing excisional

biopsies of oral fibrous hyperplasias using CO2 and Er:YAG laser. Lasers Med. Sci. 2017, 32, 573–581. [CrossRef]
40. Levanon, D.; Katzir, A.; Ravid, A. A scanning electron microscopy study of CO2 laser-albumin soldering in the rabbit model.

Photomed. Laser Surg. 2004, 22, 461–469. [CrossRef]
41. McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R. Photothermal effects of laser tissue soldering. Phys. Med. Biol.

1999, 44, 983–1002. [CrossRef]
42. Han, B.; Fan, J.; Liu, L.; Tian, J.; Gan, C.; Yang, Z.; Jiao, H.; Zhang, T.; Liu, Z.; Zhang, H. Adipose-derived mesenchymal stem cells

treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation
therapy. Lasers Med. Sci. 2019, 1, 1–10. [CrossRef]

43. Santiago, R.; Gomes, S.; Ozsarfati, J.; Zitney, M. Photobiomodulation for modulation of neuropathic pain and improvement of
scar tissue. Scars Burn Heal. 2022, 8, 20595131221134052. [CrossRef]

44. Rocha Júnior, A.M.; Vieira, B.J.; de Andrade, L.C.; Aarestrup, F.M. Low-level laser therapy increases transforming growth
factor-beta2 expression and induces apoptosis of epithelial cells during the tissue repair process. Photomed. Laser Surg. 2009, 27,
303–307. [CrossRef]

45. Keshri, G.K.; Gupta, A.; Yadav, A.; Sharma, S.K.; Singh, S.B. Photobiomodulation with pulsed and continuous wave near-infrared
laser (810 nm, Al-Ga-As) augments dermal wound healing in immunosuppressed rats. PLoS ONE 2016, 11, e0166705. [CrossRef]

46. Ying, B. Adjacent flaps for lower lip reconstruction after mucocele resection. J. Craniofac. Surg. 2012, 23, 556–557. [CrossRef]
47. Nammour, S.; El Mobadder, M.; Namour, M.; Namour, A.; Arnabat-Dominguez, J.; Grzech-Leśniak, K.; Vanheusden, A.; Vescovi,
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