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Abstract: Background: Considering the large number of patients with pulmonary symptoms admitted
to the emergency department daily, it is essential to diagnose them correctly. It is necessary to quickly
solve the differential diagnosis between COVID-19 and typical bacterial pneumonia to address
them with the best management possible. In this setting, an artificial intelligence (AI) system
can help radiologists detect pneumonia more quickly. Methods: We aimed to test the diagnostic
performance of an AI system in detecting COVID-19 pneumonia and typical bacterial pneumonia
in patients who underwent a chest X-ray (CXR) and were admitted to the emergency department.
The final dataset was composed of three sub-datasets: the first included all patients positive for
COVID-19 pneumonia (n = 1140, namely “COVID-19+”), the second one included all patients with
typical bacterial pneumonia (n = 500, “pneumonia+”), and the third one was composed of healthy
subjects (n = 1000). Two radiologists were blinded to demographic, clinical, and laboratory data.
The developed AI system was used to evaluate all CXRs randomly and was asked to classify them
into three classes. Cohen’s κ was used for interrater reliability analysis. The AI system’s diagnostic
accuracy was evaluated using a confusion matrix, and 95%CIs were reported as appropriate. Results:
The interrater reliability analysis between the most experienced radiologist and the AI system
reported an almost perfect agreement for COVID-19+ (κ = 0.822) and pneumonia+ (κ = 0.913). We
found 96% sensitivity (95% CIs = 94.9–96.9) and 79.8% specificity (76.4–82.9) for the radiologist and
94.7% sensitivity (93.4–95.8) and 80.2% specificity (76.9–83.2) for the AI system in the detection of
COVID-19+. Moreover, we found 97.9% sensitivity (98–99.3) and 88% specificity (83.5–91.7) for the
radiologist and 97.5% sensitivity (96.5–98.3) and 83.9% specificity (79–87.9) for the AI system in
the detection of pneumonia+ patients. Finally, the AI system reached an accuracy of 93.8%, with
a misclassification rate of 6.2% and weighted-F1 of 93.8% in detecting COVID+, pneumonia+, and
healthy subjects. Conclusions: The AI system demonstrated excellent diagnostic performance in
identifying COVID-19 and typical bacterial pneumonia in CXRs acquired in the emergency setting.

Keywords: artificial intelligence; chest X-ray; SARS-CoV-2; COVID-19

1. Introduction

During previous decades, a broader and more progressive application of artificial
intelligence (AI) in the biomedical field was registered, particularly in radiology, thanks to

Diseases 2023, 11, 171. https://doi.org/10.3390/diseases11040171 https://www.mdpi.com/journal/diseases

https://doi.org/10.3390/diseases11040171
https://doi.org/10.3390/diseases11040171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diseases
https://www.mdpi.com
https://orcid.org/0000-0002-5742-802X
https://orcid.org/0000-0001-8280-3787
https://doi.org/10.3390/diseases11040171
https://www.mdpi.com/journal/diseases
https://www.mdpi.com/article/10.3390/diseases11040171?type=check_update&version=2


Diseases 2023, 11, 171 2 of 13

the more structured and robust use of machine learning systems [1,2]. In clinical practice, AI
can help radiologists determine the presence of a specific pathological process, especially in
the emergency setting, where a single person often handles pressure and a high amount of
data. Evaluating chest X-rays (CXRs) in patients admitted to the emergency department is
one of the most critical scenarios which radiologists should face. This aspect was especially
true during the COVID-19 pandemic waves [3].

In this setting, AI models have been developed to assist medical practitioners in de-
tecting and diagnosing COVID-19. Machine learning algorithms are used to fit models
on medical imaging data [such as CXRs and computed tomography (CT)] to help iden-
tify patterns associated with the virus. These AI tools can help healthcare professionals
make quicker and more accurate diagnoses during waves of pandemic [4]. Moreover, the
application of AI can help reduce human bias in the diagnosis of COVID-19, as reported
by Bercean et al. [5]. The authors revealed that radiologists overestimated the percentage
of lung involvement by 10.23 ± 4.65% and 15.8 ± 6.6%, respectively, while with the AI
support, the absolute overestimation error was reduced.

It has been widely confirmed that AI-assisted diagnosis is a valuable screening tool
that might shorten patient waiting times, simplify the workflow, reduce the workload
of radiologists, and enable radiologists to respond more quickly and effectively in the
emergency setting [6].

Nowadays, most current studies use CXRs or CTs to classify COVID-19 pneumonia
and other forms of pneumonia [7]. In a recent paper, Bouchareb et al. [8] deeply revised the
importance of AI as an assistive tool in diagnosing and prognosis of COVID-19 patients, es-
pecially by applying deep learning (DL) approaches. AI techniques used for CXR allow for
identifying the most common and typical findings, namely ground-glass opacities (GGOs)
and consolidations, especially with a bilateral, lower, and peripheral zone distribution [9].
The authors, citing the work by Bukhari et al. [10], underlined the usefulness of ResNet-50
CNN architectures in identifying patients with COVID-19 pneumonia, typical bacterial
pneumonia, and with normal CXR, with an overall diagnostic accuracy of 92.8%. Similar
results were reported by Apostolopoulos et al. [11], who used different CNN models for
differential diagnosis between COVID-19 pneumonia and other pathological findings such
as pulmonary edema, pleural effusion, and chronic obstructive pulmonary disease. The
authors found a 99.2% accuracy in the diagnosis of COVID-19 pneumonia.

Even if CXRs have plenty of potential, such as in determining both triage and con-
sequent management [12], different practice issues should be mentioned: image quality,
reader’s experience, patient’s habitus, and lung inflation are the most typical bacterial
pitfalls in everyday practice [13]. In this setting, AI can help radiologists acquire diagnostic
confidence in evaluating CXR in patients suspected of COVID-19 pneumonia [7,14,15].

A significant concern addressed in several studies is the robustness of the AI models for
classification [9–11], focusing on DL models that lack interpretation. Classification models,
even those with a good performance, may not be enough to analyze a CXR properly. Their
good performance may be caused by bias inferred from the image’s background, so actual
diagnosis in newer scenarios may be misleading. In this regard, a previously published
study [16] replicated the modeling choices of high-performance models for COVID-19
classification found in the literature and experimented with data from the GitHub-COVID
repository. Its main findings show that these models “fail to learn the true underlying
pathology and instead leverage spurious associations between presence or absence of
COVID-19 and radiographic features that reflect variations in image acquisition”. These
studies usually provide visualizations of the affected areas of the lungs by using salient
detection or grad-cam as techniques to highlight the affected areas. Still, those techniques
may fail to identify the affected area(s). Multi-tasking models that classify and segment with
inference may be preferable to avoid this issue. An example of this model was reported by
Li et al. [17]. However, this model is based on CT imaging, an unsuitable imaging technique
for all patients in the emergency department. To our knowledge, no similar models exist
for CXRs.
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On these bases, this study aims to test the diagnostic performance of an AI system in
detecting COVID-19 lung involvement in patients who underwent CXR in the emergency
department. The secondary aim was to test the AI system in promptly identifying typical
bacterial pneumonia.

2. Materials and Methods

This study was performed under the Declaration of Helsinki. The institutional review
board stated that the approval was not necessary due to the retrospective and anonymous
nature of the present study, following article 89 of the GDPR EU Regulation 2016/679.
Consent was verbally obtained from participants; however, due to the pandemic, they were
not required to sign it. This was a retrospective observational analysis based on previously
collected routine care data. All radiological and clinical data were anonymized before being
analyzed.

2.1. Patients and CXRs Datasets

All patients who underwent bedside CXR obtained in the anteroposterior projection
through a portable X-ray machine (Dx-D 100—Agfa Healthcare—with fixed setting re-
garding kV and mAs) in the emergency department were retrospectively collected by a
radiologist resident with four years of experience, who created three different subdatasets
according to the period of acquisition. The radiologist resident collected all CXRs acquired
in the specific periods reported below. Based on his experience, CXRs with motion artifacts
or technically inadequate were excluded at this time point.

The sub dataset 1 included all CXRs acquired between 1 April and 1 October 2020.
During this period, all patients checking into the emergency department of a tertiary care
referral center (San Gerardo Hospital—Monza–Italy) suspected of COVID-19 infection
underwent CXR at admission. The inclusion criteria for dataset 1 were: (1) positive reverse
transcription-polymerase chain reaction (RT-PCR) test, and (2) CXR performed with an
interval time not higher than 24 h from the RT-PCR test. The first dataset was initially
composed of 6320 CXRs, in particular, 1010 (15.9%) acquired in April 1004 (15.9%) in May,
1113 (17.6%) in June, 979 (15.5%) in July, 1022 (16.2%) in August, and 1192 (18.9%) in
September. Considering the large amount of data to be read by the two radiologists, we
decided to select 190 CXRs per month randomly. The randomization process was made by
using a freeware webpage (random.org).

Sub dataset 2 comprised all CXRs acquired before the COVID pandemic until Septem-
ber 2018 and included patients checked into the emergency department for suspicion of
pulmonary infection. All patients underwent laboratory tests, including white blood cell
count (WBC), red blood cell count (RBC), C-reactive protein (CRP) level, and symptoms
in line with pulmonary infection, including fever and cough. The final diagnosis was
confirmed with a follow-up radiological examination (including serial CXRs and chest CT)
or laboratory data (i.e., Legionella or Pneumococcal urinary antigen).

Sub dataset 3 was composed of CXRs acquired before the COVID pandemic until
September 2018 and included all patients checked into the emergency department for other
than pulmonary infection (e.g., trauma, chest pain, or pneumothorax). All these CXRs
were confirmed as negative (healthy subjects) according to the discharge of patients or the
evaluation of follow-up examinations (e.g., CXRs or CT).

As reported in Figure 1, the final dataset was composed of 2640 CXRs, of whom 1140
(43.2%), 500 (18.9%), and 1000 (37.9%) belonged to sub-datasets 1, 2, and 3, respectively.
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Figure 1. Details regarding the datasets. RT-PCR: reverse transcriptase-polymerase chain reaction.

2.2. Radiologists’ Evaluation

Two radiologists with 10 and 15 years of experience in emergency and lung imaging
evaluated all CXRs belonging to the final dataset, blinded to demographical, clinical, and
laboratory data. To avoid bias, the radiologists were also blinded to the date of CXR
acquisition. For each patient, they were asked to determine the presence of pathological
features, dividing them into COVID-19 positive (COVID-19+), positive for typical lung
pneumonia (pneumonia+), and healthy. Finally, to avoid recalling bias, the CXRs were
evaluated in a random order.

2.3. AI System: Technical Details and Image Analysis

We developed a multi-tasking model that could perform both image-level classification
(as COVID-19, COVID-19 negative, or healthy) and object detection/instance segmentation
(for consolidations and interstitial patterns).

Mask R-CNN [18] was the base architecture used in the study. To develop a neural
network that performed semantic segmentation and classification on CXRs, a modified,
multi-tasking Mask R-CNN was used starting from an implementation that can be found
on detectron2 [@misc{wu2019detectron2, author = {Yuxin Wu and Alexander Kirillov and
Francisco Massa and Wan-Yen Lo and Ross Girshick}, title = {Detectron2}, method of
publication = {\url{https://github.com/facebookresearch/detectron2}}, year = {2019}}],
which is the mask_rcnn_R_50_FPN_3x (https://github.com/facebookresearch/detectron2
was accessed on 31 July 2022). A schema representing the leading architecture of the
network and the input and outputs is illustrated in Figure 2.

A multi-tasking Mask R-CNN, such as the one that has been used in this study, is
made up of the following blocks: (1) a backbone network, (2) a region proposal network
(RPN), (3) a bounding box (or ROI) head, and (4) a classification head.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
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The backbone is common to all the tasks that the neural network performs. The
purpose of this network is to extract feature maps from the input image. These features are
not user-defined but instead are automatically learned during training and represent some
inner information inside the image, visible at different scales. The convolutional backbone
is made by a ResNet50, which is made by a succession of convolutional and max pooling
layers [19] inserted into a feature pyramid network [20]. Different layers of the networks
work at different resolutions (res2, res3, etc.), with feature maps from the latest layers
having lower resolution but higher receptive fields (a portion of the original image used to
compute the information in a particular pixel of the map). The latest layer of the network
contains the tensor, which captures the most high-level information (called P6 as the top
layer of the pyramid); however, intermediate feature maps are also extracted as typical
of the feature pyramid network. At the end of each resolution level, a 1 × 1 convolution
layer allows extracting 256 feature maps with the exact resolution of the corresponding res
layer. P2 indicates the tensors extracted by the feature pyramid networks in the different
levels to P5, with lower levels representing lower pyramids with lower receptive fields
and lower-level information. Image classification uses information only from P6 (as for the
original ResNet50 developed for classification). At the same time, the RPN also considers
the local information provided by P2–P5 (in addition to the one of P6).

The RPN [21] predicts, given the output of the FPN (concatenated tensors P2 to P6),
the indicated objectness scores and regression scores on the proposed anchors. Here, the
network learns to detect objects of interest and background objects. After the predictions,
NMS (non-maximal-suppression) keeps non-overlapping bounding boxes. The output of
the RPN is then sent to the heads that produce the final prediction of bounding boxes and
segmentation.

The region of interest (ROI) box heads module uses the boxes detected in the RPN
module and the features extracted from the backbone. Using an ROI pooler [18], we put
together each box found in the RPN module and its corresponding parts from tensors P2,
P3, P4, or P5. Given these, linear layers extract features for classifying the object contours
and bounding box regression. The types of objects identified by the network of our interest
are consolidation and interstitial patterns.
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The classification head was added to the architecture to output scores (logits) for the
negative classes of COVID-19, healthy, and COVID-19. It used global average pooling and
linear layers to extract the probabilities for the three output classes. The model uses the P6
features extracted by the backbone to make the classification.

The training was performed for 100,000 steps, with a batch size of 2, using stochastic
gradient descent. We clipped gradients above one and used a warm-up multi-step learning
rate policy with an initial value of the learning rate of 0.000125. We used a linear warm-up
for 1000 steps and a weight decay of 1 × 10−4. The final loss was the sum of losses from
the RPN, Fast-RCNN detector, and classification head. As preprocessing steps, the input
DICOM files were converted to PNG, followed by histogram equalization. As augmentation
steps, we used random resizing, with the smallest size from the set of [640, 672, 704, 736,
768, 800, 1333], Gaussian blur, and Gaussian noise. All the parameters and augmentation
steps were chosen heuristically based on the results of preliminary analyses. The output of
the new Mask R-CNN was a tuple containing boxes, masks, and output classes for each
object detected in the image (Figure 2). No early stopping was used, but the latest model
was considered since we considered that using a pre-trained model and the availability of
a large image dataset was enough to avoid overfitting the model.

The radiologist resident analyzed the final dataset using the newly developed sys-
tem (AID Chest XR—M.S. HUMANAID, EmmeEsse srl—Milan, Italy). CXRs were also
evaluated in a random order in this setting to avoid recall bias.

2.4. Statistical Analysis

We first evaluated the agreement between radiologists and then used data labels
from the most experienced one for further analysis. The agreement between the most
experienced radiologist and the AI system was assessed using the Cohen Kappa coeffi-
cient (0.00–0.20 indicates slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate
agreement; 0.61–0.80, substantial agreement; and 0.81–1.00, almost perfect agreement).

To evaluate specific diagnostic values for COVID-19 pneumonia and typical bacterial
pneumonia, we tested the most experienced radiologist and the AI system with a first
mixed dataset composed of sub-datasets 1 and 3 (n = 2140) and sub-datasets 2 and 3
(n = 1500), respectively. For computing these values, we collected true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs). Based on them
we computed sensitivity [=TPs/(TPs + FNs)], specificity = TNs/(TNs + FP)s], positive
predictive value (PPV) [=TPs/(TPs + FPs)], negative predictive value (NPV) [=TNs/(TNs +
FNs)], and balanced accuracy [=(sensitivity + specificity)/2] by using a 2 × 2 confusion
matrix. The 95% confidence intervals (95% CIs) were reported as appropriate.

We performed a second analysis on the final dataset to test the ability of the AI system
to discriminate between COVID-19 pneumonia, typical bacterial pneumonia, and healthy
patients. We computed a 3 × 3 confusion matrix to collect its diagnostic values. The
precision, recall, F−1 score for each class, accuracy, misclassification rate, and weighted F1
were reported as appropriate.

All the statistical analyses were performed using IBM SPSS 26.0 (SPSS Incorporated,
Chicago, IL, USA).

3. Results
3.1. Reliability Analysis

The agreement between the two radiologists was almost perfect in identifying COVID-
19+ (κ = 0.812) and pneumonia+ (κ = 0.901) patients.

Similarly, the interrater reliability analysis between the most experienced radiologist
and the AI system reported an almost perfect agreement for COVID-19+ (κ = 0.822) and
pneumonia+ (κ = 0.913).
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3.2. COVID-19 Pneumonia

To test the most experienced radiologist and the AI system regarding COVID-19
pneumonia, we used CXRs belonging to datasets 1 and 3 (n = 2140).

The TPs and TNs, according to the radiologist, were similar to the AI system ones
[n = 1450 (67.8) and n = 503 (23.5), and n = 1419 (66.3) and n = 515 (24.1), respectively].
Similar results were found for FPs and FNs [n = 127 (5.9), n = 60 (2.8), n = 127 (5.9),
and n = 79 (3.7), respectively]. This resulted in 96% sensitivity (95%CIs = 94.9–96.9) and
79.8% specificity (76.4–82.9) for the radiologist and 94.7% sensitivity (93.4–95.8) and 80.2%
specificity (76.9–83.2) for the AI system (Figure 3). The radiologist showed 91.9% PPV
(90.7–93.0) and 89.3% NPV (86.7–91.5), while the AI system showed 91.7% PPV (90.5–92.8)
and 86.7% NPV (83.9–89.0).
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Figure 3. Chest X-rays of patients admitted to the emergency department with the suspicion of
COVID-19 infection belonged to dataset 1. (A,C) represent CXRs acquired at the bedside, showing
multiple slight interstitial and alveolar opacities located peripherally and with a lower distribution.
(B,D) The AI system analysis obtained in a few seconds displays the pathological zones. The AI
system reported a high suspicion of COVID-19 infection (99.99%). The final diagnosis was lung
involvement by COVID-19 pneumonia.

Finally, the accuracy was similar between the radiologist and the AI system [91.2%
(89.9–92.4) vs. 90.3% (89.0–91.6), respectively].

All data are summarized in Tables 1 and 2.
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Table 1. True positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs) for
the radiologist and AI system.

TPs
(n, %)

TNs
(n, %)

FPs
(n, %)

FNs
(n, %)

COVID-19+ vs. healthy
(n = 2140)

Radiologist 1450 (67.8) 503 (23.5) 127 (5.9) 60 (2.8)

AI 1419 (66.3) 515 (24.1) 127 (5.9) 79 (3.7)

Pneumonia+ vs. healthy (n = 1500)
Radiologist 1218 (81.2) 235 (15.6) 32 (2.2) 15 (1)

AI 1191 (79.4) 234 (15.6) 45 (3) 30 (2)

Table 2. Diagnostic values for the radiologist and AI system.

Sensitivity
(%, 95% CIs)

Specificity
(%, 95% CIs)

PPV
(%, 95% CIs)

NPV
(%, 95% CIs)

Accuracy
(%, 95% CIs)

COVID-19+

Radiologist 96.0
(94.9–96.9)

79.8
(76.4–82.9)

91.9
(90.7–93.0)

89.3
(86.7–91.5)

91.2
(89.9–92.4)

AI 94.7
(93.4–95.8)

80.2
(76.9–83.2)

91.7
(90.5–92.8)

86.7
(83.9–89.0)

90.3
(89.0–91.6)

Pneumonia+
Radiologist 97.9

(98.0–99.3)
88.0

(83.5–91.7)
97.4

(96.5–98.1)
94.0

(90.4–96.3)
96.9

(95.8–97.7)

AI 97.5
(96.5–98.3)

83.9
(79.0–87.9)

96.3
(95.2–97.1)

88.6
(84.5–91.7)

95.0
(93.7–96.0)

3.3. Typical Bacterial Pneumonia

To test the most experienced radiologist and the AI system regarding COVID-19
pneumonia, we used CXRs belonging to datasets 2 and 3 (n = 1500).

The TPs and TNs, according to the radiologist, were similar to the AI system ones
[n = 1218 (81.2) and n = 235 (15.6), and n = 1191 (79.4) and n = 234 (15.6), respectively],
both with similar FPs and FNs [n= 127 (5.9) for both, and n = 60 (2.8) and n = 79 (3.7),
respectively]. This resulted in 97.9% sensitivity (98.0–99.3) and 88% specificity (83.5–91.7)
for the radiologist and 97.5% sensitivity (96.5–98.3) and 83.9% specificity (79.0–87.9) for the
AI system (Figures 4 and 5).
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Figure 4. Chest X-rays of patients admitted to the emergency department with respiratory distress 
and fever belonged to dataset 2. (A) represents CXR acquired at the bedside, showing compact 
typical opacities in the left lung lower zones. (B) represents AI system analysis, showing the 
pathological zones. The AI system reported a high suspicion of pneumonia, not typical for COVID-
19 (99.99%). The final diagnosis was lung pneumonia due to Streptococcus pneumoniae. 

Figure 4. Chest X-rays of patients admitted to the emergency department with respiratory distress
and fever belonged to dataset 2. (A) represents CXR acquired at the bedside, showing compact typical
opacities in the left lung lower zones. (B) represents AI system analysis, showing the pathological
zones. The AI system reported a high suspicion of pneumonia, not typical for COVID-19 (99.99%).
The final diagnosis was lung pneumonia due to Streptococcus pneumoniae.



Diseases 2023, 11, 171 9 of 13

Diseases 2023, 11, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 5. Chest X-rays of patients admitted to the emergency department with thoracic pain 
belonged to dataset 3. (A) represents CXR acquired at the bedside, showing no pathological 
findings. (B) represents AI system analysis, showing no pathological zones. The AI system reported 
a high suspicion of healthy subjects (98.5%). The final diagnosis was thoracic pain due to myocardial 
infarction. 

The radiologist showed 97.4% PPV (96.5–98.1) and 94% NPV (90.4–96.3), while the 
AI system showed 96.3% PPV (95.2–97.1) and 88.6% NPV (84.5–91.7). 

Finally, the accuracy was similar between the radiologist and the AI system [96.9% 
(95.8–97.7) vs. 95% (93.7–96), respectively]. 

All data are summarized in Tables 1 and 2. 

3.4. Diagnostic Accuracy of AI System 
The confusion matrix showed a precision of 97.1% for COVID+, with a recall of 90.1% 

and a f1-score of 93.7%. Analogous results were found for pneumonia+ patients with 
94.8% precision, 95.4% recall, and 95.1% f1-score. Also, in cases of healthy subjects, we 
found 90.1% precision, 96.8% recall, and 93.3% f1-score. Finally, the AI system reached an 
accuracy of 93.8%, with a misclassification rate of 6.2% and 93.8% weighted-F1. 

The confusion matrix is reported in Figure 6. 

 

Figure 5. Chest X-rays of patients admitted to the emergency department with thoracic pain belonged
to dataset 3. (A) represents CXR acquired at the bedside, showing no pathological findings. (B) repre-
sents AI system analysis, showing no pathological zones. The AI system reported a high suspicion of
healthy subjects (98.5%). The final diagnosis was thoracic pain due to myocardial infarction.

The radiologist showed 97.4% PPV (96.5–98.1) and 94% NPV (90.4–96.3), while the AI
system showed 96.3% PPV (95.2–97.1) and 88.6% NPV (84.5–91.7).

Finally, the accuracy was similar between the radiologist and the AI system [96.9%
(95.8–97.7) vs. 95% (93.7–96), respectively].

All data are summarized in Tables 1 and 2.

3.4. Diagnostic Accuracy of AI System

The confusion matrix showed a precision of 97.1% for COVID+, with a recall of 90.1%
and a f1-score of 93.7%. Analogous results were found for pneumonia+ patients with 94.8%
precision, 95.4% recall, and 95.1% f1-score. Also, in cases of healthy subjects, we found
90.1% precision, 96.8% recall, and 93.3% f1-score. Finally, the AI system reached an accuracy
of 93.8%, with a misclassification rate of 6.2% and 93.8% weighted-F1.

The confusion matrix is reported in Figure 6.
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Figure 6. Confusion matrix for the AI system. Data included in the green squares represent correctly
labeled CXRs. Data contained in the red squares represent incorrectly labelled CXRs.
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4. Discussion

Our study demonstrates that an AI-based system can be considered a reliable tool in
promptly identifying lung abnormalities, particularly helping the differential diagnosis
between COVID-19 pneumonia and typical bacterial pneumonia. In the present study, we
aimed to test the AI system using 2640 CXRs acquired during different time points before
and during the pandemic. Before trying it, we decided to evaluate the interrater reliability
analysis between two expert radiologists in lung and emergency radiology: our results
show that the agreement between them was almost perfect for all the datasets evaluated
(κ = 0.812–0.980). We then decided to compare the interrater reliability between human
readers and the AI-based system, demonstrating that the agreement between them was
almost perfect regarding COVID-19 pneumonia (κ = 0.822), typical bacterial pneumonia
(κ = 0.913), and healthy subjects (κ = 0.970). These results stress that the agreement in-
creased for usual bacterial pneumonia due to the more evident radiological findings. When
comparing the diagnostic performance of human readers and an AI-based system in the
diagnosis of COVID-19 pneumonia, we found that both reported high sensitivity (96% and
94.7%, respectively) and specificity values (79.8% and 80.2%, respectively), with reasonable
accuracy (91.2% and 90.3%, respectively). The same results were found regarding typical
bacterial pneumonia: the radiologists’ sensitivity and specificity rose to 97.9% and 88%,
respectively, and the system’s ones to 97.5% and 83.9%, respectively. Not surprisingly, the
accuracy was 96.9% and 95% for human and system observations, respectively.

The final test, to confirm the abovementioned results, was to compute a confusion
matrix for detecting the accuracy of the AI system in detecting COVID+, pneumonia+, and
healthy subjects. Our results suggest that the AI system reached a fascinating accuracy
(93.8%), with a low misclassification rate (6.2%), with 93.8% weighted-F1.

Our results confirm that human evaluation was similar to that reported by Vicini
et al. [22], showing 75% accuracy. On the other hand, AI evaluations of CXRs reported
diagnostic values equal to or better than the current literature. Baltazar et al. [23] enrolled
335 healthy CXRs, 77 with COVID-19 pneumonia, and 565 CXRs with other than COVID-
19 pneumonia. The authors, by using five different deep learning classification models
(inceptionV3, Xception, MobileNet, VGG19, and InceptionResNetV2), reported a similar
diagnostic value with 91–96% sensitivity, 94–98% specificity, and 90–96% PPV.

A study published by Rangarajan et al. [24], by enrolling 236 healthy CXRs, 47 classical
and 138 indeterminate for COVID-19 pneumonia CXRs, reported that AI (the CheXnet
deep neural network) showed 92% accuracy in classifying “normal” CXR into COVID
or non-COVID. Moreover, Li et al. [25], by enrolling 154 CXRs with typical COVID-19
findings, aimed to determine the usefulness of AI-based methods (convolutional Siamese
neural network) to implement diagnostic reliability among radiologists, reporting that the
agreement can increase significantly when AI is applied to clinical practice.

Our results are similar to Salvatore et al. [26], who enrolled 98 CXRs of patients
affected with COVID-19 pneumonia and 88 community-acquired pneumonia: the authors,
by using an ensemble of deep neural networks (10 Resnet-50 trained on different subsets),
reported an overall accuracy of 94% in the detection of lung pathological findings in
comparison with healthy ones. Similarly, Castiglioni et al. [27], by training and validating
an ensemble of ten ResNet-50 applied to two different centers, reported a maximum
accuracy of 89%, testing 250 healthy CXRs and 250 with typical COVID-19 findings, in line
with our presented results.

Zhang et al. [28], by enrolling in the final test 250 COVID-19 CXRs and 250 healthy
CXRs by using an ensemble of 20 deep neural networks (DenseNet-121), reported an overall
92% accuracy in detecting lung involvement, corresponding to 88% sensitivity and 79%
specificity, higher if compared with the 85% accuracy achieved by radiologists. Similarly,
Wehbe, by evaluating more than 2985 COVID-19 CXRs, reported an overall accuracy of 88%
after using an ensemble of six deep learning networks for image classification (Densenet-
121, ResNet-50, Inception, Inception ResNet, Xception and EfficientNet-B2) [29]. Finally,
Sun et al. [15], testing 2200 COVID-19 CXRs and 362,228 healthy CXRs, reported that
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the COVID-19 AI diagnostic system had worse accuracy (63.5% correct) than radiologist
predictions.

A recent meta-analysis published by Islam et al. [30], evaluating nine studies with
2111 cases, reported that the CXR pooled sensitivity was 80.6% and its pooled specificity
71.5%, underlying that AI can have a pivotal role in increasing diagnostic accuracy, espe-
cially in clinical practice.

This study has some limitations. Our datasets comprised different numbers of CXRs
across COVID-19 pneumonia and healthy subjects. We used an unbalanced dataset to
evaluate typical bacterial pneumonia due to the main aim of our study, to test the usefulness
of the AI system in identifying COVID-19 patients. To increase the robustness of our results,
we decided to test each dataset singularly, firstly to avoid unbalanced effects.

Moreover, we tested the AI-based system on different cases from the same geographical
area, which could have introduced a bias. Furthermore, we did not include clinical or
laboratory data as complementary information for the diagnosis, even if these can add
critical bias to the final radiological diagnosis. Finally, human readers and AI-based
systems evaluated only CXRs acquired at the bedside, a typical approach during pandemics,
especially in cases of severe disease when it is impossible to perform CXR in the orthogonal
projections. In the future, we aim to test the system on the standard CXR to evaluate if the
diagnostic accuracy can increase.

5. Conclusions

To conclude, our results show that this AI system could be helpful in everyday clinical
practice to help radiologists detect COVID-19 pneumonia, especially in the emergency
department where the number of patients and the quick response can play a pressing role
in radiologists’ diagnosis. The possibility to highlight and distinguish the different patterns
of lung infections via AI could aid in obtaining faster clinical decision making with a higher
confidence level and improve the report of pulmonary diseases, shortening the turnaround
time. Moreover, the AI system can also help radiologists detect common signs of typical
bacterial pneumonia, being a crucial diagnostic resource in those countries where access to
CT is lacking or in those cases with low diagnostic experience. We finally demonstrated
that the application of the AI system can help classify patients into COVID+, pneumonia+,
and healthy subjects with high accuracy and low misclassification rate, thus enhancing the
diagnostic confidence of radiologists in everyday clinical practice, supporting the idea that
the integration of AI in the reporting workstation, running in the background, can offer an
easy way for obtaining a second opinion, increasing the accuracy with higher efficiency.
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