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Abstract: Background: Although the human immunodeficiency virus (HIV) is spatially heteroge-
neous in Ethiopia, current regional estimates of HIV prevalence hide the epidemic’s heterogeneity.
A thorough examination of the prevalence of HIV infection using district-level data could assist to
develop HIV prevention strategies. The aims of this study were to examine the spatial clustering
of HIV prevalence in Jimma Zone at district level and assess the effects of patient characteristics on
the prevalence of HIV infection. Methods: The 8440 files of patients who underwent HIV testing in
the 22 Districts of Jimma Zone between September 2018 and August 2019 were the source of data
for this study. The global Moran’s index, Getis–Ord G∗i local statistic, and Bayesian hierarchical
spatial modelling approach were applied to address the research objectives. Results: Positive spatial
autocorrelation was observed in the districts and the local indicators of spatial analysis using the
Getis–Ord statistic also identified three districts, namely Agaro, Gomma and Nono Benja, as hotspots,
and two districts, namely Mancho and Omo Beyam, as coldspots with 95% and 90% confidence levels,
respectively, for HIV prevalence. The results also showed eight patient-related characteristics that
were considered in the study were associated with HIV prevalence in the study area. Furthermore,
after accounting for these characteristics in the fitted model, there was no spatial clustering of HIV
prevalence suggesting the patient characteristics had explained most of the heterogeneity in HIV
prevalence in Jimma Zone for the study data. Conclusions: The identification of hotspot districts and
the spatial dynamic of HIV infection in Jimma Zone at district level may allow health policymakers
in the zone or Oromiya region or at national level to develop geographically specific strategies to
prevent HIV transmission. Because clinic register data were used in the study, it is important to use
caution when interpreting the results. The results are restricted to Jimma Zone districts and may not
be generalizable to Ethiopia or the Oromiya region.

Keywords: Bayesian modelling; global Moran’s I; Getis–Ord G∗i statistic; HIV prevalence; odds
ratios; spatial clustering

1. Background

Human immunodeficiency virus (HIV) is still a serious problem for global public
health. In 2020, 37.7 million people worldwide were estimated to be HIV-positive [1];
of these, two-thirds resided in sub-Saharan Africa (SSA). In the same year, about 680,000 people
died from acquired immunodeficiency syndrome (AIDS)-related illness worldwide. Of these
45.59% and 22.07% were in eastern and southern Africa, and western and central Africa,
respectively [1]. In 2020, Ethiopia saw 670,000 new HIV infections and 12,000 AIDS-
related deaths [2].

Although, Ethiopia is on the right track to achieve the United Nation (UN) General
Assembly 2016 commitments, i.e., “90–90–90” targets, which seek to ensure that 90% of
people living with HIV know their HIV status, 90% of people who know their HIV-positive
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status in Ethiopia are accessing treatment, and 90% of people on treatment have suppressed
viral loads by 2020 [3], were not achieved as expected [4]. Ethiopia remains one of the
30 nations with a high burden of HIV for the years 2015 to 2020, despite the Government’s
efforts, including the expansion of integrated tuberculosis and HIV services to the tertiary,
secondary, and primary healthcare levels [5]. A report compiled by the Central Statistical
Agency (CSA) of Ethiopia using the 2016 Demography and Health Survey data [6] showed
that the prevalence of HIV varied by geographic region. The survey also showed that age
and socioeconomic status had an impact on HIV prevalence. Studies have also revealed that
HIV prevalence varies between SSA’s countries according to factors such as sex, age and
place of residence [7,8]. According to our earlier study applying a generalized linear mixed
model (GLMM) [9], the likelihood of contracting HIV was also substantially associated
with age, gender, marital status, level of education, type of profession, religion, location,
and condom use during sexual activity. The results of this study also showed that, in Jimma
Zone, there was heterogeneity in the prevalence of HIV infection, with some districts having
higher and some districts having lower prevalence rates than the average prevalence rate of
Jimma Zone [9]. Furthermore, a district-specific random effect was added to the GLMM to
quantify the variation in HIV prevalence caused by differences in districts. Since the random
effects are assumed to be independent, it implies that no spatial correlation exists—this is
an implausible assumption considering that there is spatial autocorrelation in the country’s
HIV prevalence distribution (see e.g., [10,11]).

To develop an efficient intervention approach for reducing the rate of HIV transmission,
and to mitigate the HIV epidemic, knowledge of the factors associated with transmission of
HIV and identification of the districts in the regions that need priority for interventions are
needed [12]. The latter further requires good understanding of the spatial patterns of HIV
epidemics at the lower level geographical units of the country [13]. As discussed above,
the distribution of HIV in Ethiopia is heterogenous and the reported regional and national
estimates of HIV prevalence may mask this heterogeneity within the country. Therefore,
when reliable data for lower-level geographic units for HIV diagnosis with potential risk
factors are available, assessing the risk factors and spatial components will be vital for
any targeted interventions. The aims of the present study, therefore, were to model the
district-level HIV prevalence in Jimma Zone, Oromiya region of Ethiopia, with the use of a
Bayesian hierarchical spatial modelling approach, as well as to assess the effects of patient
characteristics on HIV prevalence. The benefit of Bayesian hierarchical spatial modelling is
its ability to incorporate spatial, i.e., neighbourhood, information, on the variable of interest.
The available studies related to HIV include only public health facilities in Jimma town (see
e.g., [14–18]), while the study by Bedaso and Debusho [9] does not deal with the spatial
distribution of HIV prevalence. Therefore, there is no or little information that shows the
spatial distribution of HIV prevalence at district-level in Jimma Zone.

2. Methods
2.1. Study Area and Data

The public health center offices in Jimma Zone districts provided the data for this
study. Detailed descriptions of the data including summary statistics are reported in [9].
The data collection was carried out from September 2018 to August 2019 from patients who
visited government-owned public health facilities, such as health centres and hospitals,
in 22 districts of Jimma Zone. The inclusion criteria for this study comprised patients who
had to be at least 15 years old, consented to an HIV test, and had signed a consent form.
Data on the patient’s age, HIV status, marital status, educational level, condom use, religion,
occupation, and place of residence were collected from the patient’s registry [9]. In this
study, the ratio of the number of HIV positive test results in a district to the total number
of patients who were tested for HIV in the same district was called “HIV prevalence”
for convenience.
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2.2. Statistical Analyses
2.2.1. Spatial Clustering

Spatial analysis was conducted to identify the geographical clustering of HIV preva-
lence. For this analysis, the district boundaries were geo-referenced and were connected to
the district HIV prevalence data. Then, using ArcGIS software version 10.3 [19], choropleth
maps were created for visualization.

The global spatial autocorrelation of HIV was investigated using the global Moran’s
I statistic [20]. This statistic was applied to assess the presence, direction and strength of
spatial autocorrelation over Jimma Zone. The Moran’s I statistic shows positive spatial
autocorrelation when values in neighbouring districts are comparable or are spatially
grouped. However, when adjacent districts tend to have disparate values or are spatially
scattered, it suggests that there is a negative spatial autocorrelation [21,22], and when some
neighbouring pairs’ deviations are in the same direction and others are in the opposite
direction, it approaches zero [23].

To distinguish between a hotspot and a coldspot in a spatial cluster, the Getis–Ord G∗i
local statistic can be used instead of the local Moran’s I index [24]. In this study, we used
the Getis–Ord G∗i statistic to determine districts where HIV prevalence was highest (the
hotspots) and lowest (the coldspots). Unlike the local Moran’s I statistic, the Getis–Ord G∗i
statistic computed for each district is readily expressed in terms of z-scores of the standard
normal distribution [25], hence enabling a clearer understanding of statistical significance.
Moreover, multiple confidence intervals can be shown for it on a map which are quite
appealing to the eye.

2.2.2. Bayesian Hierarchical Spatial Models

Spatial data have the property of spatial dependence [26]. For the present study,
this property could be considered as follows: a patient in a district, say sj of Jimma Zone,
carries some information about HIV that is observed in districts which are close to sj.
A spatial correlation analysis of the previous section can be applied to check if this property
is evident for any given data. Let an outcome variable yij denote the ith patient HIV test
result in the sjth district with probability pij, where yij = 1 for a patient tested positive and
yij = 0 for a patient tested negative; i = 1, . . . , nj, j = 1, . . . , 22 and nj are the number of
patients in the sj district who visited government-owned public health facilities between
September 2018 and August 2019. Since the outcome variable had a binary outcome, it was
fitted using a Bayesian hierarchical spatial smoothing logistic regression model. The model
is given by

ηij = g(pij) = x′ij fi + uj + vj, i = 1, . . . , nj; j = 1, . . . , 22;

where g(·) is the link function, xij = (1, x1ij, . . . , xpij) is the vector of p covariates measured
on the i patient in the sj district, fi is the vector of regression coefficients including the
intercept, uj is the unstructured random component, which is assumed to follow a normal
distribution, and uj ∼ N(0, σ2

u) and vj are the structured spatial random components for
district sj.

Information-sharing between districts, in the Bayesian hierarchical approach, is based
on prior assumptions that we place on the spatial dependence structure of the district-
specific parameters. In this study, we considered four spatial models (the intrinsic con-
ditional autoregressive (ICAR) [27], the proper CAR (pCAR), Besag, York and Mollié
(BYM) [27] and the Leroux conditional autoregressive (LCAR) [28] models) containing spa-
tially structured random effects, which used a Bayesian smoothing conditional autoregres-
sive (CAR) structure [27,29]. A CAR model assumes a form of local spatial continuity, so that
neighbouring districts have similar residual risks after accounting for fixed effects [30].

Prior distributions must be specified for each of the model’s random components
in a Bayesian method. In this study, non-informative priors were chosen for regression
coefficients, or variances of random effects, because there was no empirical data on these
model parameters [31]. Specifically, N(0, 1000) was specified as a non-informative prior for
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each regression coefficient. Related to the variances in the four spatial models, the default
minimally informative priors were specified in the log of the precision parameters [32].

The integrated nested Laplace approximation (INLA) numerical method [33] was
used to fit the Bayesian hierarchical spatial models to the HIV prevalence data. A spatial
weight matrix was used to establish the spatial relationships between the districts and
the Queen’s contiguity was used to define neighborhoods. Neighboring districts are
those that share boundaries or a common vertex. This was defined using the nb2listw
function from the spdep [34] R package. The inla() function from the R-INLA package [35]
was used to perform the Bayesian analysis. The fitted models were compared using
the deviance information criterion (DIC) [36], the effective number of parameters (pD),
the mean deviance (D̄) and the widely applicable information criterion (WAIC) [37].
The model with the lowest DIC, pD, D̄ and WAIC was considered as the best-fit model.

2.3. Ethical Consideration

The Postgraduate Research Office of the College of Natural Sciences at Jimma Uni-
versity granted permission for the investigation. Additionally, the Jimma Zone Ministry
of Health Office gave their consent for the study data to be used for the investigation.
The confidentiality of the patients was guaranteed because the data that the authors were
given had no personal identifiers.

3. Results

The data set included the 8440 patients who underwent HIV testing between Septem-
ber 2018 and August 2019 in the government clinics in 22 Districts of Jimma Zone. During
this period, the overall HIV prevalence among patients who underwent testing at gov-
ernment health service facilities in Jimma Zone was 24.3% for men and 22.1% for women.
The raw or unsmoothed prevalence was also varied among districts (ranges between
40–50%), age groups, marital status, education level, type of occupation, religious group
and among residential areas. The geographical distribution of the unsmoothed HIV
prevalence in Jimma Zone at district level is presented in Figure 1.

The unsmoothed or raw HIV prevalence plot in Figure 1 shows that a high concentra-
tion of HIV distribution was observed in Guma, Gomma, Agaro, Limu Kosa and Chora
Botor districts.

3.1. Spatial Clustering of HIV Prevalence in Jimma Zone

There was evidence of spatial clustering of HIV infection in Jimma Zone with a global
Moran’s I value 0.457 (p-value = 0.0017). The positive global Moran’s I suggests that the
HIV prevalence in any two spatial neighbouring districts tended to have similar prevalence
of HIV. The global Moran’s I statistic indicates whether there is spatial aggregation of
HIV, but does not, however, allow for the identification of districts’ classification according
to the level of their significance. Therefore, to identify high cluster (hotspot) and low
cluster (coldspot) districts for HIV prevalence, we applied the Getis–Ord G∗i statistic.
A map showing the distribution of spatial clusters of HIV prevalence is presented in
Figure 2. The map shows that three districts, namely, Agaro, Gomma and Nono Benja,
were identified as hotspots with a 95% confidence level, and two districts, namely Mancho
and Omo Beyam, as coldspots, with 95% and 90% confidence levels, respectively.
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Figure 1. Geographical distribution of raw (unsmoothed) HIV prevalence in Jimma Zone at
district level.

Figure 2. Spatial clustering of HIV prevalence in Jimma Zone at district level based on the Getis–Ord
G∗i statistic.
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3.2. Patient Characteristics Associated with Clustering of HIV Prevalence

To identify patient demographic and other characteristics associated with HIV preva-
lence, the study data were subjected to a Bayesian hierarchical spatial multivariate logistic
regression model. Before including the covariates in the model, the variance inflation factor
(VIF) was used to test for multicollinearity. None of the VIFs were above 5, indicating that
the collinearity was not significant enough to influence the statistical inference. In the four
fitted models, all the patient’s characteristics were statistically significant at a 5% level of
significance. Hence, to select an appropriate spatial model for the data, we applied model
selection criteria. Table 1 displays the model selection criteria, DIC, pD, D̄ and WAIC for
the models fitted to the data using different spatial models. The DIC, pD, D̄ and WAIC of
the ICAR spatial model were marginally smaller than those of the other models, indicating
that it should be the model of choice for the data. As a result, we solely present results
based on the ICAR model in the sections that follow.

Table 1. Summary of DIC, pD, D̄ and WAIC values for different spatial models used to fit the
Bayesian hierarchical spatial models to HIV prevalence data.

Spatial Model DIC pD D̄ WAIC

ICAR 6095.732 33.39138 6062.341 6095.987
pCAR 6098.995 34.05564 6064.939 6099.551
BYM 6096.888 33.48582 6063.403 6097.273
LCAR 6096.986 33.77660 6063.210 6097.409

In Table 2, the adjusted odds ratios (aOR) and related 95% credible intervals (CI) for
patient characteristics from the fitted Bayesian hierarchical spatial multivariate logistic
regression model with spatially structured random effects applying the ICAR model
are displayed. All the patient’s characteristics were strongly associated with HIV preva-
lence. In comparison to male patients, HIV prevalence was 13.8% lower in female patients
(aOR = 0.862, 95% CI: 0.751–0.988). Patients aged 15 to 19 and 25 to 49 had an infection
prevalence that was 1.776 and 1.016 times higher than that of patients aged 50 or older,
respectively (Table 2). The odds of HIV infection were, however, 18.5% (aOR = 0.815,
95% CI: 0.653–1.016) lower for patients in the age group of 20 to 24 than patients who were
50 years of age or older. Patients with primary, secondary, and higher education levels were
1.546 (aOR = 1.546, 95% CI: 1.307–1.828), 1.210 (aOR = 1.210, 95% CI: 0.996–1.470), and 1.233
(aOR = 1.233, 95% CI: 0.922–1.651) times more likely to have HIV infection than patients
with no formal education, respectively. The increased risk of HIV infection was statistically
insignificant for secondary and superior education levels, though the 95% CI credible inter-
vals included one. Married, divorced and widowed patients were 1.592 (aOR = 1.592, 95%
CI: 1.302–1.948), 1.483 (aOR = 1.483, 95% CI: 1.188–1.852) and 1.514 (aOR = 1.514, 95% CI:
1.176–1.950) times more likely to have HIV infection, respectively, compared to unmarried
or single patients.

Patients who worked as daily laborers, farmers, government employees, or merchants
had HIV infection rates that were 1.212, 1.252, 1.221, and 1.188 times higher, respectively,
than patients who had no occupation (aOR = 1.212, 95% CI: 0.992–1.478 for daily laborers;
1.252, 1.004–1.560 for farmers; 1.221, 95% CI: 0.874–1.708 for government employees; and
aOR = 1.188, 95% CI: 0.939–1.504 for merchants). Only patients who were farmers, however,
showed a statistically significant rise in HIV infection risks. Orthodox and Protestant pa-
tients had odds of HIV infection that were 12.1 and 29.8 per cent lower than Muslim patients
(aOR = 0.879, 95% CI: 0.727–1.064 for orthodox; aOR = 0.702, 95% CI: 0.603–0.818 for Protes-
tant). Patients who lived in urban areas had 1.213 times higher risk of HIV infection than
those who lived in rural areas (aOR = 1.213, 95% CI: 1.057–1.392). Patients who had sexual
intercourse without a condom were 71.008 times more likely to be infected compared to
those who used a condom during sexual intercourse (aOR = 71.008, 95% CI: 61.284–82.513).
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Table 2. Adjusted odds ratios (95% credible interval for parameters in the Bayesian spatial model
fitted to the HIV data using ICAR model.

Coefficients Adjusted Odds Ratio
(95% Credible Interval)

Intercept 0.039 (0.028, 0.055)
Age (ref: ≥50)

15–19 1.776 (1.371, 2.302)
20–24 0.815 (0.653, 1.016)
25–49 1.016 (0.822, 1.256)

Gender (ref: Male)
Female 0.862 (0.751, 0.988)

Marital status (ref: Single)
Married 1.592 (1.302, 1.948)
Divorced 1.483 (1.188, 1.852)
Widowed 1.514 (1.176, 1.950)

Education level (ref: No education)
Primary 1.546 (1.307, 1.828)
Secondary 1.210 (0.996, 1.470)
Superior 1.233 (0.922, 1.651)

Occupation (ref: No job)
Daily laborer 1.212 (0.992, 1.478)
Farmer 1.252 (1.004, 1.560)
Government employee 1.221 (0.874, 1.708)
Merchant 1.188 (0.939, 1.504)

Religion (ref: Muslim)
Orthodox 0.879 (0.727, 1.064)
Protestant 0.702 (0.603, 0.818)

Residence (ref: Rural)
Urban 1.213 (1.057, 1.392)

Condom use (ref: Yes)
No 71.008 (61.284, 82.513)

Median
Random effects (95% Credible interval)

Structured variance 1.647 (1.347, 2.153)

3.3. Spatial Analysis

The smoothed HIV prevalence rates of districts are displayed in Figure 3. In this
figure the prevalence intervals of Figure 1 were used to provide a comparison with the
unsmoothed prevalence rates. For most districts, the general spatial patterns seen in the
unsmoothed map of HIV prevalence in Figure 1 were changed compared to the spatial
patterns of smoothed HIV prevalence. However, the concentration of high HIV prevalence
districts for the unsmoothed estimates were still part of districts with high HIV prevalence
for the smoothed estimates.

The spatially structured residuals of the fitted model were examined for spatial au-
tocorrelation. After considering the patient characteristics, the global Moran’s I = 0.239
(p-value = 0.0510) for spatially structured residuals was marginally non-significant at the
5% significance level. The map for spatial clustering of these residuals is given in Figure 4.
The plot shows that there were two hotspots, Jimma special town and Mana district, which
were significant at 95% and one lower cluster or coldspot (Setema district). The two
hotspots showed that there was spatial clustering of residuals because the global Moran’s
I was positive. These results indicate that not all the district level heterogeneities in HIV
prevalence in Jimma Zone were explained by patient characteristics for the study data.
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Figure 3. Geographical distribution of posterior means or smoothed HIV prevalence.

Figure 4. Spatial clustering of spatially structured residuals using the Getis–Ord statistic.
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4. Discussion

The present study identified that there was variation in HIV prevalence at district level
in the study period in Jimma Zone. The spatial distribution of the raw or unsmoothed HIV
prevalence by districts showed that high HIV infection among tested patients was observed
in Guma, Gomma, Agaro, Limu Kosa and Chora Botor districts, and lower HIV infection
in Dedo, Omo Nada, Sekoru, Shebe Senbo and Tiro Afeta districts. The spatial clustering
analysis also identified that Agaro, Gomma and Nono Benja districts were hotspots for
HIV infection.

The global Moran’s I statistic was positive, indicating that the prevalence of HIV
trends were similar in neighboring districts. The results from LISA using the Getis–Ord G∗i
statistic showed that the HIV prevalence was spatially clustered, i.e., there were districts,
Agaro, Gomma and Nono Benja, identified as hotspots. The hotspot of Agaro may be
because the district is one of the most important coffee trading centres in the western part
of Ethiopia and the main road from Bedele town (the town being the headquarters for
the Bedele Brewery) to Jimma town crosses Agaro town; therefore, the town serves as a
transportation route for long-distance or truck drivers. In general, these localities have
a larger concentration of commercial sex workers [38–40], and towns and urban areas in
general have a higher risk of HIV infection [41,42] due to increased population movement
brought on by labour, migration, and trade. Gomma district has various industries that
attract people for job seeking, such as coffee hulling, coffee pulping mills and sawmills.
As a result, the hotspot in this district may be associated with people moving between or
within districts in search of employment or better living conditions. A study undertaken in
sub-Saharan Africa has identified the high mobility of the population in search of better
living conditions as a potential catalyst for the HIV epidemic [43]. The Nono Benja district
boarders with the southwest Shewa Zone of Oromiya region which has well developed
cities, such as Waliso town; this may attract people from Nono Benja for job searching.
If those who migrated to this town are infected by HIV, when they return to Nono they
could transfer the virus to their partners in unsafe sexual intercourse. About 55% of
patients in this district had sexual intercourse without a condom before the HIV test.
The spatial heterogeneity in HIV infection at district level in Jimma Zone suggests that
targeted interventions by authorities may be needed to prevent HIV transmission, especially
in hotspot districts.

Using the DIC, pD, D̄ and WAIC, we have shown that the ICAR spatial model had
a slightly better fit. For most districts, the general spatial patterns seen in the raw or
unsmoothed map of HIV prevalence were changed compared to the spatial patterns of
smoothed HIV prevalence. However, the concentration of high HIV prevalence districts for
raw estimates was still part of those districts with high HIV prevalence for the smoothed
estimates. Generally, the unsmoothed prevalence is misleading when the geographical
areas are small. Although the smoothed HIV prevalence map shows improvement over
the unsmoothed map, the interpretation of the map needs caution because there could be
confounding factors, differences in population sizes among districts, and district factors.
In the Bayesian hierarchical spatial model, we used an adjacency weight matrix to deter-
mine the number of neighbours each district had, but some districts in Jimma Zone border
with districts in other zones in the Oromiya region and in other regions, e.g., the Southern
Nations, Nationalities, and Peoples’ regions. However, there were no data available for
these zones; therefore, those districts in Jimma Zone bordering other districts from other
zones had missing neighbours. Thus, this missingness could introduce some bias when av-
eraging HIV prevalence or estimating spatial effects because the variances of special effects
are functions of the number of neighbours. However more reliable estimates of prevalence
for small areas can be obtained by the Bayesian hierarchical spatial model, which is used in
this paper, as it allows borrowing information from other neighbouring districts [44].

The results from fitting the Bayesian hierarchical spatial multivariate logistic regression
considering the spatially structured random effect revealed that gender, age, marital status,
education level, type of profession, religion, place of residence, and condom use during sex
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all significantly influenced the likelihood of contracting HIV. These findings concur with
earlier research [45–47]. Further, the results from spatial clustering analyses on the spatially
structured residuals suggested that, for the study data, not all the heterogeneity in HIV
prevalence in Jimma Zone was explained by patient characteristics. The existing studies
on HIV infection in Jimma Zone were based on data collected from public health facilities
in Jimma town (see, e.g., [14–18]) and they did not consider the spatial distribution of
HIV prevalence. The identification of cluster (hotspot) districts may indicate an expanded
epidemiological view of the districts with high risk of HIV transmission in Jimma Zone.
The results further revealed districts that require targeted interventions and consolidation
of various surveillance measures.

Despite these strengths, the study’s shortcomings are acknowledged by the authors.
According to other studies, the prevalence of HIV infection is related to a person’s HIV
knowledge, clinical characteristics, such as STIs [46,47], and the characteristics of his/her
sexual behavior, such as his/her age at first sex, condom use at first sex, number of sex
partners, and frequency of HIV testing. However, this information was not available in the
clinic patient’s register where the study data were collected; therefore, these variables were
not introduced in the analysis. In addition, in this paper, we used the HIV test result data
as a surrogate measure of the general population of HIV-infected persons in Jimma Zone.
Since these were data collected from specific sub-populations who sought treatment and
care from nearby health facilities, they represent populations around the facilities. Hence,
care should be taken when interpreting the current results. The results are also limited to
Jimma Zone districts and may not necessarily generalize to the Oromiya region or Ethiopia.

5. Conclusions

In this study, we investigated spatial clustering of the prevalence of HIV in Jimma
Zone districts, Oromiya region of Ethiopia, and, at the individual level, the effects of patient
characteristics on HIV prevalence, using a Bayesian hierarchical spatial modelling approach.
Bayesian hierarchical spatial models were applied using various spatial models and the
best model was selected using the DIC, pD, D̄ and WAIC.

The identification of hotspot districts and the spatial dynamics of HIV infection in
Jimma Zone at district level may allow health policymakers in the zone or Oromiya region
or at national level to plan localized interventions tailored to at-risk individuals to control
the transmission of HIV. The methods applied in this paper can be extended to investigate
the zones HIV prevalence relative to the prevalence at region level or a region’s HIV
prevalence relative to the prevalence at national level.
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