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Abstract: The strong benefits of exercise, in addition to the development of both the therapeutic
applications of physical activity and molecular biology tools, means that it has become very important
to explore the underlying molecular patterns linking exercise and its induced phenotypic changes.
Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized
as an exercise-induced protein that would mediate and induce some important effects of exercise.
Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects.
Such mechanistic mapping would not only allow us to understand the molecular processes of
exercise and SPARC effects but would also highlight the potential to develop novel molecular
therapies. These therapies would be based on mimicking the exercise benefits via either introducing
SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects.
This is of a particular importance for those who do not have the ability to perform the required
physical activity due to disabilities or diseases. The main objective of this work is to highlight
selected potential therapeutic applications deriving from SPARC properties that have been reported
in various publications.
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1. Secreted Protein Acidic and Rich in Cysteine (SPARC): An Exercise-Induced Biomolecule

Beyond being a social activity or a hobby, strong evidence has linked exercise to
a variety of health benefits and has made physical activity a part of different therapies
including for the treatment of obesity [1–3], diabetes [4], depression [5,6] anxiety [5,7],
Parkinson disease [8], Alzheimer’s disease [9], Coronary heart disease [10], ageing and
sarcopenia [11–13]. To reveal the mechanisms beyond the exercise benefits there was a need
to explore the molecular and cellular changes underlying the exercise-induced changes.
As genes are important factors of biomolecular and biochemical pathways, the changes in
gene expression in response to exercise have been explored. Within this context, functional
genomics has identified genes that are overexpressed with exercise [14,15]. Exploring
these genes represents a significant starting point towards the mechanistic understanding
of exercise.

The most important of these gene expressions would be the secreted protein acidic
and rich in cysteine (SPARC) [16]. Following the identification of Sparc as an exercise-
induced gene (induced during endurance training), and as SPARC expression is also
known to decline with age [17], SPARC implications have been explored in the contexts
of both exercise and ageing. Briefly, studies using genetically-modified mice suggested
that exercise-induced muscle phenotype changes are SPARC-dependent [18] and showed
that SPARC overexpression mimics exercise effects in mice, whereas Sparc KO leads to
an accelerated ageing phenotype which is improved by exercise [19]. Together, these
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data suggest that at least a part of the exercise benefits are mediated by SPARC, which
would be anti-aging, and with effects against various metabolic disorders and age-related
diseases [20,21]. SPARC is expressed in various situations and has even been suggested
as a molecular physiological and pathological biomarker [22] for which its measure could
optimize personalized medicine [23]. Herein, we suggest literature-based mechanisms to
explain the exercise effects, the SPARC effects, as well as the molecular pathways beyond
the exercise-induced effects that are mediated by SPARC, which is considered as an exercise-
induced protein.

2. Related Pathological Concepts

Exercise is known for its benefits in enhancing metabolic functions and body fitness
and for improving many risk factors including obesity, body fat, metabolic syndrome,
lipidic profiles and insulin resistance [15,16]. These benefits correlate with exercise-induced
gene expression regulation that include, for instance, increase in peroxisome proliferator-
activated receptor gamma (PPARγ), coactivator 1-alpha (PGC1α), metabolic-related (TCA
cycle, β-oxidation, electron transport and oxidative phosphorylation), antioxidant enzymes
and contractile apparatus-encoded genes [16,24] among other genes [15]. Moreover, some
exercise benefits such as those related to the improvement of muscular oxidative phos-
phorylation, calcium signalling, and tissue development have been found to remain even
following training cessation [25]. The global trend towards physical inactivity has driven a
dramatic increase in the incidence of many chronic diseases such as obesity, type 2 diabetes
(T2D), hypertension, cardiovascular diseases (CVD), immune dysfunction, certain types of
cancer, pulmonary diseases, musculoskeletal diseases and several types of neurodegenera-
tive disorders [26].

Aging, defined as a chronic biological process of progressive functional decline in
intrinsic physiological functions [14,27,28], also leads to chronic diseases, thus increasing
the age-specific mortality rate [29]. The skeletal muscles are among the most age-sensitive
tissues. Sarcopenia, a gradual loss of muscle mass, strength and function due to aging [30],
is associated with reduced muscle regenerative capacity, mitochondrial dysfunction [31]
and muscle fiber atrophy [31–33]. The most evident metabolic explanation is an imbalance
between protein synthesis and breakdown rates. However, other causes include neurode-
generative processes, the reduction in anabolic hormone productions or sensitivity such
as insulin, growth hormones and sex hormones, the dysregulation of cytokine secretions,
modification in the response to inflammatory events, inadequate nutritional intakes and
sedentary lifestyle [34–36].

Sarcopenia represents not only a risk factor for falling, a decrease of independence,
and disability caused by immobility, but also for metabolic disorders, such as T2D and
obesity [37,38]. Due to the skeletal muscle constituting the largest insulin-sensitive tissue in
the body [39], and being the primary site for insulin-stimulated glucose utilization [39], T2D
can be a consequence of muscle atrophy. Moreover, as skeletal muscle accounts for 40–50%
of body weight and 20–30% of total resting energy expenditure [40], obesity can result from
accumulated minor imbalances of energy intake over expenditure [41]. Under the obese
status, the adipose tissue macrophages are a prominent source of the proinflammatory
cytokines such as tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6), both which
can block the tissue insulin action and cause systemic insulin resistance, thus providing a
potential link between inflammation and insulin resistance [42]. In the case of the etiology
of atherosclerosis, the inflammation also plays a central role in developing CVD [43].

In addition, mitochondrial dysfunction resulting from oxidative damage to the mito-
chondrial DNA (mtDNA) caused by the reactive oxygen species (ROS) is one of the factors
driving the aging process [44,45]. In an autoimmune disease, mitochondrial dysfunctions
increase the ROS production that drive type I interferon-inducible gene expression and
muscle inflammation [46]. The excessive ROS production can trigger mitochondrial dys-
function, apoptosis, autophagy, inflammation and muscle atrophy [47–50]. Moreover, mice
lacking the cytoplasmic antioxidant enzyme, superoxide dismutase (SOD1), showed in-
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creased oxidative damage to proteins, lipids and DNAs, resulting in progressive muscle
denervation, weakness and loss [51]. Thus, accumulation of the mtDNA mutations have
also been linked to the pathogenesis of sarcopenia [52].

3. SPARC-Mediated Effects among the Exercise Benefits

Exercise is significantly superior to all known pharmacological, nutritional and hor-
monal interventions for stabilizing and reversing sarcopenia [53]. Endurance training (ET)
is well known to activate the mitochondrial biogenesis/function and to reduce serum in-
flammatory mediators such as C-reactive protein (CRP) and IL-6 [54] that are both impaired
with ageing [26,55]. The improved mitochondrial function/systemic inflammation ame-
liorates insulin sensitivity and the lipid profile [16,56,57], and contributes to a decrease in
mortality rates [58]. Thus, ET improves both the anti-oxidative and the anti-inflammatory
response in addition to ameliorating obesity, CVD risks and sarcopenia (Figure 1).
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Figure 1. Possible mechanisms of protective effects of endurance training (ET) and SPARC against age-
related metabolic disorders. Abbreviations: AT: adipose tissue, CVD: cardiovascular diseases, CRP:
C-reactive protein, ECM: extracellular matrix, ET: endurance training, GLUT4: glucose transporter
type 4, IL-6: interleukin 6, IFN: interferon, ROS: reactive oxygen species, SPARC: secreted protein
acidic and rich in cysteine, T2D: type 2 diabetes, TGF-β1: transforming growth factor beta 1.

Physical inactivity leads to obesity and T2D resulting in an acceleration of inflamma-
tion. Inflammation plays a central role in developing CVD. ET is a key factor to prevent
age-related metabolic disorders such as obesity, T2D and CVD through the improvement of
mitochondrial function and sarcopenia as well as through the induction of antioxidants that
eliminate the ROS and decrease apoptosis. SPARC also improves mitochondrial function,
sarcopenia, obesity, T2D, CVD and inflammation.

In order to elucidate the molecular mechanisms responsible for the ET effects [14,28],
we identified the genes specifically modulated by ET in elderly muscle compared to
young adults, and highlighted the importance of mitochondrial oxidative phosphorylation
(OXPHOS) and extracellular matrix (ECM) remodeling in the skeletal muscle [16,24,57,59].
As shown in Figure 2, the ET-induced genes in elderly men [16,24,57,59], SPARC, specifically
binds several of the ECM molecules including the collagens [60]. Thus, they influence
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lamina organization by binding to the growth factors such as insulin-like growth factor
1 (IGF-1) and transforming growth factor beta 1 (TGF-β1) [61–63]. TGF-β1 (profibrotic
and anti-inflammatory protein) induces SPARC expression and vice versa [64]. While the
extracellular SPARC functions as a matricellular protein, the intracellular and membrane-
associated SPARC regulates cellular apoptotic pathways [64].
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Figure 2. Possible mechanisms linking extracellular matrix (ECM), mitochondrial biogenesis, the
effects of SPARC and exercise training.

After myocardial infarction, SPARC is expressed by inflammatory cells [65], suggesting
that SPARC produced by infiltrating leukocytes has a role in the inflammatory response
and fibrosis in the heart. Thus, the absence of SPARC results in increased cardiac rupture
and dysfunction [65]. By facilitating monocyte recruitment and/or macrophage differ-
entiation and tissue retention [66], SPARC and TGF-β1 may be involved in minimizing
inflammation [67]. SPARC also functions in the production and remodeling of the adipose
tissue as well as in the regulation of preadipocytes differentiation [68]. In the absence of
SPARC, mice show enhanced diet-induced obesity [68]. Furthermore, we have shown that
SPARC increases type I collagen and OXPHOS expressions in proliferating and differen-
tiating myoblasts in addition to accelerating differentiation, whereas inhibition leads to
the opposite effects [69]. Moreover, we have confirmed an induction of myokine, Sparc,
and PGC1α expressions in myoblasts after 48 h of electrical pulse stimulation, which is a
suitable exercise model in vitro [70].

The results suggest that the exercise-induced SPARC plays a crucial role in the muscle
integrity through ECM remodeling and mitochondrial biogenesis. Figure 2 also illustrates
how ET promotes muscle growth and mitochondrial biogenesis via IGF1-phosphoinositide
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3 kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) [71–79] and AMP-activated
protein kinase (AMPK)-PGC1α [80–82] pathways. Exercise-induced SPARC regulates ECM
remodeling via integrin-linked kinase (ILK)-glycogen synthase kinase 3 beta (GSK 3β)-β
catenin [83,84], and transforming growth factor beta 1 (TGF β1)-SMAD family member 3
(Smad3) pathways [85]. SPARC binds to TGF-β1 co-receptor and inhibits the binding of
TGF-β1 to its receptor. Thus, the TGF β1-Smad3-atrogin 1 pathway, in turn suppresses
myogenic transcription factors (Myo D and myogenin) degradation and promotes muscle
differentiation [86]. SPARC also interacts with AMPK [70,87] which induces PGC1α [80] and
stimulates the ILK-GSK3β-PGC1 pathway [88], which may lead to mitochondrial biogenesis
through a powerful induction of regulating nuclear respiratory factor 1 (NRF1) [82]. ET
also induces antioxidants which eliminate the ROS, and consequently decrease apoptosis
and inflammation. Other metabolic effects of SPARC on the cells have been shown in
murine in cultured 3T3-L1 white and HIB1B brown adipocytes and the results suggest that
recombinant SPARC both activates brown adipocytes and upregulates white adipocytes
browning [89].

In order to further clarify the in vivo roles of SPARC and their similarities with ET,
the impacts of Sparc knock-out (KO) in relation to sarcopenia and age-related metabolic
disorders in young and old mice have also been investigated [18,19,90]. As expected,
aging and/or Sparc KO led to sarcopenia (decreased muscle mass and strength), decreased
glucose tolerance, and decreased expressions of muscle glucose transporter type 4 (GLUT4),
collagen and OXPHOS, whereas ET had the opposite effects. Such Sparc KO-induced
phenotype is important to understand the roles of SPARC in sarcopenia and glucose
metabolism and to understand the link between ECM remodeling and mitochondrial
function. Overall, SPARC can mimic the effects of ET which include the modulation of the
ECM, mitochondrial function, inflammation, the tissue integrity and the immune response,
as well as myogenesis, adiposity and glucose homeostasis [18,69,70,90–96]. Therefore,
SPARC would be a key molecular link between physical exercise, obesity, T2D, CVD and
inflammation (Figures 1 and 2).

Nevertheless, a true confirmation regarding the potential of SPARC to be an exercise
surrogate would be the addition/introduction of SPARC into a biological system. Thus,
transgenic (Tg) mice over-expressing Sparc gene were created, and compared to both Sparc
KO mice and an ET-induced phenotype [19]. The young Sparc Tg mice had increased
muscle strength, muscle mass, and muscle glucose transporter and OXPHOS expressions,
but lower glycemia and adiposity, an effect especially found in males [19]. Collectively,
these findings showed that Sparc KO mice manifested an aging-like phenotype, whereas
SPARC overexpression and exercise generated similar benefits [19]. The benefits were in
regard to counteracting both SPARC deficiency-induced aging-like phenotype in addition to
reversing age-related changes [19]. Indeed, Sparc overexpression would counteract some of
the aging effects, most likely by activating the ILK-ECM pathway [91] via SPARC induction,
as well as the mTOR-protein synthesis pathway (Figure 2). The Sparc KO lowered the
muscle mitochondrial OXPHOS proteins, whereas the aging effects were only seen in the
WT mice, since their levels in young Sparc KO mice were already as low as the old WT
mice [97]. Theoretically, Sparc overexpression and ET would counteract the aging effects,
most likely by inducing the antioxidant enzymes and the mitochondrial biogenesis inducer,
PGC1α (Figure 2).

Both ET and Sparc overexpression would counteract aging-related dyslipidemia and
glucose intolerance (Figure 1). We expected that SPARC would be, in part, involved in
the mechanisms mediating ET-induced skeletal muscle adaptation, which in turn, would
improve age-related diseases. Muscle atrophy occurs when a balance between anabolism
and catabolism shifts toward excessive catabolism. The ubiquitin-proteasome system
is the main regulatory mechanism of protein degradation in the skeletal muscle. The
muscle specific ubiquitin-ligase enzymes (E3s), the muscle RING finger-1 (MuRF1) and
the muscle atrophy F-box (MAFbx, also known as atrogin 1), regulate skeletal muscle
atrophy in various pathological and physiological conditions by inducing the degradations
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of the structural proteins such as myosin light chain 2 and troponin I as well as myogenic
differentiation proteins such as MyoD and myogenin, respectively [98–100]. The loss
of SPARC in the mouse skeletal muscle causes myofiber atrophy by enhancing TGF-β1
signaling via phosphorylation of Smad3. Thus, it upregulates the atrogin 1 expression
which may, in turn, cause muscle atrophy [86]. In mice, hindlimb immobilization leads to a
36% reduction in myofiber size and to an early inflammatory process during atrophy [101].
Moreover, exercise training, prior to the immobilization, alleviates muscle atrophy [102].
Therefore, we also hypothesize that SPARC may optimize or act similarly to exercise in
order to attenuate muscle atrophy, which, in turn, prevents sarcopenia and age-related
diseases (Figure 1).

4. Perspectives and Significance

Understanding SPARC implications during various biological processes and its poten-
tial roles in preventing or treating different diseases and health conditions such as obesity,
sarcopenia, ageing and metabolic disorders could lead to important therapeutic tools to
deal with such challenging health problems. The SPARC properties can be of use for phar-
maceutical companies to develop molecules that mimic SPARC or that target SPARC-related
pathways to counteract those specific health problems. Among such health problems,
obesity is a condition involving different factors (biochemistry [103], genetics [104], hor-
mones [105], DNA damage [106], etc.) and it has developmental patterns that have even
been compared to cancer [107].

Indeed, exploring the pathways described above would allow for a better understand-
ing of how SPARC mediates exercise-induced benefits and would reveal the molecular
pathways linking physical activity to its induced phenotype. Such mechanistic understand-
ing would help to develop a new generation of molecular therapies that mimic exercise.
The principle underlying these therapies would be to either administer SPARC or pharma-
cologically target SPARC-related pathways to generate exercise-like benefits. Within this
context, the importance of other considerations such as the predictive analysis of the SPARC
molecular structure (for instance via AlphaFold [108]) could suggest potential mechanistic
hypotheses for SPARC mechanisms of action.

Therapeutic applications can be speculated on based on the various functions and
properties that SPARC has been associated with such as anti-inflammatory [94], regen-
eration [92], anticancer [109] and metabolism [110,111]. Further studies are required to
investigate whether systemic injection or expression is the best option, or whether it is the
targeting of specific tissues that would improve the outcomes depending on the targeted
health problems.
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