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Abstract: D-amino acids may play key roles for specific physiological functions in different organs
including the brain. Importantly, D-amino acids have been detected in several neurological disorders
such as schizophrenia, amyotrophic lateral sclerosis, and age-related disorders, reflecting the disease
conditions. Relationships between D-amino acids and neurophysiology may involve the significant
contribution of D-Serine or D-Aspartate to the synaptic function, including neurotransmission and
synaptic plasticity. Gut-microbiota could play important roles in the brain-function, since bacteria in
the gut provide a significant contribution to the host pool of D-amino acids. In addition, the alteration
of the composition of the gut microbiota might lead to schizophrenia. Furthermore, D-amino acids
are known as a physiologically active substance, constituting useful biomarkers of several brain
disorders including schizophrenia. In this review, we wish to provide an outline of the roles of
D-amino acids in brain health and neuropsychiatric disorders with a focus on schizophrenia, which
may shed light on some of the superior diagnoses and/or treatments of schizophrenia.
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1. Introduction

Racemization of L-amino acids reacted by several racemases could lead to the synthesis
of D-amino acids. Amino acids are usually found in these two forms in nature, with the
exception of glycine, which has no chiral center. The amino acid racemases have been
broadly identified in humans, mice, invertebrate animals, and bacterial species [1]. In
humans, D-amino acid studies have recognized the relative abundance of D-amino acids
in the brain as much as in several body fluids together with blood plasma, urine, and/or
cerebrospinal fluid (CSF) [2,3]. Furthermore, D-Serine has been suggested as a possible
biomarker for Alzheimer’s disease [3]. Additionally, several D-amino acids are detected in
lactic fermentation foods [4]. Consistently, various studies have also revealed the presence
of D-amino acids within several types of fermented foods and drinks [5]. It has been
indicated that some D-amino acids within vinegar are commonly produced from lactic
acid bacteria [4,6]. Furthermore, D-amino acids including D-Tryptophan, D-Phenylalanine,
D-Serine, and/or D-Alanine seem to have a sense of taste that is syrupier than sugar [6,7].
In general, a lot of D-amino acids may taste sweet when compared to the corresponding
L-amino acids [7]. Food processing such as alkali treatment and/or long period heating is a
well-known procedure to provide the racemization of L-amino acids [8]. The main quantity
of D-amino acids in a body may usually result from the food intake and/or gut microbial
synthesis [8,9]. Hence, gut microbiota could be important contributors to the production
of systemic D-amino acids [9]. In the gut microbiota, D-amino acid production occurs via
intrinsic amino acid racemases of the specific bacteria [10]. Among them, broad-spectrum
amino acid racemases have been detected within certain gram-negative bacteria [11]. These
racemases might have an impact on the microbial ecology [11]. Physiologically, D-amino
acids have been suggested to control cell wall biogenesis, biofilm degradation, and/or
spore germination in the microbiota [12,13].
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Recently, D-amino acids have been known as signaling molecules in cells in order to
keep embryonic neural homeostasis in the developing brain [14]. In addition, D-amino
acids are correlated with brain and/or neurological disorders [15]. D-amino acids seem
to have been recognized as essential signaling molecules in the central nervous system
(CNS). In this review, we would like to go over the roles of D-amino acids in brain health
and/or neuropsychiatric disorders with a focus on schizophrenia. Schizophrenia is a
severe neuropsychiatric disorder, and its etiology remains basically unknown, which results
nowadays in significant socioeconomic burdens [16]. Several environmental and/or genetic
factors have been reported to play key roles in the pathogenesis of schizophrenia [17].

2. D-Amino Acids in Brain

The N-methyl-D-aspartate (NMDA)-type glutamate receptor is involved in the synap-
tic function of neurons. D-amino acids are agonists or co-agonists of the NMDA receptor,
which is therefore crucial in synaptic plasticity [18,19]. Activating the NMDA receptor by
D-amino acids might be essential for the positive sensitization of neuron, suggesting a key
role for calcium ion-influx via the NMDA receptor for synaptic plasticity. In this regard, rec-
ognized functions of D-amino acids might embrace neurotransmission, synaptic plasticity,
learning, and memory through modulating the NMDA receptors in the brain [20,21]. In fact,
both D-Serine and D-Aspartate are involved in several processes underlying the NMDA
receptor activation and neurotransmission in the CNS [22,23]. Furthermore, the absence of
D-Serine is one of the mechanisms underlying the decrease of long-term potentiation and
cognition [23]. D-amino acids exist predominantly in the frontal areas of the brain [24,25].
High amounts of D-Serine are also identified in the hippocampus and hypothalamus [25,26].
D-Serine may function as activating the NMDA receptor at the glycine binding site and
may play a critical role in synaptic plasticity [27] (Figure 1). Consistent with this, several
studies have revealed that D-Serine is an endogenous ligand for the NMDA receptor and
is crucial in human neurophysiology, which might serve as a basis for pharmacological
applications in D-Serine therapy [28]. In general, the metabolism of D-Serine is determined
by the activity of racemases and/or D-amino acids oxidase (DAO). In mammals, the DAO
is predominantly expressed in the CNS and/or in the cytosol of neurons [29], which is
responsible for the metabolism of D-Serine, and has been implicated in the pathogenesis of
neuropsychiatric diseases [29,30]. Similarly, it has been suggested that the DAO is involved
in the regulation of neurotransmission in the CNS [30]. Serine racemase deficiency may
induce a disturbed NMDA receptor related to synaptic neuroplasticity [31]. Therefore, a
deleted or decreased Serine-racemase expression may also be associated with cognitive dis-
orders such as schizophrenia, indicating that D-Serine is intensely linked to memory and/or
learning developments [32,33]. In addition, D-Serine depletion decreases the development
of long-term potentiation (LTP) depending on the NMDA receptors, which is involved in
the creation of memory [34]. Consistent with this, increased D-Serine levels may improve
recognition and/or memory in rodents [35]. Accordingly, D-Serine creation might be a
possible target to neutralize several brain disorders such as schizophrenia. D-Aspartate also
seems to play an indispensable role in the neurotransmission system [36], and it is present
in broad regions of the brain including the prefrontal cortex and/or hippocampus [37].
D-Aspartate has a considerable affinity at the L-Glutamate binding spot on the NMDA
receptor [38] (Figure 1). D-Aspartate may increase during the development of the nervous
system; however, the concentration of D-Aspartate radically decreases to a trace level by
gestational week 41 and then continues at a very low level during the postnatal stages [39].
Degradation of D-Aspartate takes place via the D-aspartate oxidase (DDO) instead of the
DAO (Figure 1), and the DDO is widely expressed in the brain [40]. Accordingly, the DDO
is also considered an attractive therapeutic target [40]. D-Aspartate as well as D-Serine
have been revealed to be involved in learning and/or memory [5,41].



Diseases 2022, 10, 9 3 of 11

Diseases 2022, 10, x FOR PEER REVIEW 3 of 11 
 

 

expressed in the brain [40]. Accordingly, the DDO is also considered an attractive thera-
peutic target [40]. D-Aspartate as well as D-Serine have been revealed to be involved in 
learning and/or memory [5,41].  

 
Figure 1. Illustration of the general D-Serine or D-Aspartate metabolic pathway in bacteria and/or 
in mammals. D-Amino acid oxidase (DAO) catalyzes the oxidative deamination of D-Serine. The 
DAO activator G72/G30 could stimulate the DAO. Both D-Serine and D-Aspartate are involved in 
NMDA receptor signaling in the neuron. The arrowhead means stimulation and/or augmentation, 
whereas the hammerhead represents inhibition. As a footnote, some serious events have been omit-
ted for simplicity. DDO: D-Aspartate oxidase; DAOA: DAO activator; NMDA: N-methyl-D-aspar-
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Figure 1. Illustration of the general D-Serine or D-Aspartate metabolic pathway in bacteria and/or in
mammals. D-Amino acid oxidase (DAO) catalyzes the oxidative deamination of D-Serine. The DAO
activator G72/G30 could stimulate the DAO. Both D-Serine and D-Aspartate are involved in NMDA
receptor signaling in the neuron. The arrowhead means stimulation and/or augmentation, whereas
the hammerhead represents inhibition. As a footnote, some serious events have been omitted for
simplicity. DDO: D-Aspartate oxidase; DAOA: DAO activator; NMDA: N-methyl-D-aspartate.

3. Relationship between D-Amino Acids and Schizophrenia

Schizophrenia is a chronic neuropsychiatric disorder with abundant mortality, char-
acterized by dissociations of ideas, identity, and emotions [42]. The underlying compre-
hensive causal mechanisms for schizophrenia remain unknown at present. Its clinical
phenotype could be subdivided into positive symptoms such as hallucinations or delusions,
and negative symptoms such as social withdrawal or impaired motivation, and/or those
of cognitive impairment, which might result from the dysregulated neural network path-
way in CNS [43]. The pathology of the disease appears to include complicated molecular
abnormalities in the CNS. Hence, developmental dysfunction owing to the environmen-
tal and/or genetic factors in neurons might play a crucial role in the pathogenesis of
schizophrenia [44]. Schizophrenia affects more than 20 million people worldwide [45].
Understanding the further molecular pathology of schizophrenia may lead to a superior
diagnosis and/or treatment.

Antagonists of NMDA receptors might aggravate patient symptoms with schizophre-
nia [46]. Since NMDA receptors’ hypofunction could also cause psychosis in humans, a
better understanding of the NMDA receptors signaling mechanism may lead to a superior
pharmacotherapy in schizophrenia [46]. Similarly, changed expressions of NMDA receptors
involved in the metabolism of glutamate have been found in patients with schizophre-
nia [47]. Disturbances in the NMDA receptor-mediated synaptic transmission seem to be
important factors. It has been reported that D-Serine and D-Aspartate are thought to play
a role in NMDA-related synaptic plasticity with a potential involvement in schizophre-
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nia [48]. In addition, D-Aspartate is noticed as being condensed in the synaptic vesicles
of the axon-terminus in the developing brain, which suggests that its function is as a
critical neurotransmitter in the growth of the CNS [49]. Furthermore, the NMDA receptor
agonists may enhance anti-schizophrenic effects [50]. It has been shown that glutamatergic
agents improve the negative symptoms of schizophrenia [50]. Consequently, DAO and
serine racemase might be key enzymes for the association between D-amino acids and
schizophrenia [51]. In fact, DAO-related genetic alterations have been related to the devel-
opment of schizophrenia, and DAO inactivation produces behavioral effects with potential
therapeutic benefits [52]. Consistently, the DAO gene has been shown to be a susceptibility
gene for schizophrenia and its neurocognitive deficits, suggesting that DAO inactivation
could result in showing anti-schizophrenic effects [51]. In addition, the stimulation of the
DAO enzyme has shown enhanced symptoms in rodent models with schizophrenia, and an
increased DAO activity seems most likely to impact the D-Serine metabolism [53]. Several
studies have shown increased mRNA, protein, and/or enzymatic activity of DAO in post-
mortem brain samples with schizophrenia [54]. A transcript of DAO has been detected
in higher quantities in the schizophrenia-cerebellum [54]. Decreased D-Serine and/or the
downregulation of NMDA receptors have resulted in a compromised synaptic plasticity,
indicating a relation with the development of schizophrenia and deficits in learning and
memory [55]. Decreased levels of D-Aspartate are also found in the brains of schizophrenic
patients [56]. Remarkably, with schizophrenia, there has been a significant increase in
D-Serine levels along with an improvement in clinical symptoms [57], which may be an
effective antipsychotic treatment. Sodium benzoate, a DAO inhibitor, has also improved
several symptoms in chronic schizophrenia patients [58]. Additionally, serine racemase
knockout mice have shown an attenuation of seizure when compared with wild-type con-
trol mice, suggesting that serine racemase might be a target for the development of epileptic
seizures’ therapeutic strategies [59]. A changed D-amino acid breakdown has also been
associated with motor neuron degeneration as well as with schizophrenia. For example,
decreased DAO is involved in motor neuron degeneration during senescence [59,60].

4. Involvement of Gut–Brain Axis via the Production of D-Amino Acids

It is well recognized that gut microbiota are the most significant regulator of the
gut–brain axis [61]. The alteration of the composition of the gut microbiome could lead to
schizophrenia. Dysfunctions in brain–gut communications might be related to certain gut
inflammations. For example, it has been revealed that stress-related psychiatric symptoms
such as irritable bowel syndrome show the substantial and physiological significance of the
brain–gut axis [62,63]. It appears that the gut–brain interaction entails the direct excretion
of some neuroactive matters. Intestinal microbiota may release several kinds of D-amino
acids, which could be involved in the brain’s health [64]. In addition, bacterial glutamic acid
racemases are the most abundant racemases, and they exist in peptidoglycan-containing
bacteria in the gut microbiota [65]. D-amino acids are essential elements of peptidoglycans
in the cell wall of bacteria [65]. Accordingly, the intestine in mammals is rich in free D-
amino acids that might be derived from such bacteria within the gut microbiota [9]. On
the other hand, the gut–brain axis could indicate a bidirectional communication between
the nervous systems and intestinal functions in the microbiome [66]. It is probable that the
D-amino acids’ metabolism in the brain might be modified by manipulating gut-microbiota
bacterial communities [67]. Furthermore, it is possible that the gut microbiota could control
brain function and/or affect brain development through epigenetic mechanisms [68].
Consistent with this, certain probiotics could be beneficial for the treatment of schizophrenia
patients [69].

Dysfunction in the gut microbiota may be triggered by stressful situations, which could
also affect a brain that is more susceptible to schizophrenia [70]. In addition, childhood
trauma could modify the gut microbiota, which may also change the risk of schizophre-
nia [71,72]. Therefore, the association between gut microbiota and schizophrenia could
be involved in schizophrenia pathogenesis [72]. Likewise, some reports have shown gut
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microbiota modifications in major depressive disorders [73]. Remarkably, depressive symp-
toms are also common features of schizophrenic animals and/or patients [74]. Increased
therapeutic attention to mood symptoms would be desirable to support the prevention of
schizophrenia. It has been shown that specific miRNA regulation in the prefrontal cortex
could be affected by microbiota, which is required for the suitable control of miRNA in
brains with anxiety behaviors [75]. In addition, an experiment with DAO knockout models
has revealed certain differences in the gut microbiota composition, demonstrating a rela-
tionship between the activity of DAO in the gut and the composition of gut microbiota [76].
Although D-Serine and antipsychotics could not regulate Serine racemase and DAO protein
levels, NMDA receptor neurotransmission could be regulated via the D-Serine availability
in the brain [77]. Additionally, D-Serine derived from gut microbiota may also protect
against acute kidney injury [67,78,79]. It has been reported that D-Serine is degraded by Pro-
teus mirabilis [80]. On the other hand, Enterococcus gallinarum could have a Serine racemase
activity that is able to racemize Serine more efficiently than Alanine [81,82]. Serine race-
mases are distributed widely in various bacteria including Escherichia coli [83]. Additionally,
the expression of DAO has been shown in the yeast Schizosaccharomyces pombe [84].

5. D-amino Acids as a Useful Biomarker

Effective biomarkers should be used in schizophrenia patients, as their usage might
help in the prediction of the disease, prognosis, therapy response, and/or regulation of ad-
verse effects in treatment [85]. Therefore, it is significant to investigate valuable biomarkers
demonstrating the current pathology of schizophrenia. These valuable biomarkers may be
divided into peripheral and brain/CNS biomarkers. In particular, the blood plasma-based
biomarker is really useful to reveal some pathological progressions in the brain [86]. Sev-
eral alterations in epigenetic and/or in proteomic markers have also been detected in the
periphery as well as in the brain/CNS [87].

D-amino acids are known as physiologically active substances that are useful biomark-
ers for several brain disorders in mammals [88]. The D-Serine/L-Serine ratio in the CSF
has been reduced in the postmortem brain of schizophrenic patients, although the levels of
L-serine and L-glutamate in the CSF are unaffected [89]. Similarly, a meaningfully reduced
D-Serine/total-Serine ratio in the CSF of schizophrenic patients has also been shown [90].
As mentioned formerly, D-Serine complemental treatment could improve positive, negative,
and cognitive symptoms in patients with schizophrenia [91]. In relation to this, G72/G30, a
modulator of DAO, has been implicated in schizophrenia [92]. In fact, plasma G72/G30
levels were also found to be significantly higher in schizophrenia patients than in healthy
controls [92]. Afterwards, a number of studies have reported evidence of the relationship
between the G72/G30 and schizophrenia [93,94]. Furthermore, it has been revealed that
DAO and G72/G30 are implicated as key proteins in the NMDA receptor signaling pathway
for schizophrenia [95]. Furthermore, plasma DAO levels have also increased in post-stroke
dementia patients, suggesting an effective biomarker for the diagnosis of dementia [96].
The peripheral DAO levels may increase with age-related cognitive decline, supporting the
hypofunction of the NMDA receptor in the dementia brain [97]. Imminent molecular work
is required to further validate the contribution of G72/G30 and DAO to the pathogenesis
of schizophrenia.

In contrast, a study has proposed that increased levels of D-Serine could predict worse
memory-dwindling symptoms [97]. The levels of D-Serine in both plasma and CSF have
been found to be considerably higher in patients with Alzheimer′s disease [97,98]. There-
fore, D-Serine and the D-Serine/total serine ratio have also been suggested as biomarkers of
Alzheimer’s disease progression [99]. In addition, the racemization of Aspartate at position
23 of the beta protein in the amyloid deposit has enhanced its aggregation and/or fibril for-
mation in the Alzheimer′s disease brain [100]. Additionally, D-Aspartate and D-Serine are
key neuromodulators of glutamatergic synaptic transmission in autism spectrum disorders
(ASD) [101]. To summarize, decreased D-Serine levels have been reported in schizophrenia
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patients, whereas increased levels of D-Serine have usually been detected in Alzheimer’s
disease (Figure 2).
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Figure 2. Gut microbiota might contribute to the creation or the destruction of the D-amino acids,
which could play key roles in the pathological processes of psychiatric diseases. The bacteria shown
here are instances that are involved in the increase (↑) or decrease (↓) of certain D-amino acid levels.
Consequently, decreased levels of D-Serine may be associated with schizophrenia, whereas increased
D-Serine levels might be found in Alzheimer′s disease. As a remark, critical events such as ROS
production, cytokine induction, and immune activation have been omitted for simplicity.

6. Perspectives

D-amino acids seem to be indispensable signaling molecules in neural systems. Fur-
thermore, the recognition of the D-amino acids by the immune system might modulate
immunity signals [102]. The regulation of D-amino acids also has important implications
at microbe-to-host crossing points [102]. It has been shown that prenatal immune activa-
tion by infection might be an environmental risk factor for schizophrenia via the NMDA
receptor-mediated synaptic dysfunction [103]. Therefore, developments to identify trace
D-amino acids with a high sensitivity would facilitate the progression of the D-amino
acids field [104]. An adjusted D-amino acids detection supporting the examination of
clinical specimens would also assist future studies in this field. In addition, an advanced
tool with superior biosensors for D-amino acids as a biomarker will accelerate imminent
research that is directed at discovering the neurological role of D-amino acids [105]. The
roles of D-amino acids and gut microbiota in the molecular pathogenesis of schizophrenia
could be an exciting subject to explore in the future. Therefore, additional research into the
impact of D-amino acids on neuronal roles is extremely anticipated at present. Linking
biomarkers and drug development for schizophrenia is also critical in forthcoming studies.
In particular, the involvement of both the diagnosis and treatment of schizophrenia might
result in further beneficial potential toward achieving this goal. For example, several
clinical studies with promising results suggest that D-Serine could actually be effective
in schizophrenia patients [106]. D-Serine administered in arrangement with traditional
antipsychotics might be more beneficial in treating patients with schizophrenia. A key
component in the pathological mechanism for schizophrenia may be the dysfunction of
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the NMDA receptor. Considering the fact that D-Serine, D-Glutamate, and D-Alanine may
play characteristic roles in Alzheimer′s disease [107], NMDA receptor modulators could
also be potential therapeutic drugs in schizophrenia [108]. However, the high doses of
D-Serine may cause peripheral neuropathic pain [109]. Accordingly, it would be worth
precisely checking the changes in D-amino acid levels in patients.
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Abbreviations

ALS amyotrophic lateral sclerosis
ASD autism spectrum disorders
ATP adenosine triphosphate
CNS central nervous system
CSF cerebrospinal fluid
DAO D-amino acids oxidase
DAOA DAO activator
DDO D-Aspartate oxidase
DNA deoxyribonucleic acid
LTP long-term potentiation
miRNA microRNA
mTOR mammalian target of rapamycin
NMDA N-methyl-D-aspartate
ROS reactive oxygen species
SOD superoxide dismutase
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