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Abstract: In order to obtain more realistic characteristics of the converter, a fractional-order inductor
and capacitor are used in the modeling of power electronic converters. However, few researches focus
on power electronic converters with a fractional-order mutual inductance. This paper introduces a
fractional-order flyback converter with a fractional-order mutual inductance and a fractional-order
capacitor. The equivalent circuit model of the fractional-order mutual inductance is derived.
Then, the state-space average model of the fractional-order flyback converter in continuous conduction
mode (CCM) are established. Moreover, direct current (DC) analysis and alternating current (AC)
analysis are performed under the Caputo fractional definition. Theoretical analysis shows that
the orders have an important influence on the ripple, the CCM operating condition and transfer
functions. Finally, the results of circuit simulation and numerical calculation are compared to verify
the correctness of the theoretical analysis and the validity of the model. The simulation results show
that the fractional-order flyback converter exhibits smaller overshoot, shorter setting time and higher
design freedom compared with the integer-order flyback converter.

Keywords: fractional calculus; fractional-order flyback converter; fractional-order mutual inductance;
state-space average modeling; continuous conduction mode

1. Introduction

In nature, many materials, phenomena, and complex processes exhibit fractional characteristics.
It has been proved that fractional calculus is more accurate than integer calculus in the modeling
of dynamic processes [1]. Moreover, the additional parameter orders of fractional calculus may
change performance and increase design degrees of freedom for the system [2]. Therefore, fractional
calculus has attracted increasing attention from the fields of engineering in recent decades, including
electrochemistry, bioengineering, image processing, control theory, electrical engineering, etc [1–7].

In the field of electrical engineering, researches show that some electrical components, such as
the inductor, the capacitor and the mutual inductance circuit are essentially fractional order, so it
is necessary to establish fractional-order models of these components to accurately describe their
actual characteristics. In [8] Jonscher et al. pointed out that there is no integer-order capacitor
because the dielectric material exhibits fractional characteristics, and the impedance of an integer-order
capacitor Z(jω) = 1/(jωC) will violate causality. In [9], based on Curie’s empirical law, Westerlund
et al. proposed a new linear capacitor impedance model Z(jω) = 1/[(jω)αC], which can solve some
problems that traditional theory cannot solve. The fractional-order capacitors with different orders
and the high-power fractional-order capacitors were realized [10,11]. Moreover, the inductor was also

Electronics 2020, 9, 1544; doi:10.3390/electronics9091544 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1679-6157
https://orcid.org/0000-0002-5377-2093
http://dx.doi.org/10.3390/electronics9091544
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/9/1544?type=check_update&version=2


Electronics 2020, 9, 1544 2 of 15

pointed out to be fractional order [12], and the implementation of a fractional-order inductor was
discussed based on the skin effect [13]. In [14] Soltan et al. proposed the concept of fractional-order
mutual inductance, and the analysis and design of fractional-order mutual inductance was carried out.

The accurate modeling of power electronic converters is of great significance for analyzing the
performance of the converter and designing the closed-loop controller of the converter. Inductors,
capacitors, and mutual inductance circuits are common components in power electronic converters.
The accuracy of the models of these components has a great influence on the modeling of power
electronic converters. However, the integer-order models of the components are usually used to
build the power electronic converter model. When the components are approximately integer-order,
the integer-order model of the converter can be used to approximate the characteristics of the converter.
However, when the components clearly exhibit fractional characteristics, the integer-order model
cannot reflect the true characteristics of the converter and may even produce wrong results. Therefore,
in recent years, researchers have introduced the concept of fractional calculus to power electronic
converters. In [15,16], the fractional-order capacitor was used in the power factor correction circuit and
the in the buck-boost converter. However, they did not consider that the inductor can also be fractional.
In [17–19], mathematical models and state-space average models of the fractional-order boost converter
with a fractional-order inductor and capacitor in continuous conduction mode (CCM), discontinuous
conduction mode (DCM) and pseudo continuous conduction mode (PCCM) were established to study
the characteristics of the converter. Moreover, an improved equivalent small parameter method was
studied for the fractional-order boost converter to solve the problem that is difficult to obtain for an
analytical solution of the fractional-order DC-DC converter [20]. In [21,22], modeling and analysis
of the fractional-order buck converter were performed in DCM and CCM, and the characteristics of
the converter under different fractional definitions were compared. In [23,24], based on the circuit
averaging technique, the mathematical models of the fractional-order buck-boost converter in CCM and
DCM were established. The fractional-order buck-boost converter was further modeled and studied by
the equivalent small parameter method and the Riemann-Liouville definition [25,26]. The modeling
and analysis of fractional-order DC–DC converters such as buck, boost, and buck-boost under DCM and
CCM were summarized in [27]. In [28], the fractional calculus was extended to the single-phase PWM
rectifier, but the fractional-order inductor was not considered in the simulation. In [29], considering
that the inductor and capacitor are fractional order, the fractional order modeling and analysis of
the three-phase voltage source PWM rectifier was carried out. The fractional-order voltage source
converter was also modeled, and stability and time-domain transient analysis were performed [30].
In short, the above literatures show that the fractional-order characteristics of components in power
electronic converters will affect the modeling and performance of the converter.

Previous studies focused on the modeling and analysis of power electronic converters with
a fractional-order inductor and capacitor. However, few researches focus on the fractional-order
modeling and analysis of power electronic converters with mutual inductance. This would be more
difficult because it would involve complex electromagnetic processes and the fractional-order model
of mutual inductance. Therefore, the aim of this research is to solve the fractional-order modeling and
analysis of power electronic converters with mutual inductance to extend the application of fractional
calculus in power electronics. The main innovations of this research are as follows: (1) The equivalent
circuit model of the fractional-order mutual inductance for power electronic converters is derived.
(2) The fractional-order modeling and analysis of the flyback converter with a fractional-order mutual
inductance and a fractional-order capacitor are carried out considering that the high-frequency
transformer in the integer-order flyback converter is actually a mutual inductance.

This paper is organized as follows. In Section 2, the Caputo definition of fractional calculus and
the basic models of fractional-order inductor and capacitor are introduced, then the equivalent circuit
model of fractional-order mutual inductance are derived. In Section 3, the operating principle and the
mathematical model of the fractional-order flyback converter are presented. In Section 4, the state-space
average model of the fractional-order flyback converter is established, and direct current (DC) and
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alternating current (AC) analyses are performed. In Section 5, the results of numerical calculation and
circuit simulation are compared and analyzed. In Section 6, some conclusions are given.

2. Fundamentals

2.1. Fractional Calculus

The Caputo fractional definition is more widely used in the engineering field because the derivative
of the initial value involved in the Laplace transform expression under the definition is integer order,
which has a clear physical meaning. Therefore, the Caputo fractional definition is adopted in this
research. The fractional derivative of the Caputo definition from [31] is

t0Dα
t f (t) =

1
Γ(n−α)

∫ t

t0

f n(τ)

(t− τ)1+α−n dτ, (1)

where Γ ( ) is the Gamma function, n is the smallest integer greater than α, and α is the order
n − 1 ≤ α < n. When f (t) is constant, then t0Dα

t f (t) = 0. The fractional integral of the Caputo
definition from [31] is

t0D−αt f (t) =
1

Γ(α)

∫ t

t0

f (τ)

(t− τ)1−α
dτ, (2)

therefore, when f (t) is constant C, then

t0D−αt f (t) =
C(t− t0)

α

αΓ(α)
. (3)

The Laplace transform of the Caputo fractional derivative under zero initial conditions is

L
[
Dα

t f (t)
]
= sαF(s). (4)

2.2. The Basic Model of the Fractional-Order Inductor and Capacitor

In order to distinguish from an integer-order inductor and capacitor, the symbols of the
fractional-order inductor with order α and the fractional-order capacitor with order β are Lα and Cβ,
respectively. In this research, 0 < α and β ≤ 1 will be discussed. The relationships between voltage and
current for the fractional-order inductor and capacitor can be expressed as

uL(t) = Lα
dαiL
dtα

iC(t) = Cβ
dβuC
dtβ

(5)

where iL, iC are the currents of the fractional-order inductor and capacitor, respectively. The terms
uL, uC are the voltages of the fractional-order inductor and capacitor, respectively [32].

2.3. The Equivalent Circuit of the Fractional-Order Mutual Inductance

The symmetrical fractional-order mutual inductance model is shown in Figure 1a.
Here, the primary inductance L1α, secondary inductance L2α, and mutual inductance Mα are fractional,
and the orders are considered as α. The port characteristic of the fractional-order mutual inductance
can be obtained [14]:

u1 = L1α
dαi1
dtα + Mα

dαi2
dtα

u2 = Mα
dαi1
dtα + L2α

dαi2
dtα

(6)
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Figure 1. (a) The fractional-order mutual inductance model. (b) The equivalent circuit of the
fractional-order mutual inductance model when the leakage inductance is considered. (c) The equivalent
circuit of the fractional-order mutual inductance under the fully coupled condition.

When the leakage inductance is considered, the equivalent circuit of the fractional-order mutual
inductance is shown in Figure 1b, and the port characteristic is

u1 = (Lsα + Lmα)
dαi1
dtα + Lmα

n
dαi2
dtα

u2 = Lmα
n

dαi1
dtα + Lmα

n2
dαi2
dtα

(7)

where Lsα is leakage inductance, and the order is also α.
When Lsα+Lmα= L1α, Lmα

n = Mα and Lmα

n2 = L2α, the above two models are completely equivalent.

Furthermore, we can derive that Lsα = L1α −
Mα
L2α

, Lmα = Mα
2

L2α
and n = Mα

L2α
. Under the fully coupled

condition, Mα =
√

L1αL2α and
√

L1α
L2α

= N1
N2

, and we can then obtain that Lsα = 0, Lmα = L1α and

n =N1
N2

. The primary windings turns and secondary windings turns of the fractional-order mutual
inductance are N1 and N2, respectively. The equivalent circuit of the fractional-order mutual inductance
under the fully coupled condition is shown in Figure 1c.

3. Mathematical Model of the Fractional-Order Flyback Converter

Based on the integer-order flyback converter, the fractional-order flyback converter can be
obtained by replacing the transformer and capacitor with the fractional-order mutual inductance and
the fractional-order capacitor. The fractional mutual inductance equivalent circuit model will be used
for circuit analysis and simulation. In practice, the leakage inductance is very small, and the charging
and discharging time of the leakage inductance and the junction capacitor is very short compared
with the main operating mode of the converter. In addition, this paper focuses mainly on the effect
of the extra parameter orders on the fractional-order flyback converter when components exhibit
fractional characteristics. Therefore, leakage inductance is ignored in this paper, and the voltage
source uin, the diode VD and the switch VT are considered as ideal devices. The circuit model of the
fractional-order flyback converter is shown in Figure 2.



Electronics 2020, 9, 1544 5 of 15

Figure 2. The circuit model of the fractional-order flyback converter.

When the converter operates in CCM, two main operating modes will be presented. Taking the
inductor current im and the capacitor voltage uc as state variables, the mathematical model of the
fractional-order flyback converter in two operating modes are expressed.

Mode 1: The switch VT is on and the diode VD is off, for 0 ≤ t < dT. The input voltage is applied
to the primary side, the transformer stores magnetic energy, and the capacitor supplies power to the
load. The mathematical model in this mode is dαim

dtα
dβuc
dtβ

 =

 0 0
0 −

1
RCβ

[ im
uc

]
+

[ 1
Lmα

0

]
uin. (8)

Mode 2: The switch VT is off and the diode VD is on, for dT ≤ t < T. The magnetic energy stored
in the transformer is transferred to the capacitor and the load through VD. The mathematical model in
this mode is  dαim

dtα
dβuc
dtβ

 =

 0 −
N1

N2Lmα
N1

N2Cβ
−

1
RCβ

[ im
uc

]
+

[
0
0

]
uin. (9)

4. State-Space Average Modeling and Analysis of the Fractional-Order Flyback Converter

4.1. State-Space Average Modeling and Analysis of the Fractional-Order Flyback Converter

In order to obtain the state-space average model of the fractional-order flyback converter,
the variables need to be averaged. The average value

〈
x(t)

〉
of the variable x(t) in a period is

〈
x(t)

〉
=

1
T

∫ t

t−T
x(τ)dτ. (10)

According to the properties of fractional calculus, the average value of the variable dαx(t)
dtα in a

period is 〈
dαx(t)

dtα

〉
= 1

T

∫ t
t−T

dαx(τ)
dtα dτ

= dα
dtα

(
1
T

∫ t
t−T x(τ)dτ

)
=

dα〈x(t)〉
dtα

(11)

The state-space average model of the fractional-order flyback converter in CCM is dα〈im〉
dtα

dβ〈uc〉

dtβ

 =

 0 −
N1(1−d)
N2Lmα

N1(1−d)
N2Cβ

−
1

RCβ

[ 〈im〉〈uc〉

]
+

[ d
Lmα

0

]
〈uin〉 (12)
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Assuming that a disturbance occurs near the operating point, the average values of the inductor
current im, the capacitor voltage uc, the duty ratio d, and the input voltage uin are expressed as the sum
of the DC component and the AC component.

〈im〉 = Im + îm
〈uc〉 = Uc + ûc

〈uin〉 = Uin + ûin
d = D + d̂

(13)

By substituting Equation (13) into Equation (12), the following is obtained: dα(Im+îm)
dtα

dβ(Uc+ûc)

dtβ

 =

 0 −
N1(1−D−d̂)

N2Lmα

N1(1−D−d̂)
N2Cβ

−
1

RCβ


[

Im + îm
Uc + ûc

]
+

 D+d̂
Lmα

0

(Uin + ûin). (14)

4.2. DC Analysis

According to Equation (14), the DC component can be separated. dαIm
dtα

dβUc
dtβ

 =

 0 −
N1(1−D)
N2Lmα

N1(1−D)
N2Cβ

−
1

RCβ

[ Im

Uc

]
+

[ D
Lmα

0

]
Uin (15)

Based on the fractional derivative of the Caputo definition, the quiescent operation point of the
fractional-order flyback converter can be derived as

Uc = N2D
N1(1−D)

Uin

Im = N2
2D

N1
2(1−D)2R

Uin
(16)

It can be found that the quiescent operation point of the fractional-order flyback converter under
the Caputo definition is only related to the circuit parameters; it is the same as the integer-order flyback
converter. Let uin = 20 V, D = 0.5, Lmα= 1 mH/s1−α, Cβ= 100 µF/s1−β, R = 10 Ω, N1 = 50, N2 = 25,
and f = 20 kHz; then the quiescent operation point is Uc= 10 V, Im= 1 A.

According to Equations (3) and (8), the inductor current ripple can be deduced as

∆im =
Uin(DT)α

Γ(α)αLmα
. (17)

The inductor current ripple is not only affected by the duty ratio D, period T, input voltage Uin
and fractional-order inductor Lmα, but it is also affected by the order α of the fractional-order inductor.

The condition for the fractional-order flyback converter to operate in CCM is

1
2

∆im < Im. (18)

According to Equations (16)–(18), the CCM operating condition can be further derived as

R <
2αΓ(α)DLmαN2

2

(DT)α(1−D)2N1
2

. (19)

According to Equation (19), the CCM operating area related to the order can be drawn in Figure 3.
The blue area in this figure represents CCM, which means that when α > 0.874, the fractional-order
flyback converter works in CCM.
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Figure 3. The operating area of the fractional-order flyback converter.

By using the Adomian method of fractional differential equations [33], according to Equation (8),
the output voltage reduction is

∆uC = (1− Eβ(−
(DT)β

RCβ
))UOT, (20)

where UOT is the instantaneous value of the output voltage when VT is on, and E(·) is the Mittag-Leffler
function. UOT can be approximated as

UOT = UC +
1
2

∆uC. (21)

According to Equations (16), (20), and (21), the output voltage ripple can be approximated as

∆uC =
2N2DUin(1− Eβ(−

(DT)β

RCβ
))

N1(1−D)(1 + Eβ(−
(DT)β

RCβ
))

. (22)

It can be seen that the output voltage ripple is not only affected by the load resistance R,
fractional-order capacitor Cβ, input voltage Uin, duty ratio D, period T, primary side turns N1 and
secondary side turns N2, but also by the order β of the fractional-order capacitor.

The fractional-order flyback converter operates in the CCM region when 0.9 ≤ α and β ≤ 1.
According to Equation (17), the relationship between the inductor current ripple and the order of the
fractional-order inductor is shown in Figure 4a. In addition, according to Equation (22), the relationship
between the output voltage ripple and the order of the fractional-order capacitor is shown in Figure 4b.
It can be seen that the inductor current ripple ∆im increases with the decrease of the order α, and the
output voltage ripple ∆uc increases with the decrease of the order β.

Figure 4. (a) The relationship between the inductor current ripple ∆im and the order α.
(b) The relationship between the output voltage ripple ∆uc and the order β.
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4.3. AC Analysis

Regardless of the quadratic terms d̂(t)ûC(t), d̂(t)ûin(t) and d̂(t)îm(t), the AC component can be
obtained according to Equation (14). dα îm

dtα
dβûc
dtβ

 =

 0 −
N1(1−D)
N2Lmα

N1(1−D)
N2Cβ

−
1

RCβ

[ îm
ûc

]
+

 N1UC
N2Lmα

+ Uin
Lmα

−
N1Im
N2Cβ

d̂ + [ D
Lmα

0

]
ûin (23)

In the frequency domain, the AC small signal model at zero initial state can be derived as

[
sα îm(s)
sβûc(s)

]
=

 0 −
N1(1−D)
N2Lmα

N1(1−D)
N2Cβ

−
1

RCβ

[ îm(s)
ûc(s)

]
+

 N1UC
N2Lmα

+ Uin
Lmα

−
N1Im
N2Cβ

d̂(s) + [ D
Lmα

0

]
ûin(s). (24)

Let d̂(s)= 0, then the transfer function Gucuin(s) of the input voltage to the output voltage is

Gucuin(s) =
ûc(s)
ûin(s)

∣∣∣∣∣∣
d̂(s) = 0

=

N1
N2

(1−D)D

LmαCβsα+β + Lmα
R sα + (1−D)2 N1

2

N22

. (25)

Let ûin(s)= 0, then the transfer function Gucd(s) of the duty ratio to the output voltage can be
derived as

Gucd(s) =
ûc(s)

d̂(s)

∣∣∣∣∣∣
ûin(s) = 0

=

N1(1−D)
N2

Uin +
N1

2

N22 (1−D)UC −
N1
N2

ImLmαsα

LmαCβsα+β + Lmα
R sα + (1−D)2 N1

2

N22

. (26)

According to the above equations, the transfer functions are obviously related to the orders α
and β. Considering α = 1, 0.95 and β = 1, 0.95, 0.9, the Bode diagrams of Gucuin(s) and Gucd(s) under
different α and β are shown in Figure 5. It can be seen that the amplitude–frequency characteristic
curve and the phase–frequency characteristic curve are different under different orders. This means
that the orders will affect the design of the closed-loop controller and the dynamic performance of the
fractional-order flyback converter.

Figure 5. (a) The Bode diagram of Gucuin (s) under different α and β. (b) The Bode diagram of Gucd(s)
under different α and β.
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5. Simulation

5.1. The Rational Approximation Method for the Fractional-Order Inductor and Capacitor

Since there is currently no available fractional-order element, a method of approximating the ideal
fractional-order element is used in most cases. In this research, the Oustaloup’s rational approximation
method is used to construct a fractional-order inductor and capacitor [34]. The circuits of the constructed
fractional-order inductor and capacitor are shown in Figure 6.

Figure 6. (a) The circuit with a constructed fractional-order inductor, using Oustaloup’s rational
approximation method. (b) The circuit with a constructed fractional-order capacitor, using Oustaloup’s
rational approximation method.

In Oustaloup’s algorithm, the lower frequency bandωb = 0.01 rad/s, the upper frequency band is
ωh = 107 rad/s, and the filter order N = 9. The fractional-order capacitor Cβ= 100 µF/s1−β with the
orders of 0.95 and 0.9 and the fractional-order inductor Lmα= 1 mH/s1−α with the order of 0.95 are
constructed and the constructed circuit parameters are shown in Table 1. The Bode diagrams of the
constructed fractional-order inductor and fractional-order capacitor are shown in Figure 7. It can be seen
that the circuit simulation of the amplitude–frequency characteristics of the constructed components
are basically consistent with the theoretical analysis, and the phase–frequency characteristics fluctuate
within an acceptable range. Therefore, the circuits of the constructed fractional-order component can
be used.

Table 1. The circuit parameters of the fractional-order inductor and capacitor.

i
α = 0.95 β = 0.95 β = 0.9

Ri (Ω) Li (mH) Ri (Ω) Ci (mF) Ri (Ω) Ci (mF)

1 5.123 k 4.8 1.952 m 0.484 7.337 m 0.121
2 523.188 4.9 19.113 m 0.494 63.945 m 0.139
3 58.181 5.5 0.712 0.549 0.512 0.174
4 6.522 6.2 1.533 0.616 4.074 0.219
5 0.732 6.9 13.667 0.691 32.365 0.275
6 0.082 7.7 121.907 0.774 257.266 0.346
7 0.0091 8.6 1.095 k 0.862 2.058 k 0.433
8 0.943 m 8.9 10.609 k 0.890 17.579 k 0.507
9 12.78 u 1.2 0.782 M 0.121 0.611 M 0.146
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Figure 7. The Bode diagrams of the constructed fractional-order inductor and fractional-order capacitor.
(a) Lmα= 1 mH/s1−α and α = 0.95. (b) Cβ= 100 µF/s1−β and β = 0.95. (c) Cβ= 100 µF/s1−β and
β = 0.9.

5.2. Simulations

According to Figures 2 and 6, the fractional-order flyback converter circuit simulation model is
built in PSIM, as shown in Figure 8. The converter is directly controlled by a PWM wave and operates
in an open loop condition. The response waveforms of inductor current im and output voltage uc

under different α and β are shown in Figure 9a,b, respectively. The overshoot and setting time of the
output voltage under different α and β are shown in Table 2. When α = 1 and β = 1, the converter
is equivalent to an integer-order flyback converter. It can be seen that the fractional-order flyback
converter has the smaller overshoot and a shorter setting time than the integer-order flyback converter.
When α is constant, the overshoot and setting time will be significantly reduced, as the capacitor order
β decreases. When β is constant, the overshoot will be slightly reduced and the setting time will be
significantly reduced as the inductor order α decreases. Furthermore, the capacitor order β has a
greater influence on the overshoot than that of the inductor order α.

Table 2. The overshoot and setting times of the output voltage.

(α,β) (1,1) (1,0.95) (1,0.9) (0.95,1) (0.95,0.95) (0.95,0.9)
overshoot(V) 16.220 15.151 14.180 16.044 15.001 14.090

setting time(s) 0.01023 0.00641 0.00419 0.00743 0.00476 0.00329
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Figure 8. The circuit simulation model of the fractional-order flyback converter.

Figure 9. (a) The response waveforms of the inductor current under different α and β. (b) The response
waveforms of the output voltage under different α and β.

In order to verify the correctness of the mathematical model of the fractional-order flyback
converter established in Section 3, the mathematical model is solved based on the numerical solution
method of the fractional-order extended equation in [34]. The numerical calculation results and the
circuit simulation results of the inductor current im and the output voltage uc under different α and β
at steady state are shown in Figure 10. It can be seen that the numerical calculation results are basically
consistent with the circuit simulation results. Therefore, the mathematical model of the fractional-order
flyback converter is correct.

The circuit simulation results at the quiescent operation point, the inductor current ripple and
the output voltage ripple under different α and β can be observed in Figure 10. The comparison
between the circuit simulation results and the theoretical analysis results in Section 4.2 are shown in
Table 3. The results show that the quiescent operation point of the fractional-order flyback converter
is basically not affected by the orders. However, the inductor current ripple and capacitor voltage
ripple are greatly affected by the orders. The inductor current ripple is related to the order α of the
fractional-order inductor and the ripple will increase as the order decreases. Similarly, the output
voltage ripple is related to the order β of the fractional-order capacitor, and the ripple will increase as
the order decreases. The errors mainly come from the approximation circuits of the fractional-order
element and the modeling method based on the averaging technique.
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Figure 10. The circuit simulation and numerical calculation results under different α and β.
(a) (α,β) = (1,1); (b) (α,β) = (1,0.95); (c) (α,β) = (1,0.9); (d) (α,β) = (0.95,1); (e) (α,β) = (0.95,0.95);
and (f) (α,β) = (0.95,0.9).

Table 3. The comparison between the circuit simulation and the theoretical analysis.

(α,β) Uc (V) Im (A) ∆im (A) ∆uc (V)

(1,1) 9.989/10 0.998/1 0.500/0.5 0.249/0.25
(1,0.95) 9.970/10 0.996/1 0.500/0.5 0.447/0.433
(1,0.9) 9.928/10 0.992/1 0.500/0.5 0.796/0.747
(0.95,1) 9.980/10 1.015/1 0.911/0.867 0.249/0.25

(0.95,0.95) 9.955/10 1.013/1 0.914/0.867 0.442/0.433
(0.95,0.9) 9.901/10 1.006/1 0.914/0.867 0.776/0.747

In this research, the fractional-order inductors with α = 0.874 and α = 0.85 are also constructed.
Figure 11 shows the waveforms of the inductor current when (α,β) = (0.95,1), (α,β) = (0.874,1) and
(α,β) = (0.85,1). It is obvious that the converter operates in critical conduction mode when α = 0.874.
However, when α > 0.874, the converter operates in CCM. When α < 0.874, the converter operates
in DCM. The simulation results are consistent with the theoretical analysis in Section 4.2. For the
integer-order flyback converter, the operating mode can only be changed by circuit parameters such
as inductance, resistance, duty cycle and turns. However, for the fractional-order flyback converter,
the operating mode can also be changed by the inductor order α. This means that the fractional-order
flyback converter has better design freedom.
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Figure 11. The inductor current when (α,β) = (0.95,1), (α,β) = (0.874,1) and (α,β) =(0.85,1).

The Bode diagrams of Gucuin(s) and Gucd(s) obtained by theoretical analysis and circuit simulation
under different α and β are shown in Figure 12. In order to make the Bode diagrams of theoretical
analysis and circuit simulation clearer, (α,β) = (1,1), (α,β) = (1,0.95) and (α,β) = (0.95,0.9) are selected.
It should be noted that in the circuit simulation, the original switching model of the converter is
used to obtain Bode diagrams of the transfer functions. In Figure 12, the solid line is the result of
theoretical analysis, and the asterisks are the result of the circuit simulation. The circuit simulation
results are basically consistent with the theoretical analysis results. Therefore, the AC analysis of the
fractional-order flyback converter is correct.

Figure 12. (a) The Bode diagram of Gucuin (s) obtained by theoretical analysis and circuit simulation
under different α and β. (b) The Bode diagram of Gucd(s) obtained by theoretical analysis and circuit
simulation under different α and β.

6. Conclusions

In this study, the fractional-order mutual inductance is extended to power electronic converters.
The fractional-order flyback converter with fractional mutual inductance and a fractional-order
capacitor is proposed. The equivalent circuit model of the fractional-order mutual inductance is
established. Based on Caputo fractional calculus, modeling and analysis for the fractional-order flyback
converter in CCM are carried out. Numerical simulation and circuit simulation verify the validity of
theoretical analysis and modeling.

It can be observed that the order α of the fractional-order inductor will affect the inductor current
ripple and the CCM operating condition, and the order β of the fractional-order capacitor will affect
the output voltage ripple. This means that when the components are fractional-order, the converter
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obviously shows fractional characteristics, so the fractional-order mutual inductance model should
be adopted in the modeling of power electronic converters with mutual inductance. Based on the
AC analysis, the transfer functions are also proved to be related to the orders α and β. This will give
an indication of the design of the converter controller. In addition, compared with the integer-order
flyback converter, the fractional-order flyback converter also shows better characteristics, including
smaller overshoot, shorter setting time and higher degrees of freedom. Therefore, the fractional-order
flyback converter can obtain better characteristics by adjusting the orders.

This work provides a reference for the application of fractional calculus in power electronic
converters with mutual inductance. In addition, it may also inspire work in other fields, such as circuit
theory, wireless power transfer systems, control systems and so on.
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