
electronics

Article

FASSD: A Feature Fusion and Spatial Attention-Based
Single Shot Detector for Small Object Detection

Deng Jiang , Bei Sun *, Shaojing Su, Zhen Zuo, Peng Wu and Xiaopeng Tan

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; jiangdeng14@nudt.edu.cn (D.J.); susj-5@163.com (S.S.); z.zuo@nudt.edu.cn (Z.Z.);
pengwu@nudt.edu.cn (P.W.); tanxiaopeng14@nudt.edu.cn (X.T.)
* Correspondence: sunbei08@nudt.edu.cn

Received: 24 August 2020; Accepted: 15 September 2020; Published: 19 September 2020
����������
�������

Abstract: Deep learning methods have significantly improved object detection performance, but small
object detection remains an extremely difficult and challenging task in computer vision. We propose
a feature fusion and spatial attention-based single shot detector (FASSD) for small object detection.
We fuse high-level semantic information into shallow layers to generate discriminative feature
representations for small objects. To adaptively enhance the expression of small object areas and
suppress the feature response of background regions, the spatial attention block learns a self-attention
mask to enhance the original feature maps. We also establish a small object dataset (LAKE-BOAT) of
a scene with a boat on a lake and tested our algorithm to evaluate its performance. The results show
that our FASSD achieves 79.3% mAP (mean average precision) on the PASCAL VOC2007 test with
input 300 × 300, which outperforms the original single shot multibox detector (SSD) by 1.6 points, as
well as most improved algorithms based on SSD. The corresponding detection speed was 45.3 FPS
(frame per second) on the VOC2007 test using a single NVIDIA TITAN RTX GPU. The test results of a
simplified FASSD on the LAKE-BOAT dataset indicate that our model achieved an improvement of
3.5% mAP on the baseline network while maintaining a real-time detection speed (64.4 FPS).

Keywords: small object detection; feature fusion; spatial attention; deep learning

1. Introduction

In standard datasets, large and medium objects usually occupy a larger proportion than small
objects. Nevertheless, small objects may carry crucial information, and thus, small object detection
has great application potential. In medical image analysis, it contributes to finding mild illness
before a disease intensifies. In traffic management, it improves the monitoring accuracy of video
monitoring systems for traffic flow, providing assistance for vehicle management. In automatic driving,
the preliminary detection of distant vehicles, signal lights, and signs is helpful in expanding the
perception range of the visual system and preparing responses in advance. The importance of small
object detection is clearly highlighted in the field of remote sensing image analysis, which is inherently
associated with long-distance imaging.

With the powerful ability of convolutional neural networks (ConvNets) in feature extraction,
deep learning methods have been integrated with mainstream methods of object detection for rapid
results. In 2012, AlexNet [1] won the ImageNet Large Scale Visual Recognition Competition, and
achieved more outstanding classification results than traditional algorithms, which promoted the
rapid development of deep learning technology. The feature extraction method using ConvNets soon
surpassed the traditional extraction scheme based on hand-designed features (such as SIFT [2] and
HOG [3]). Although existing object detectors based on deep learning exhibit good performance for
large and medium objects, the actual application scenario is often more complicated. Small object
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detection remains one of the most difficult and challenging tasks in computer vision. When small
objects or those at large distances from the imaging device are captured, the number of small objects
dramatically increases. Compared with large objects, small objects, which occupy less space and
possess weaker textures, are prone to background interference and drowning in noise. Therefore, they
cannot retain enough features after multiple convolutions and pooling, due to which detectors fail to
detect them.

The object detection task includes two subtasks: localization and classification, which depend
on detailed information and semantic information, respectively. However, the classic bottom-up
ConvNets are unable to learn a group of feature maps possessing both high semantics and high
resolution. For object detection tasks, features in deeper layers contain rich semantic information, but
poor location information. In contrast, features in shallower layers contain rich location information,
but poor semantic information. The single shot multibox detector (SSD) [4] creatively introduces
multi-scale features to detect objects of different sizes, as shown in Figure 1b. In multi-scale detection
algorithms, we can obtain sufficient detail and semantic information in high-level feature maps for
large objects. However, it is difficult to achieve good performance from a single layer for small object
detection. In small object detection, on the one hand, a larger receptive field is required for richer
semantic information and context information. On the other hand, high-resolution feature maps
are required for more detailed information. The smaller the size of the object, the more obvious the
contradiction between the two requirements.
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propose a feature fusion and spatial attention-based single shot detector for small object detection, 
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Figure 1. (a) Extracting feature pyramids from image pyramids, which is an inefficient way.
(b) Performing detection on a pyramidal feature hierarchy generated from a convolutional neural
network (ConvNet), like the single shot multibox detector (SSD) [4]. (c) Top-down feature fusion
methods adopted by [5,6]. (d) Fusing whole-scale features in every scale, such as adaptively spatial
feature fusion (ASFF) [7] and rainbow single shot detector (R-SSD) [8]. (e) Fusing multi-scale features
for further extraction. (f) Our proposed feature fusion method. Only the adjacent-scale features up to
the current layer are fused.

To alleviate this contradiction, multi-scale feature fusion methods have been explored. Existing
research show that richer feature representations can be obtained by fusing features at different scales.
As shown in Figure 1c–f, there are some typical feature fusion methods which have been proposed to
obtain more discriminative representation on the base feature hierarchy. In addition to the feature
fusion methods, the attention mechanism is also advantageous in feature selection and enhancement.
By learning differentiated weights, important channels or areas of interest can be locally enhanced,
which is beneficial for capturing features of small samples.

In this paper, we introduce two novel and effective blocks to enhance the original SSD, and
propose a feature fusion and spatial attention-based single shot detector for small object detection,
named FASSD. The main contributions of our works are summarized as follows:
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(1) We propose a lightweight spatial attention block, which consists of continuous convolution,
batch normalization, and activation function layers. It can learn an attention mask to enhance areas of
interest and can be easily inserted into the network. Residual connection is adopted to prevent serious
information loss after the attention mechanism.

(2) We present an effective feature fusion block that applies transposed convolution to upsample
feature maps, and concatenation is adopted to fuse features. To adjust the number of channels, we
utilize group convolution layers with 1 × 1 kernels.

(3) Applying the above two blocks, we design an improved framework based on SSD. Our
FASSD achieves better performance on benchmark datasets of PASCAL VOC2007 than many improved
frameworks based on SSD.

(4) We establish a Lake-Boat dataset for small object detection and prove the effectiveness of our
algorithm. Our algorithm can detect surface objects with high accuracy and speed. This proves the
high application potential of our work on water surface detection systems.

2. Related Work

Feature fusion methods and attention mechanisms have been widely applied in computer vision
tasks for feature enhancement. In this section, we introduce related work from three aspects. We
first summarize the application of feature fusion methods based on SSD. Then, we introduce recent
developments in the attention mechanism. Finally, we present some common methods for small
object detection.

2.1. Feature Fusion Methods Based on SSD

SSD is a multi-scale single shot detector that—inspired by the idea of image pyramids— creates
feature pyramids for multi-scale object detection. After the backbone network, a fully convolutional
network is added to extract a feature pyramid. However, SSD utilizes multi-layer features to
perform detection independently, and effective information between different levels is not fully reused.
In addition, the largest feature maps of 38 × 38 applied for small object detection do not contain
sufficient semantic information, which limits the detection performance for small objects. Feature
fusion is a common means of alleviating the contradiction between invariance and equivariance
feature representations in a detection task [9]. Feature fusion methods can take charge of favorable
information from different layers, such that location and semantic information can be integrated into
one group of feature maps, while also importing contextual information at the same time. Therefore,
the application of feature fusion methods to some algorithms has been proposed to enhance the feature
extraction process.

2.1.1. Using a Feature Pyramid Network to Enhance Feature Extraction

In feature pyramid networks (FPNs) [6], as shown in Figure 1c, a top-down feature fusion
architecture is designed with lateral connections. In this manner, a network of feature pyramids with
high-level semantics at all scales is developed. By top-down enrichment, semantic gaps between
different level feature maps can be narrowed observably, especially in deep ResNets. The same
architecture is adopted by deconvolutional single shot detector (DSSD) [5], single shot refinement
neural network (RefineDet) [10], and multi-level feature pyramid network based single shot detector
(M2Det) [11]. DSSD uses deconvolution to upsample high-level features, and a skip connection is
applied to transfer the corresponding low-level detail information to the layer after deconvolution.
RefineDet inherits the advantages of the one-stage and two-stage detection strategies. The anchor
refinement module filters out some negative anchors and roughly adjusts the object location. The object
detection module then regresses the refined anchors further. RefineDet alleviates the imbalance
problem of one-stage detectors. After fusing multi-scale features, M2Det designs a multilevel feature
pyramid network (MLFPN) to construct more effective feature pyramids. Equivalent scale feature
maps in MLFPN are integrated as hierarchical features.
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2.1.2. Multi-Scale Feature Fusion

The feature fusion single shot multibox detector (FSSD) [12] uses multi-scale fusion feature maps
to extract the feature pyramid. To induce multiple levels of feature information in the generated
feature pyramid, FSSD first fuses multi-scale features, and then generates the feature pyramid from the
fused feature maps. In this manner, multi-level location and semantic information is introduced into
the generated feature pyramid. The rainbow single shot detector (RSSD) [8] proposes a connection
method called rainbow concatenation, which realizes two-way information flow between low-level
and high-level features. Interestingly, when performing unidirectional flow fusion, the detection
performance deteriorates, and the detection speed decreases owing to the increase in computational
complexity. The multi-scale deconvolutional single shot detector (MDSSD) [13] realizes the fusion
of large-span feature maps; high-level features are fused with low-level features after multiple
deconvolutions and convolutions, which improves the detection of small objects.

2.1.3. Enhanced Modules

To effectively combine fusion features, it is necessary to extract features by further convolution.
CFENet [14] proposed a comprehensive feature enhancement (CFE) module to enhance features.
The module is designed to enhance the shallow features for detecting small objects, which is actually
motivated by the Inception module. The sizes of both the input and output feature maps of CFE are
the same, such that they can be inserted wherever required. Receptive field block [15] aggregates
multiple receptive fields (RFs) of various sizes and eccentricities. Different sizes of kernels and dilated
convolution layers are assembled to provide various RFs with different eccentricities.

2.1.4. Dense Connection

Pre-training on ImageNet and then transferring the pre-trained models as network initialization
parameters is widely adopted in the field of object detection. However, it is inappropriate in some cases,
such as medical images, multispectral images, and synthetic aperture radar (SAR) images. Moreover,
pre-training limits the flexible adjustment of the network structure. The deeply supervised object
detector (DSOD) [16] uses DenseNet as the backbone network and uses dense connections to improve
the structure of the prediction layers. These approaches realize a network model without pre-training.

The above feature fusion methods are beneficial for obtaining more discriminative feature
representations, but the application scenarios are different. FPNs recover semantic information from
the top layer, but information in the top layer is very limited. Generally speaking, FPNs can work
better with ResNet. However, it brings an increase in calculation and decreases detection speed at
the same time. The researcher needs to weigh according to the reality. In multi-scale feature fusion
methods, directly fusing random layers will not work. The difficulty lies in the selection of fusion
feature maps and fusion methods. Enhanced modules can be easily embedded into the network and
enhance the feature extraction process, but where we put it and how many should we put needs to
be verified through experiments. Dense connection retains all levels of feature maps, which is very
beneficial for feature fusion. However, problems such as excessive GPU memory usage severely limit
its application.

2.2. Attention Mechanism

The attention mechanism re-weights the original feature maps by modeling the dependencies
between channels or pixels to filter or enhance the channels or areas of interest, which can effectively
improve the quality of features and may benefit small object detection.

Channel attention focuses on the relationship between channels. The squeeze and excitation
network (SENet) [17] uses the global pooling information of each channel to learn the relationship
between channels, and uses compression and expansion methods to model channel relationships,
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thereby increasing the weight of important channels. Dynamic filter networks (DFN) [18] import
information from the high stage to help learn the channel weight of the low stage.

Spatial attention focuses on the interrelationships of different areas. Residual Attention Network
presents residual attention to learn a soft mask. The response of the background information can
be better suppressed after the mask. Adaptively spatial feature fusion (ASFF) [7] utilizes spatial
attention to optimize the feature fusion process. Non-local neural networks [19] capture long-range
dependencies, which perform well in capturing contextual information.

In addition to independent use, the integration of channels and spatial attention has been
attempted in many works. Global context network (GCNet) [20] combines a simplified non-local (NL)
block and an SE module. The convolutional block attention module (CBAM) [21] learns channel and
spatial attention weights from AvgPool and MaxPool values, and the two attention mechanisms are
executed serially. Dual attention networks (DANet) [22] fuse dual attention results by element-wise
sum to capture rich contextual dependencies for the scene segmentation task. Spatial and channel-wise
attention in convolutional networks (SCA-CNN) [23] combine channel-wise attention and spatial
attention on multi-layer feature maps to perform image captioning.

In the last three years, the attention mechanism has been widely used in computer vision to help
improve the accuracy. But it is rarely applied to the related research of real-time detectors. Because the
features of small objects are more sensitive to spatial dimension, the performance of spatial attention is
stronger than channel attention. Therefore, our work only involves spatial attention.

2.3. Small Object Detection

2.3.1. Data Augmentation: Increasing the Number of Small Objects

Deep learning is driven by big data. In existing basic datasets, the rotation, cropping, or scaling
of original images to increase the number of training samples has become a routine operation for
improving the generalization ability and robustness of models. To solve the problem of the limited
amount of small object samples in existing detection data sets, Kisantal et al. [24] adopted two methods:
(1) oversampling and (2) pasting multiple segmentations of small objects into the original images. Such
methods directly increase the proportion of small instances. It is simple but robust, and plays a role
in balancing the number of positive and negative samples. However, the process is complicated and
computationally demanding.

2.3.2. Detection in High-Resolution Maps

High resolution is beneficial for maintaining more spatial detail, which is significantly important
for small object detection. However, with increasing hierarchy in ConvNets, the detailed information of
small objects gradually diminishes. Some researchers utilize upsampling and super-resolution to obtain
high-resolution maps. Chen et al. [25] added a separate context branch after the last convolution layer.
The proposal regions were enlarged by 1.5 times before being sent to the prediction layer. Hu et al. [26]
trained a multi-scale detector. When detecting small objects, the output feature maps from the last layer
were first amplified through two times of interpolation. Li et al. [27] utilized a pre-trained perceptual
GAN (generative adversarial network) to generate super-resolution feature representations of small
objects. Perceptual GAN can improve the feature details of small objects to be comparable to those
of large objects. Krishna et al. [28] took advantage of the convolutional–deconvolutional network
introduced in the literature [29] for super-resolution expression of proposals. However, enlarging
an image requires additional computing and storage resources, and super-resolution reconstruction
networks often require separate training. Such training is not harmonious with the overall training
process and decreases the detection speed.
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2.3.3. Increasing the Number of Matching Anchors for Small Objects

To balance the number of large, medium, and small objects, on one hand, we can directly increase
the number of small objects, such as with the data augmentation methods mentioned previously. On
the other hand, increasing the number of matching anchors for small objects may be suitable. Setting
smaller and denser anchors is a simple method. The single shot scale-invariant face detector (S3FD) [30]
uses the equal-proportion interval principle to ensure that objects of different sizes can match the same
number of anchors. At the same time, by setting a looser matching strategy for small objects (such as
setting a lower IoU threshold for small objects), the number of matching anchors for small objects can
also be increased [31].

3. Methods

In this section, we first describe the principle of the proposed FASSD and the two enhancement
blocks: feature fusion block (FFB) and spatial attention block (SAB). Then, we discuss our training
strategies. Finally, we introduce a new boat dataset for small object detection.

3.1. FASSD Architecture

Considering the difference in the distributions of object sizes in Visual Object Classes (VOC) and
LAKE-BOAT, we applied different scale settings for the two datasets. Figures 2 and 3 present the
architecture of our FASSD and simplified FASSD with 300 × 300 input. VGG16 [32] is adopted as
backbone network. Similar to DeepLab-LargeFOV [33], we convert fully connected layers (fc6 and fc7)
to convolutional layers (conv6 and conv7). Fc8 layer and all dropout layers are removed. Following
the strategy in SSD [4], we add four convolutional layers to extract feature hierarchy. As shown in
Figure 2, conv1 to conv7 are VGG16 layers, conv8 to conv11 are SSD layers.
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(FASSD) architecture.

3.1.1. FASSD Architecture

When performing multi-scale object detection, feature maps of different scales are responsible
for responding to objects with corresponding scales, and the responses of small objects often occur in
shallow layers. Considering the lack of semantic information in the shallow layers, we chose to import
semantic information from adjacent scales up to the current layer, rather than recovering semantic
information from the top layer. The feature maps at the top level are capable of extracting global
semantics, but it is difficult to retain the local semantic information of small object areas. Multiple
upsamplings may introduce noise, which will deteriorate the performance of small object detection.
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To enhance the performance of small object detection, we added an extra scale of 75 × 75 compared
with SSD. The feature maps of conv4_3 and conv7 were upsampled and concatenated with conv3_3
and conv4_3, respectively. The fused feature was integrated and extracted through further convolution
in the feature fusion block. To ensure the versatility of FFB and reduce the design burden, the same
FFBs were maintained except for the number of input channels and parameters of deconvolution
layers. Spatial positions of interest were enhanced by inserting five spatial attention blocks into the
network. Considering the lack of spatial information in the top two layers, they were not taken
into consideration.

In the design of prediction layers, seven prediction layers were added to make prediction on
seven-scale feature maps. For feature maps of size w × h with p channels, we applied 3 × 3 × p kernels
to perform prediction at each of the w × h locations. Each prediction layer contained two convolutional
layers which were applied to predict scores and location offsets respectively. The output channels were
set to a × c and a × 4 where “a” represented the number of anchors about each cell of feature maps,
“c” represented the number of object classes and “4” represented the number of location parameters.
After prediction, NMS (non-maximum suppression) was applied to filter out redundant boxes during
inference, targeting a final value of only 200 detections.

3.1.2. Simplified FASSD Version for Small Object Detection

Multi-scale detection is robust to scale variance. However, when the scale and size of the objects
are similar, the great advantage of multi-scale detection is lost. Moreover, when small objects occupy a
larger proportion of the dataset, the scale imbalance may prevent the training of high-level prediction
layers, resulting in more false positives. To adopt the object characteristics of LAKE-BOAT, we directly
removed high-level convolution layers after conv7, and only three scales were retained for prediction.
Such an operation also reduces the inference time. The architecture of a simplified FASSD for small
object detection is shown in Figure 3.
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3.2. Feature Fusion Block

Two feature fusion blocks were used in our framework. Figure 4a shows their architectures.
The dimension of all the feature maps was first reduced to 256 for computation optimization. To fit the
special shape of feature maps from two layers, a deconvolution (transposed convolution) layer was
added for upsampling. The kernel size was 3 × 3 or 2 × 2 with stride 2. We integrated the features
through concatenation and further convolution. Every convolution or deconvolution layer was followed
by ReLu layers. Batch normalization layers were extensively used to prevent feature divergence.
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To optimize the computation, we applied four 1 × 1 convolution layers for dimensionality
adjustment. We utilized two 1 × 1 convolution layers to reduce the channels of input feature maps to
256 each before concatenation. Before and after further convolution, a 1 × 1 convolution layer was
used to reduce or restore the channels. Specifically, all 1 × 1 convolutional layers adopt the form of
group convolution, which is inspired by ResNext [34]. All the parameters of the groups were set to 32.
In ordinary convolution, each output channel is connected to all input channels. Group convolution
divides the input and output channels into multiple groups, and each group follows the ordinary
convolution operation, but there is no information interaction between groups. Therefore, group
convolution is more conducive to retain the differences between channels.

3.3. Spatial Attention Block

Small objects merely occupy a small area. We attempted to design a lightweight block to
enhance the possible regions of small objects while suppressing the background response at the same
time. To this end, we designed a spatial attention block consisting of continuous convolution, batch
normalization, and activation function layers. To prevent serious information loss after attention,
we utilized leaky ReLu instead of ReLu and also adopted the residual connection. SAB can learn an
attention mask to enhance the area of interest. Element-wise products were applied to fuse the mask
with each channel of the feature maps. Our structure is completely differentiable, and the parameters
can be updated well in back-propagation.

We designed two versions of the spatial attention block, as shown in Figure 4. One possesses only
a single branch, as shown in Figure 4b, and only 1 × 1 convolution is utilized for channel integration.
It performs computations only at a certain position between different channels, without changing
the receptive fields of the previous feature maps. The other possesses two branches, as shown in
Figure 4c. We introduced dilated convolution to improve the contextual information awareness of our
attention blocks.

Assuming that the original feature maps are x, the new feature maps after attention are y and
express the attention operation of each branch as function F. Thus, the attention mechanism can be
expressed as follows (taking the version with two branches as an example):
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α = Fα(x)
β = Fβ(x)

y = (α+ β+ 1)x = (α+ β)x + x
(1)

α and β represent the attention mask learned by two of the branches.

3.4. LAKE-BOAT Dataset for Small Object Detection

Small object detection has a greater demand for context information. To evaluate our framework
more accurately, we constructed a LAKE-BOAT dataset under a typical lake scene. The lake scene we
constructed has obvious background information on the water surface, which can effectively test the
capability of the detection model for extracting context information.

The LAKE-BOAT dataset contained 350 images, in which 250 images were taken for training
and the remaining 100 images were taken for testing. The original image size was 960 × 540 pixels.
To increase the number of small instances, we performed a sample offline data augmentation by
zooming out the original images. We first reduced the original width and height by half and then
spliced it to four segments to restore the original resolution, as shown in Figure 5. Label files were used
to perform the corresponding conversion. The orange bounding boxes illustrate annotation results.
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We analyzed the size attribute of objects’ ground truth box after resizing the image to 300 × 300,
and the results are shown in Table 1. Small objects and extra-small objects accounted for an extremely
large proportion. Extra-small objects, small objects, medium objects, large objects, and extra-large
objects correspond to levels 1 to 5, respectively. The area corresponding to level x is calculated according
to Formula (2), and the corresponding size in the 300 × 300 images and 75 × 75 feature maps are shown
in Table 2. 

x = 1 0 < s ≤
(
12× 2x−1

)2

x = 2, 3, 4 (12 × 2x−2
)2
< s ≤ (12 × 2x−1

)2
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Table 1. Size attribute of objects in LAKE-BOAT.

Train Set Aug Set Training Set Test Set

Images 250 250 500 100
Objects 954 3816 4770 625

Extra-small objects 465 3084 3549 426
Small objects 314 580 894 134

Medium objects 138 132 270 48
Large objects 32 20 52 13

Extra-large objects 5 0 5 4

Proportion of extra-small and
small objects 81.7% 96.0% 93.1% 89.6%
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Table 2. Correspondence size in 300 × 300 images and 75 × 75 feature maps of objects.

Level Attribute 75 × 75 maps 300 × 300 Images

1 Extra-small 0–32 0–122

2 Small 32–62 122–242

3 Medium 62–122 242–482

4 Large 122–242 482–962

5 Extra-large 242– 962–

3.5. Training

3.5.1. Data Augmentation

We adopted the same online strategies for SSD. In addition, we applied a simple offline
augmentation method (Section 3.4) to train our model on the LAKE-BOAT dataset. In this manner,
we obtained a new dataset with four-times-smaller objects. The original dataset and the augmented
version were combined for further training.

3.5.2. Transfer Learning

Transfer learning can effectively improve the robustness of the model and speed up convergence.
For the VOC task, we used the pre-trained VGG16 [32] on the ILSVRC CLS-LOC dataset as initial
weights. When training on the LAKE-BOAT dataset, we transferred the corresponding parameters
from well-trained FASSD on VOC, except for the prediction layers. After transferring the weights, we
first trained the prediction layer separately and then fine-tuned the network.

3.5.3. Anchor Setting

For the VOC task, the same setting strategy as the corresponding SSD level was adopted for the
last six prediction layers. The scale of conv4_3 was 0.2, and the scale of the top layer was 0.9. As for
the extra level, we set a smaller scale of 0.1. For conv7, conv8_2, conv9_2, six anchors were set for
ratios

{
1, 2, 3, 1

2 , 1
3

}
in each cell of the feature maps. The other convolutions included four anchors in

ratios
{
1, 2, 1

2

}
. For the LAKE-BOAT task, the anchor setting of the remaining three scales applied the

same strategy.

3.5.4. Loss Function

Following in SSD’s footsteps, we utilized Smooth L1 loss and Softmax loss to measure the
localization loss and confidence loss respectively. The model loss is a sum of localization loss and
confidence loss.

Our training strategies follow the baseline network. Some common points are not mentioned.
Interested readers can refer to the original paper [4] for more details.

4. Experiments

For our experiments, the Pytorch-version SSD provided by [35] was selected as the baseline.
We evaluated our FASSD on PASCAL VOC and LAKE-BOAT. PASCAL VOC is one of the most common
benchmark datasets in object detection. It provides labeled images and evaluation toolbox of precision
for researchers. The PASCAL VOC dataset contains 20 types of objects, including person, cat, bus,
bottle, etc. VOC2007 annotated 9963 images and 24,640 objects in which 4952 images and 12,032 objects
are taking for test; the trainval set of VOC2012 annotated 11,530 images and 27,450 objects. We adopt
the common index mAP (mean average precision) and FPS (frame per second) to evaluate the detection
accuracy and speed. The mAP is calculated by the official devkit provided by PASCAL VOC.
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4.1. Ablation Study of VOC

To compare the contribution of each improvement measure, we performed our experiments on
VOC with an input size of 300 × 300. All models were trained on the union of the 2007 and 2012
trainval (VOC07 + 12) and tested on the VOC2007 test set. The results are shown in Table 3. All the
results were tested by ourselves using a signal TITAN RTX GPU, an Intel I9-10900X@3.70GHz, and
cuda 10.1, pytorch 1.0.0. We used 500 images from the VOC2007 test and resized them to 300 × 300
before the speed test. A value of 75 × 75 indicates whether to add the extra scale feature maps of
75 × 75 for detection.

Table 3. Results of the ablation study on PASCAL VOC2007.

Method 75 × 75
Attention

Fusion Anchors mAP FPSv1 v2

SSD300 7 7 7 7 8732 77.7 69.7
FASSD300 7 4 7 7 8732 78.1 67.8
FASSD300 7 7 4 7 8732 78.0 58.4
FASSD300 7 7 4 4 8732 78.2 47.8
FASSD300 4 7 7 4 31,232 78.2 54.2
FASSD300 4 4 7 4 31,232 78.9 52.4
FASSD300 4 7 4 4 31,232 79.3 45.3

4.1.1. Extra Scale of 75 × 75

The extra scale with small anchors is important for detecting small objects. In Table 3, we compare
the versions of models that apply attention v2 and feature fusion (row 4), and extra scale and attention
v2 and feature fusion (row 7). The results indicate that an extra scale can increase the mAP by 1.1%.
However, utilizing the extra scale and feature fusion method (row 5) only increases the mAP by 0.5%,
which indicates that it works best when applying the three methods simultaneously.

4.1.2. Feature Fusion

In Table 3, we compare the versions of models that apply attention v2 (row 3) and attention v2
and feature fusion (row 4). The results indicate that feature fusion methods can increase the mAP by
0.2%, while the increase in computation decreases the detection speed by 18%. The results also indicate
that simple fusion does not necessarily bring considerable performance improvements. The choice of
fusion feature maps is crucial.

4.1.3. Two Versions of SAB

We performed two groups of contrast to compare the performance of SAB v1 and SAB v2.
By directly adding four SABs before the head of SSD, the two versions of SAB both achieved an
improvement of 0.4% and 0.3% mAP. However, the performance of SAB v2 was lower than that of SAB
v1. On the contrary, mAP slightly decreased. The result in the second row of Table 3 shows that SAB v1
is a lightweight plug-and-play block. With the extra scale of 75 × 75 and application of feature fusion,
SAB v2 achieved a better grade than SAB v1 at about 0.4% mAP. The results indicate that dilated
convolution is more suitable for capturing detailed information, especially in large-scale feature maps.

4.1.4. Group Convolution

A 1 × 1 convolution layer is often used as a bottleneck layer for dimensionality reduction. As in
our attempt in the attention block, a 1 × 1 convolution layer can also integrate features from multiple
channels but it is not beneficial for further fusion and extraction. After 1 × 1 convolution, the difference
between channels decreased, which further deteriorated the learning process. Therefore, we replaced
the general convolution layers with the group convolution layers in the FFB. This operation increased
the mAP from 78.7% to 79.3%.
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4.2. Results on PASCAL VOC2007

We trained our FASSD on the union of the VOC2007 trainval and VOC2012 trainval, and tested
it on VOC2007. Following the SSD, we set the batch size to 32 with the input 300 × 300 and trained
FASSD for 120,000 iterations. The learning rate was set to 10−3 for the first 80,000 iterations, and then
adjusted to 10−4 and 10−5 for the next and last 20,000 iterations, respectively. The SGD optimizer with
a momentum of 0.9 and a weight decay of 0.0005 was adopted. The initialization parameters of the
backbone were derived from a well pre-trained VGG16 on ImageNet, and Xavier initialization was
applied to the remaining layers.

The results of the PASCAL VOC2007 test are shown in Table 4. By utilizing powerful data
augmentation methods, the Pytorch-version SSD trained by ourselves beyond the latest Caffe version
by 0.2 points, proposed by the authors after the paper publication. Our FASSD achieved 79.3% mAP
with an input of 300 × 300, outperforming the baseline by 1.6 points with a similar performance to that
of SSD512*. FASSD also outperformed CSSD, DSSD, DSOD, MDSSD, RSSD, and FSSD with similar
input sizes.

4.3. Inference Speed on PASCAL VOC2007 Test

Table 5 shows the inference speed of Faster R-CNN and some networks based on SSD. Our FASSD
can run at 45.3 FPS with an input size of 300 × 300 on a signal TITAN RTX GPU. For fair comparison,
we tested the speed of SSD with the same settings. Because of the additional layers, our FASSD is
35% slower than SSD. However, compared with DSSD, MDSSD, and DSOD, our framework is very
competitive with better performance in terms of both speed and accuracy.

4.4. Small Object Detection on LAKE-BOAT

To further evaluate the performance of our model, we designed experiments using the LAKE-BOAT
dataset. For better convergence and faster training, we transferred the corresponding parameters from
the corresponding version trained on the VOC model. Taking the number of images into consideration,
we trained our model on LAKE-BOAT for only 7000 iterations. The learning rate was set to 10−3 for
the first 1000 iterations, and then decreased to 10−4 for the next 4000 iterations, 10−5 for another 1000
iterations, and 10−6 for the last 1000 iterations. In the first 1000 iterations, we froze all parameters
except for the prediction layers, after which we fine-tuned the entire network.

4.4.1. Results and Inference Speed

SSD300 maintains the same architecture as the VOC task, except for the prediction kernels. For a
fair comparison, we trained a simplified version of SSD. SSD300# removed the extra layers after conv7,
and the feature maps from conv3_3 were used for prediction. The inference time was tested using
a signal TITAN RTX GPU, an Intel I9-10900X@3.70GHz, and cuda 10.1, pytorch 1.0.0. We used 100
images of the Lake-Boat test and resized them to 300 × 300 before testing. The comparison results are
shown in Table 6.

By simplifying the architecture, the network can adapt to the target scene better, which significantly
improves the detection speed. The simplified version of the SSD can run at 86.6 FPS. Because of the
complexity of the scene and the objects’ dense distribution, the original version of SSD runs slightly
slower than the test on the VOC dataset. Our FASSDv1 achieved a mAP of 75.3% while maintaining
a real-time detection speed of 64.4 FPS, which exceeds the original version of SSD by 8 points and
outperforms the simplified version of SSD by 3.5 points. The results indicate that our feature fusion
block and spatial attention block perform well in enhancing the shallow layers. Contrary to the
previous results on VOC, our model utilizing SAB v1 performs better than SAB v2. This phenomenon is
closely related to the object size. In theory, the receptive field shared by SAB v2 is 125 times larger than
SAB v1. Because some of the boat instances are extremely small, excessive background information
will be imported when SAB v2 is applied.
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Table 4. Results on PASCAL VOC2007 test.

Method Backbone mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse mBike Person Plant Sheep Sofa Train TV

Faster [36] VGG 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
Faster [37] Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

CSSD300 [38] VGG 78.1 82.2 85.4 76.5 69.8 51.1 86.4 86.4 88.0 61.6 82.7 76.4 86.5 87.9 85.7 78.8 54.2 76.9 77.6 88.9 78.2
DSSD321 [5] Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4

MDSSD300 [13] VGG 78.6 86.5 87.6 78.9 70.6 55.0 86.9 87.0 88.1 58.5 84.8 73.4 84.8 89.2 88.1 78.0 52.3 78.6 74.5 86.8 80.7

SSD300* [4] VGG 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8
SSD512* [4] VGG 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

SSD300 VGG 77.7 82.5 83.5 75.9 70.8 49.5 85.4 86.4 88.7 61.2 82.0 78.9 85.3 86.8 84.7 79.3 54.0 75.3 79.1 86.8 78.3

FASSD300 VGG 79.3 86.2 84.8 77.1 75.8 54.1 85.7 87.5 89.1 61.7 85.4 77.2 86.6 88.7 86.4 79.9 54.4 79.5 80.4 88.4 76.2

SSD300 is the Pytorch version, which was trained and tested by ourselves. SSD300* and SSD512* are updated Caffe versions of the new expansion data augmentation trick.
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Table 5. Comparison of speed and accuracy on the PASCAL VOC2007 test.

Method Backbone mAP FPS # Proposals GPU Input Size

Faster [36] VGG 73.2 7 6000 Titan X ~1000 × 600
Faster [37] Residual-101 76.4 2.4 300 K40 ~1000 × 600

CSSD300 [38] VGG 78.1 40.8 - Titan X 300 × 300
DSSD321 [5] Residual-101 78.6 9.5 17,080 Titan X 321 × 321
DSOD [16] DS/64-192-48-1 77.7 17.4 - Titan X 300 × 300

FSSD300 [12] VGG 78.8 65.8 8732 1080Ti 300 × 300
MDSSD300 [13] VGG 78.6 38.5 31,232 1080Ti 300 × 300

RSSD300 [8] VGG 78.5 35 8732 Titan X 300 × 300

SSD300* [4] VGG 77.5 46 8732 Titan X 300 × 300
SSD512* [4] VGG 79.5 19 24,564 Titan X 512 × 512

SSD300 VGG 77.7 69.7 8732 TITAN RTX 300 × 300

FASSD300 VGG 79.3 45.3 31,232 TITAN RTX 300 × 300

Table 6. Results and inference speed with LAKE-BOAT.

Method mAP FPS

SSD300 67.3 67.6
SSD300# 71.8 86.6
FASSDv1 75.3 64.4
FASSDv2 74.1 57.8

4.4.2. Transfer Learning and Data Augmentation

We conducted a simple ablation study to evaluate the contribution of transfer learning and offline
data augmentation. The comparison results are shown in Table 7.

Table 7. Results of the ablation study on LAKE-BOAT.

Method Transfer Learning Data Augmentation mAP

FASSD300 4 4 75.3
FASSD300 4 7 73.9
FASSD300 7 4 71.1

When pre-training was applied, the same strategy as in Section 4.3 was maintained for the setting
of the learning rate. However, it was difficult to train our model using a large learning rate. Loss
value explosion invariably occurred without parameter transfer, which hindered the training process.
Moreover, 7000 iterations are not sufficient to train the model well. Therefore, the initial learning rate
was changed to 10−4 for the first 20,000 iterations. Then, we decrease it to 10−5 and 10−6 for the next
10,000 iterations and last 10,000 iterations.

The results indicate that transfer learning is beneficial for the training process, especially for a
small dataset. Transfer learning increased mAP by approximately 4.2 points. Data augmentation
contributed to mAP by 1.4 points. This result suggests that the simultaneous use of online and offline
data augmentation methods is beneficial when dataset is small.

4.4.3. Detection Rate and False Alarm Rate

In practical applications, the number of detected objects and false predictions are often of research
interest. Considering this, we define the detection rate (DR) as the proportion of detected objects to
the number of real objects, and the false alarm rate (FAR) as the proportion of false predictions to
all predictions. The correctness of a prediction is determined by the intersection over union (IoU) of
the prediction and the truths. IOU > 0.5, or not, is the judgment standard. False predictions include
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incorrect classification and poor position regression. DR and FAR can help evaluate the performance of
the models more scientifically. By setting different confidence thresholds, we obtained corresponding
results of DR and FAR. The analysis results of DR with FAR of 5%, 10%, and 20% are shown in Table 8,
and the relationship between DR and FAR is shown in Figure 6.
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As shown in Table 8, all four models performed well in the detection of medium, large, and
extra-large objects, with only few difficult instances being missed. However, our model significantly
outperformed the original and simplified version of SSD in the detection of extra-small objects.
FASSDv1 outperformed the simplified version of SSD by 13.6%, 9.1%, and 7% at FAR of 5%, 10%, and
20%, respectively.

Table 8. Detection rate when false alarm rate is 0.05, 0.10, or 0.20.

FAR Method E-Small Small Medium Large E-Large All

0.05

SSD300 0.178 0.910 0.979 1 1 0.419
SSD300# 0.244 0.970 0.979 1 1 0.477
FASSDv1 0.378 0.978 0.979 1 1 0.570
FASSDv2 0.380 0.978 0.979 1 1 0.571

0.10

SSD300 0.289 0.955 0.979 1 1 0.504
SSD300# 0.430 0.978 0.979 1 1 0.605
FASSDv1 0.521 0.978 0.979 1 1 0.667
FASSDv2 0.486 0.978 0.979 1 1 0.643

0.20

SSD300 0.418 0.970 0.979 1 1 0.595
SSD300# 0.538 0.985 0.979 1 1 0.680
FASSDv1 0.608 0.978 0.979 1 1 0.726
FASSDv2 0.592 0.978 0.979 1 1 0.715

The ground truth boxes’ size of extra-small, small, medium, large and extra-large objects are 0–122, 122–242, 242–482,
482–962, and 962– pixels after resize to 300 × 300 according to Table 2.

4.5. Visualization Analysis

Figure 7 shows the visualization of feature maps. Through the attention mechanism, the area
of the objects was enhanced. The contrast between the area of interest and the background was
significantly improved. In the first and second rows, background information could be balanced and
suppressed. For small objects in the third and fourth rows, the spatial attention block highlighted the
center of objects and distinguished boundary information.
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4.6. Visualization of Results

Figure 8 shows the results of detection for the PASCAL VOC2007 test. The confidence threshold
was set to 0.6. Compared with the conventional SSD, our model showed performance improvements
from three aspects. The first is in terms of small object detection, as shown in Figure 8a. Owing to
the shortage of semantic information in shallow layers and the small size of feature maps, SSD could
not perform well, but our model showed targeted improvement. The second is in terms of dense and
occluded cases, as shown in Figure 8b. This improvement may be attributable to the spatial attention
block, which can effectively enhance the contrast between objects and the background. The third
is for objects with rich contextual information, as shown in Figure 8c. Our FASSD takes contextual
information into account and avoids mistaking the sheep in the flock for cows.

Figure 9 shows the results of detection with the LAKE-BOAT dataset. Only the predictions with
confidence scores higher than 0.15 are displayed. We show the comparison of the simplified SSD and
FASSDv1. Figure 9a indicates our model’s advantage in small object detection. As shown in Figure 9b,
our model is more robust in the occluded and dense cases. Figure 9c shows that our model works
better in capturing contextual information. Without enhancement in shallow layers, the simplified
SSD generated some false predictions.
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Figure 7. Visualization of feature maps. From left to right, the figure shows the original image (column
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the fusion of attention mask (column 5), new feature maps output by the attention block (column 6).
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5. Conclusions and Future Work

In this paper, we proposed an effective feature fusion block and a lightweight spatial attention
block to enhance the sematic information of the shallow layers. The feature fusion blocks fuse sematic
information from an adjacent scale. The spatial attention blocks utilize continuous convolution, batch
normalization, and activation function layers to learn the special attention weights. On the basis of
the two blocks, we propose a feature fusion and spatial attention-based single shot detector. Our
FASSD achieves higher performance than many existing detectors with benchmark datasets while still
maintaining a real-time detection speed. Experiments conducted with LAKE-BOAT demonstrate the
capability of our model in small object detection.

In our model, we utilized an input of 300 × 300 for real-time detection. However, it could not
fully utilize all the information of the original 960 × 540 images. The precision may be improved by
increasing the input size, but the simultaneous optimization of inference time remains to be addressed,
which is the focus of our future work. Our spatial attention block is lightweight and can conveniently
be inserted into any ConvNets. It can be applied to other computer vision tasks that are sensitive to
spatial information, such as segmentation tasks. The branch with 1 × k or k × 1 kernels can be used to
capture horizontal or vertical connections in pedestrian detection. We will investigate these issues in
our future work.
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