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Abstract: High Efficiency Video Coding (HEVC) has achieved about 50% bit-rates saving compared
with its predecessor H.264 standard, while the encoding complexity increases dramatically. Due to the
introduction of more flexible partition structures and more optional prediction directions, HEVC takes
a brute force approach to find the optimal partitioning result which is much more time consuming.
Therefore, this paper proposes a bagged trees based fast approach (BTFA) and focuses on the coding
unit (CU) size decision for HEVC intra-coding. First, several key features of a target CU are extracted
for three-output classifiers. Then, to avoid feature extraction and prediction time over head, our
approach is designed frame-wisely, and the procedure is applied parallel with the encoding process.
Using the adaptive threshold determination algorithm, our approach achieves 42.04% time saving
with negligible 0.92% Bit-Distortion (BD)-rate loss. Furthermore, in order to calculate the optimal
thresholds to balance BD-rate loss and complexity reduction, the neural network based mathematical
fitting is added to BTFA, which is called the advanced bagged trees based fast approach (ABTFA).
Finally, experimental results show that ABTFA achieves 47.87% time saving with only 0.96% BD-rate
loss, which outperforms other state-of-the-art approaches.

Keywords: HEVC; bagged trees; CU partitioning; intra-coding

1. Introduction

High Efficiency Video Coding (HEVC) is the state-of-the-art video coding standard. It was
developed by the Joint Collaborative Team on Video Coding (JCT-VC) [1]. Compared with its
predecessor H.264/Advanced Video Coding (AVC) [2], it implements more advanced encoding
techniques, such as larger coding tree unit (CTU). It achieves about 50% bit-rate reduction while
maintaining video quality. However it also increases the encoding complexity dramatically.

HEVC doubles the compression ratio by introducing many progressive encoding tools, such as
more available prediction modes and more flexible coding unit (CU) partition structures [3]. It adopts a
block-based hybrid coding framework and takes a recursive CU splitting strategy. In HEVC, the frames
are firstly divided into nonoverlapped blocks in square shape called Coding Tree Unit (CTU) that
can be as large as 64 × 64. Each CTU can be further divided into four smaller CUs in square shape.
Depending on the frame characteristic, each of these smaller CUs can be further divided into new
sub-CUs according to a quad-tree structure. The size of CUs can be supported from 64 × 64 to as small
as 8 × 8. Once the size of a CU is decided, the CU can also be further partitioned into smaller units

Electronics 2020, 9, 1523; doi:10.3390/electronics9091523 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8541-308X
http://dx.doi.org/10.3390/electronics9091523
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1523 2 of 28

called the prediction units (PUs) which are used for pixels prediction and residuals calculation. In the
case of intra-coding, PU can be as large as its root CU or as small as a 4 × 4 pixels block. An example of
CTU splitting and corresponding quart-tree structures of CU and PU are shown in Figure 1. In Figure 1,
CU partitions are presented with blue solid line while PU partitions are presented by red dash line.
According to Figure 1, we can see that a CTU can be further partitioned into four depth levels, also
we use the depth level to represent the CU size. Obviously, it is difficult and time-consuming to find
the optimal size of the CUs and PUs from so many combinations of different sizes. HEVC uses a full
rate-distortion optimization (RDO) strategy to traverse all the possible combinations (i.e., all different
CU sizes) and selects the one with the minimum rate-distortion cost as the best [4]. The searching
procedure for optimal CU size makes great effort to increase the compression ratio, but it also brings
significant complexity increment. This drawback hinders its implementation in real-time applications,
thus there is an urge for a fast CU size decision algorithm to reduce the encoding complexity of HEVC.

Figure 1. A splitting example of a coding unit (CU) in intra-coding. Left part shows the final splitting
result of a CU. Right part is the corresponding structure of quad-tree, in which black solid lines are CU
splitting branches and dot red lines are splitting branches for prediction units (PUs).

To address the above mentioned problem (i.e., the heavy burden caused by the searching for the
optimal combination of CU sizes), many works designed fast CU size decision algorithms, which can
be roughly classified to two main categories [5,6]. The first category includes the algorithms based
on statistics-based heuristics [7,8]. The second category consists of the algorithms based on advanced
machine learning techniques, such as Support Vector Machine (SVM) [9], Decision Trees [10], Bayesian
method with conditional random fields [11] and Neural Networks [12,13]. Though some statistical
information based fast algorithms can achieve a good performance [14,15], the statistical distributions
and thresholds are different from sequence to sequence. Moreover, their performances are highly
dependent on special video sequence. On the other hand, machine learning based methods can explore
much more information automatically from video sequence. Many works have proved that machine
learning based methods outperform other heuristics based ones [12,16,17].

However, machine learning based algorithms have some limitations. For example, SVM takes
a heavy time burden on training and prediction [18]. Furthermore, most recent works use one or
more SVMs on each depth to improve the precision [6,17], so that the training time is doubled.
Neural network models are always large-scale and take a long time to train [19]. On the contrary,
compared with SVM and neural network based approaches, decision tree based approaches can
be trained much easier and take much less time to finish the prediction [20]. Besides, they are
always small-scale and easy to be implemented. Furthermore, the existing machine learning based
methods apply a pipeline strategy [6,9,17,19]. They always perform online prediction followed by
different splitting process according to the prediction results, and it does not take advantage of
intra-coding properties.

In this paper, we propose a frame-wise fast CU size decision algorithm for HEVC intra-coding
by combining multiple decision trees. We not only design several novel features, but also propose
an implementation method called the frame-wise beforehand prediction. Using this method, we can
predict the splitting results of the next frame when the encoder is encoding the current frame. In this
way, we can always carry out prediction in parallel before the target frame is being encoded, so called
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frame-wise beforehand prediction. In the proposed algorithm, only one bagged tree is applied
to CU decision progress of all depth 0, 1, 2. It makes our algorithm faster and more convenient.
Besides, this paper uses an adaptive threshold determination process on the classifier to compensate
the loss of precision. Thus, based on machine learning and HEVC intra-coding properties, this paper
finally generates bagged tree based fast algorithm for HEVC intra-coding with adaptive threshold
determination (i.e., BTFA). However, BTFA can only find hazy thresholds and achieve a barely
satisfactory performance. Aiming at achieving the best performance, this paper also employs neural
network based mathematical fitting method upon BTFA to achieve a trade-off between distortion and
complexity, which is called advanced bagged tree based fast intra-CU size determination algorithm
(ABTFA). ABTFA is able to achieve an optimal result according to a certain constraint of Bit-Distortion
(BD)-rate loss or time saving.

The key innovation and contributions of this paper are presented as follows:

1. Several novel and meaningful features are proposed. Especially, features designed based on
Haar wavelet transform and interest points contribute a lot to the prediction performance.
Besides, an importance rank of features is generated in the training phase of bagged tree models.
The ranking process is very important for feature analysis and saves time.

2. A more general and accurate model is proposed. Different from traditional decision tree based
methods, a more general and accurate bagged tree method is implied to CU partitioning problem.
In particular, one bagged tree model is used for CUs of three sizes, i.e., 64 × 64, 32 × 32, 16 × 16.

3. Parallel frame-wise prediction process is applied. This before-hand processing allows encoder to
execute CU splitting directly according to the prediction results output ahead of schedule. So that
the time spent on features extraction and prediction can be saved.

4. Advanced mathematical fitting technique is employed. In this paper, to calculate optimal
thresholds under a certain constraint, neural network is used to find the best value of thresholds
which are needed for CU splitting label prediction. In this way, the prediction accuracy is
improved, and the proposed ABTFA has the best performance under a certain constraint of
BD-rate loss or time saving.

This paper is organized as follows. Section 2 describes related works of fast CU partitioning
techniques. Fundamental knowledge of bagged tree model is presented in Section 3. The proposed
bagged tree based fast algorithm for intra-CU partitioning, i.e., BTFA, is presented in Section 4.
The proposed ABTFA, which uses neural network tools, is described in Section 5. Experiment results
as well as comparison with existing outstanding works are presented in Section 6, and Section 6.3
concludes this paper.

2. Related Work

Related works are presented in the following paragraphs. Most of existing fast partitioning works
can be roughly classified into two categories: the methods based on statistical analysis information
and the methods based on machine learning.

In the first category, the decisions can be made to early terminate or skip the unnecessary depth.
Or a fined depth range can be calculated aiming at decreasing the computational complexity of
HEVC. Kuo et al. [7] proposed an efficient and fast CU size decision algorithm to reduce HEVC
encoder complexity by the spatiotemporal features. In [21], Wang et al. proposed a new depth
level and inter-mode prediction algorithm for quality scalable high efficiency video coding (SHVC).
They investigated the relationship between parent CUs and children CUs to predict square modes,
and used RD cost and residual coefficients in further predicting non-square modes to improve
the coding speed. Wang et al. [22] proposed a novel intra-prediction scheme to effectively speed
up the enhancement layer intra-coding in quality SHVC. They exploited inter-layer correlations to
predict candidate depths, then used correlations to predict probable intra-modes, and finally adopted
residual coefficients to early terminate inter-layer reference modes and depths. In the 3D extension
of HEVC, Fu et al. [14] proposed an early termination scheme for fast intra-mode decision in depth
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maps. Moreover, focusing on 3D-HEVC, Li et al. [15] proposed a self-learning residual model -based
fast CU size decision approach for the intra-coding of both texture views and depth maps. In [8],
an intra-prediction technique was proposed to improve the performance of the HEVC standard by
minimizing its computational complexity.

In the second category, the processes of recursive CU size decision and PU selection can be
modeled as a classification structure and solved by machine learning methods. Zhu et al. [16]
presented a binary and multi-class SVM based fast algorithm. Based on a multiple reviewers system,
they combined the off-line and on-line SVM to finish the size selection of CUs. Their results showed
65.6% time saving and 3.665% bit-rate increment under random access configurations. Based on CU
complexity classification, Liu et al. [9] proposed an adaptive fast CU size decision algorithm using SVM.
Features having strong relationship with CU partitions are extracted to characterize the CU complexity.
It achieves around 60% encoding time reduction and 1.26% BDBR increment. Zhang et al. [17] proposed
an effective data driven CU size decision approach for HEVC intra-coding. First they employed a
three-output offline SVM to decide if a CU should be split or terminated or uncertain. Then they used
another binary-output SVM to refine the CUs with an uncertain label in the first stage. It achieves
52.48% complexity reduction on average and 1.58% BDBR increment. Zhu et al. [6] used a fuzzy
SVM to formulate the CU size decision process as a cascaded multi-level classification task. They also
regarded the CU size decision as a three-class issue. Much recently, focusing on HEVC screen content
coding, Kuang et al. [23,24] proposed an online-learning approach for fast mode decision and CU size
decision and a decision tree based framework for fast intra-mode decision. Based on an ensemble
of online and offline random forests classifiers, Tahir et al. [10] proposed a systematic approach to
reduce the computational complexity of HEVC. Besides, Fu et al. [25] using a dual SVM to efficiently
select the CU size. Moreover, by jointly utilizing naive bayesian and SVM, Huang et al. [5] proposed
a novel fast intra-coding algorithm for HEVC to improve the intra-encoding speed. By using deep
learning, Chen et al. [12] proposed a learned fast HEVC intra-coding framework taking into account
the comprehensive factors of fast intra-coding to reach an improved configurable tradeoff between
coding performance and computational complexity.

3. Fundamental Knowledge on Bagged Tree

Because our approach aims at exceeding the existing fast algorithms by using bagged tree model,
a brief introduction of this machine learning technique is provided in this section.

Briefly, whether to split a CU or not is a binary problem. Many classifiers have been proposed to
solve it. Decision tree [26] is one of the most widely used machine learning technologies. It represents
a tree-like decision procedure for determining the class of a given instance. To illustrate this procedure,
let us consider Figure 2a. Decision tree classifier completes a classification task by using a tree structure,
in which each leaf node contains a class label and each father node contains a feature decision procedure
(i.e., feature value and threshold) as well as a branch to another node. In Figure 2a, Feature_n stands
for the nth feature of a sample to be classified and Threshold_n stands for the corresponding threshold.
According to this threshold, the classification process is completed. Besides, Class 1 and Class 2 are
target classes that a sample belongs to.

Compared to other machine learning algorithms, decision tree has its own advantages.
Firstly, decision tree is easier to understand and implement. Most importantly, the preparation
of train data for decision tree is always simple while other models usually request data normalization
such as deleting of the redundant or blank attributes. Especially, it can deal with large-scale data set in
a short period of time and is not sensitive with missing values.

However, it is easy for decision tree model to be overfitting. Decision tree is quite sensitive to the
specific data on which they are trained. If the training data is changed (e.g., a tree is trained on a subset
of the training data), the resulting decision tree can be quite different leading to different decisions.
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(a) (b)

Figure 2. Structures of decision tree and bagged tree. (a) a simple structure of a decision tree, in which
Feature_n represents the nth feature and Threshold_n is the corresponding threshold to make a decision.
Each leaf node represents a class label and each father node represents a judging process. (b) a structure
of bagged tree model. n is the number of decision trees used to make up a bagged tree, and DT_n
presents the nth decision model among them. Output_n is the output of the nth decision tree model,
and it is used to calculate the final output of bagged tree.

To address this problem, the bagged tree model is generated, in which advanced bagging
techniques and decision tree techniques are combined. In the training phase, it creates many random
sub-sets of training dataset generated with overlap. Then one decision tree model is trained by each
sub-set. Finally, all the decision tree models are combined to form a bagged tree model. For prediction,
the bagged tree model calculates and outputs the average of probabilities from each decision tree
model, as is shown in Figure 2b. In Figure 2b, DT_n is the nth decision tree classifier of all the classifiers
that make up bagged tree model. Output_n is the output of the nth decision classifier, and it is a value
of probability that a sample will be classified to the target class. In this way, the output of a bagged
tree model is calculated by using the following equation,

p =
p1 + p2 + p3 + ... + pNbags−1 + pNbags

Nbags
(1)

where Nbags is the number of decision trees in the bagged tree model. Final output of model is
calculated according to these Nbags decision trees. p is the average probability of Nbags decision trees
and also is the output of the bagged tree model. Similarly, α is another key parameter for the bagged
tree model. The size of trees in the bagged tree can be controlled through the parameter α. It influences
the maximal percentage of training data in the leaves, so in some sense it is reverse to the size of the
tree. The value of 1 produces a stump while the value of 0 represents a full tree. The following values
of α can be used in the training, i.e., 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.

4. Our Fast CU Partitioning Approach

As mentioned above, the CU partitioning procedure can be significantly accelerated by the
prediction of classifiers through picking some critical features of the current under-processing coding
unit. According to the probability output by the bagged tree classifier as well as the corresponding
thresholds, the proposed fast CU partitioning method determines whether the current CU should be
split or not. We describe the techniques used by our approach in following sections.

4.1. Framework of the Frame-Wise Beforehand Prediction

In HEVC intra-coding, the frames to be encoded are independent. Information from other frames
is not required when current frame is being encoded. As a result, we can take a strategy of beforehand
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prediction so that the CU partitioning prediction has been completed when the encoder is encoding
the last frame. Thus, a frame-wise prediction and encoding can be carried out without any feature
extraction and prediction overhead. The framework of the proposed frame-wise beforehand prediction
is shown in Figure 3. To the best of our knowledge, this parallel prediction strategy is proposed for the
first time in CU size decision fast algorithms.

Specifically, in intra-coding scenario, the frame-wise beforehand prediction approach prefetches
one frame and conducts feature analyses, in parallel with the currently coded frame. While it requires
more computing resources, the extra computing resources needed by beforehand prediction is much
less than that required by encoding an intra-frame. In this way, the complexity of feature extraction
and prediction is reduced by using a little more computing resources.

Figure 3. Framework of the proposed frame-wise beforehand prediction. Frame n represents the n-th
frame in a video sequence to be encoded. tn represents the time tn, at which the process happens.
Blocks in the same color happen at the same time.

4.2. Flowchart of the Proposed Bagged Tree Based Fast CU Size Determination Algorithm

Figure 4 shows the flowchart of the proposed fast CU size decision algorithm for video
intra-coding. As we can see from Figure 4, the proposed method is a recursive process. When it
comes to the process of a single CTU, the CTU will be regarded as a CU in depth 0. First, a judgement
that if the number of samples collected for adaptive threshold determination is reached will be taken.
The sample collection and threshold determination process will be described in details in Section 3.
Once the threshold values are decided, the splitting probability of current CU will be extracted,
and it will be fed to the label determination part as well as the thresholds of special depth. Then
the probability will be transferred to the split flag (the split decision) of a CU. The values 0, 1 and 2
(the output of the split flag judgement structure in Figure 4) represent non-split, split and uncertain
prediction which should check the true cost by RDO. If the split flag of a CU is 0, it will only check the
cost of the CU in current depth, and the searching procedure will be terminated. In this way, time spent
by RDO on next several depths can be saved. If the split flag of a CU is 1, the cost check of current
depth will be skipped and go straight into the next depth. Respectively, the time spent on finding
optimal cost in current depth will be saved. Due to the misclassification, there will be a number of
samples predicted to uncorrected class. Aiming at reducing the computational complexity in CU size
decision while maintaining the RD performance, we implement full RDO to CUs classified to class 2 so
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that we can get a precise RD cost. Note that the proposed algorithm for depth i is a recursive process.
This fast CU size decision will be executed until it reaches the maximal depth 3. In other words, CUs
of sizes 64 × 64, 32 × 32, 16 × 16 will be predicted by the proposed model. The minimal CUs of size 8
× 8 are processed by RDO automatically. The proposed algorithm only focuses on CU instead of PU.

Figure 4. Flowchart of the proposed BTFA. Value 0 of splitFlag represents a nonsplit decision of a CU,
while the values 1 and 2 are split and RDO decision, respectively.

In addition, the bagged tree model is trained offline in this proposed method. Because we not
only will not gain the complexity burden of the encoder, i.e., the training time spent overhead will not
be put to the encoder, but also can select high quality training samples to form our train dataset. We
collect various samples, for example, the samples in different resolution, different depth and various
scenes. As a result, we design different classifiers for different Quantization Parameters (QPs) and
resolutions. In other words, for each combination of QP (22, 27, 32, 37) and resolution class (A, B, C,
D, E), we generate an independent bagged tree model. So there are 20 models in total. Compared
with existing methods that employ one machine learning model for each CU size (64 × 64, 32 × 32,
16 × 16), our method is unique and simpler.

4.3. Feature Analysis And Extraction

Statistically, we have some prior knowledge for CU size decision. For instance, homogeneous
regions are more likely to be encoded in larger CUs. Regions with same attributes but in different
resolution sequences will be processed to different results. Larger CUs are more likely to be further
partitioned than smaller CUs, which shows depth information effects. With such observations, we can
derive a number of features. Moreover, to find out those most effective features, we first employ
features, which are commonly used in other works [9,27,28]. Then we extend the number of features
candidates to 32 totally. These features from different domains, i.e., spatial information, statistical
data, pre-encoding data and encoding parameters, are listed in Table 1. We will describe these feature
candidates in details as follows.
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Table 1. Feature candidates taken into account

Index Feature Candidates Feature Description

1 m_varMeanSub variance of four sub CUs’ mean
2 m_varVarSub variance of four sub CUs’ variance
3 m_aveCBF average value of current CU’s Coded Block Flag
4 m_nbCtuAboRd RD cost of current CU’s above CTU
5 m_nbCtuLe f Rd RD cost of current CU’s left CTU
6 m_nbCtuAblRd RD cost of current CU’s above left CTU
7 m_nbCtuAbrRd RD cost of current CU’s above right CTU
8 m_nbCtuAboDepth depth of current CU’s above CTU
9 m_nbCtuLe f Depth depth of current CU’s left CTU
10 m_nbCtuAblDepth depth of current CU’s above left CTU
11 m_nbCtuAbrDepth depth of current CU’s above right CTU
12 totalCost total cost of current CU encoded with planar
13 totalDistortion total distortion of current CU encoded with planar
14 totalBins total bins of current CU encoded with planar
15 m_costHadamard hadamard cost of planar mode
16 m_sadHadamard distortion of residual after hadamard transfer
17 m_bitsHadamard hadamard bits of planar mode
18 m_edgeSobel edge detection result using Sobel
19 m_nmse mean square error of neighbor pixels
20 m_dcom mean of gradients of four directions
21 m_numInterestPoint number of interesting points of current CU
22 m_haarSumx sum of horizontal value after Haar wavelet transfer
23 m_haarSumy sum of vertical value after Haar wavelet transfer
24 m_haarSumxy sum of diagonal value after Haar wavelet transfer
25 m_haarSumAbsx sum of horizontal absolute value after Haar
26 m_haarSumAbsy sum of vertical absolute value after Haar
27 m_haarSumAbsxy sum of diagonal absolute value after Haar
28 m_meanMain mean of current CU
29 m_varMain variance of current CU
30 depthClass1 if current depth is 0
31 depthClass2 if current depth is 1
32 depthClass3 if current depth is 2

For features related with spatial information, we extract 8 feature candidates, i.e., from No. 4
to No. 11 as shown in Table 1. For CU to be determined, we extract RD cost and average depth
of its neighboring CTUs (above, left, above left and above right). These values are presented as
m_nbCtuAboRd and m_nbCtuAboDepth, etc.

Besides, we also calculate some statistical data as our feature candidates. In Table 1, No. 1, No. 2
and the candidates from No. 18 to No. 29 are all statistical data. To analyze the relationship between
splitting result and block flatness, we calculate its corresponding mean value and variance value.
They are No. 28 and No. 29 in Table 1. HEVC adopts a quad-tree based CU partitioning structure,
so the difference between the single CU and it’s four sub-CUs will make an effort to the partitioning
decision. We use the variance of the mean of sub-CUs to measure the texture of current CU. Specifically,
we calculate four means of four sub-CUs, then derive the variance of these four means according to
the following equations.

meanSub =
1
n

n−1

∑
i=0

pi (2)

m_meanMain =
1
4

3

∑
i=0

meanSubi (3)

m_varMeanSub =
1
4

3

∑
i=0

(meanSubi − m_meanMain)2 (4)
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m_varMain =
1
n

n−1

∑
i=0

(pi − m_meanMain)2 (5)

where pi is the luminance value of the ith pixel. meanSub is the mean of pixels among a sub-CU.
Moreover, m_meanMain is the whole pixels mean of four sub-CUs.

Used by many works [9,27,28], the variance of the variances of four sub-CUs, i.e., m_varVarSub,
also can reflect the correlation among these four sub-CUs. m_varVarSub is calculated according to the
following equations.

varSub =
1
n

n−1

∑
i=0

(pi − meanSub)2 (6)

meanVarSub =
1
4

3

∑
i=0

varSubi (7)

m_varVarSub =
1
4

3

∑
i=0

(varSubi − meanVarSub)2 (8)

For m_edgeSobel, it is a result of edges detection by using the Sobel operator. Two traditional Sobel
filters (i.e., horizontal and vertical) are employed, which are shown in Figure 5b,c. They are applied on
each block of size 3 × 3 with overlap in current CU, as shown in Figure 5a. Furthermore, we extend
the Sobel filters with two more directions (i.e., 45◦ and 135◦), which are Figure 5d,e. m_edgeSobel is
calculated by the following equations.

gh = −a − 2b − c + g + 2h + i (9)

gv = −a − 2d − g + c + 2 f + i (10)

g45 = 2a + b + d − f − h − 2i (11)

g135 = b + 2c − d + f − 2g − h (12)

m_edgeSobel =
1

(N − 2)2

(N−2)2

∑
k=0

((
gk

h

)2
+
(

gk
v

)2
)1/2

(13)

where N is the size of current CU (64, 32 or 16), and k is the kth block of size 3 × 3 in current CU.

Figure 5. Sobel filters among different directions. (a) an example of original pixels for a 3 × 3 block
within a CU. (b) a horizontal edge filter. (c) a vertical edge filter. (d,e) the extended filters for 45◦ and
135◦, respectively.

We also reuse the features proposed by other works [9], for instance, m_nmse as well as m_dcom.
They are calculated as follows:

p̄i,j =
1
8

 pi−1,j−1 + pi−1,j + pi−1,j+1
+pi,j−1 + pi,j+1
+pi+1,j−1 + pi+1,j + pi+1,j+1

 (14)
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m_nmse =
1

N2

N−1

∑
i=0

N−1

∑
j=0

(
pi,j − p̄i,j

)2 (15)

m_dcom =
1

(N − 2)2

(N−2)2

∑
k=0

(∣∣∣gk
h

∣∣∣+ ∣∣∣gk
v

∣∣∣+ ∣∣∣gk
45

∣∣∣+ ∣∣∣gk
135

∣∣∣) (16)

where pi,j is the luminance pixel value at location (i, j) in current CU, and k is the same as above.
To some degree, the splitting result may be also in connection with the number of interest points

within current CU. As a result, we calculate the number of interest points with the method of interest
point detection mentioned in [29]. Feature m_numAveInterestPoint represents the average number of
interest points for each pixel among a CU. It reflects how much attention people would pay to a CU
and how many details a CU contains. The three filters in Figure 6 are used on each pixel among current
CU, and three corresponding results Dxx, Dyy, Dxy are obtained as filter responses in the horizontal,
vertical, and diagonal directions, respectively. We use Equations (17)–(19) to obtain the final value of
feature m_numAveInterestPoint for current CU. Equations (17)–(19) are as follows:

P (i, j) =
∣∣∣DxxDyy −

(
0.9Dxy

)2
∣∣∣ (17)

B (i, j) =

{
0, P (i, j) < t
1, P (i, j) ≥ t

(18)

m_numAveInterestPoint =
1

N2

N−1

∑
i=0

N−1

∑
j=0

B (i, j) (19)

where P(i, j) is the interest value of pixel located at (i, j). B(i, j) is the boolean value of being decided to
be an interest point for pixel (i, j). Moreover, t is the threshold for judging interest point. N is the size of
current CU, 64, 32 or 16. Because the original interest points detection method uses more complicated
filters to obtain P(i, j), which is time consuming, the relative weight 0.9 is used to minimize the errors
between them.

Figure 6. Three filters used in interest point detection for horizontal, vertical and diagonal direction.
Dxx is the horizontal filter, Dyy is the vertical filter and Dxy is used to detect diagonal interest points.
Each filter is performed on every pixel in a CU with overlap.

Authors in [29] also proved that Haar wavelet convolution can reflect the texture information
more precisely. As for features extracted from Haar wavelet, because the traditional Haar wavelet
transform only processes information along the horizontal and vertical directions, we extend it with
diagonal direction. These three Haar filters of different directions are shown in Figure 7b–d. Figure 7a
is an example of pixel values for a 2 × 2 pixel block. For example, the response of the horizontal filter
on a 2 × 2 pixel block is calculated as follows:

dx = a + b − c − d (20)
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Figure 7. Haar filters for different directions. (a) An example of an original 2 × 2 pixel block, on which
each Haar filter is performed. (b) The horizontal Haar filter, (c) the vertical Haar filter and (d) the
diagonal Haar filter; (b–d) will be applied on a, b, c and d to generate the corresponding Haar responses
of different directions.

For a target CU, it is split up regularly into 2 × 2 non-overlapped sub-squares. Then we perform
Haar wavelet on each 2 × 2 square to generate its corresponding responses on three different directions
(i.e., dx, dy and dxy) using the filters in Figure 7b–d. Take m_haarSumx and m_haarSumAbsx for
examples, they are calculated by:

m_haarSumx =
1(

N
2

)2

( N
2 )

2−1

∑
k=0

dk
x (21)

m_haarSumAbsx =
1(

N
2

)2

( N
2 )

2−1

∑
k=0

∣∣∣dk
x

∣∣∣ (22)

where N is the size of current CU (64, 32 or 16), and k is the kth non-overlapped block of size 2 × 2 in
current CU. dk

x represents the value dx of the kth sub-square.
Furthermore, we pre-encode the current CU with PLANAR mode, so that we extract 7 features

based on pre-encoding results. As is shown in Table 1, m_aveCBF is the Coded Block Flag(CBF)
of current CU encoded with PLANAR mode. Besides, totalCost, totalDistortion and totalBins are
the cost, distortion and number of bits, respectively. Moreover, m_costHadamard, m_sadHadamard,
m_bitsHadamard are the Hadamard encoding related cost, square absolute difference, number of
bits, respectively.

We design their classifiers for each QP (22, 27, 32, 37) as well as each resolution class (A, B, C, D,
E) instead of on the depth level. Considering the influence of CU depth, we introduce depth related
feature candidates, which are represented as depthClass1, depthClass2 and depthClass3 in Table 1.

To measure the contributions of these feature candidates, our bagged tree based approach can
automatically rank features during training phase. The ranking results are generated according to
the importance score of each attribute. The importance score of a feature in a bagged tree model is
calculated by averaging all the importance scores in individual decision tree models. Moreover, it is in
the range of 0 to 1. The importance score of an attribute in a single decision tree model is calculated
according to how many times this feature is used on each node to generate a tree. Specific methodology
on how to generate the importance scores is presented in [30].

Figure 8 shows the importance value of each feature for different bagged tree models. It is obvious
that several features with high importance value distribute intensively around Nos. 2 , 3, 8, 9, 19, 21
and No. 25–No. 30. It proves that numbers of features among 32 feature candidates are not necessary.
While there are common features existing among the top several features for each model, the number
of common features is not big enough. Hence we can not achieve a satisfactory result according to
these common features. As a result, it is necessary to select different features for each classifier to
achieve the best results, and this is also the motivation of designing one classifier for video sequences
in the same resolution and QP value.

As we all know, the more features we use to train a model, the more precise results we can
get, while the time spent on feature extraction increases. So we can make a tradeoff between
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accuracy and time saving by controlling the number of active features. Observing from Figure 8,
we conclude that the importance value keeps in a relatively high level for the top 10 features in each
classifier. The importance value of other features remains small, which means they will not make much
contribution to a better result but increasing time overhead. As a result, we pick top 10 key features as
the final feature set for each classifier.

Figure 8. Importance values of 32 feature candidates for 20 classifier models. Axis x is the categories
of a bagged tree model, e.g., 22-A is the bagged tree model trained for sequences in QP 22 and
resolution class A. Axis y represents features whose serial number is the corresponding index in Table 1,
e.g., feature of No. 15 is m_costHadamard.

4.4. Training Data Generation

In order to collect representative samples and generate a training set of high diversity, we select
five sequences from the standard test set. They are PeopleOnStreet (Class A 2560 × 1600), Cactus (Class
B 1920 × 1080), BasketballDrill (Class C 832 × 480), RaceHorses (Class D 416 × 240) and Johnny (Class
E 1280 × 720), respectively. Each of these sequences is encoded under four QPs (22, 27, 32, 37). In this
way, the features and the corresponding ground truth of split flag are collected. To balance the samples
of different depths and labels, we randomly select 6000 samples, whose label is split, from depth 0.
Then we also select 6000 samples labelled non-split for depth 0. In case, the total number of samples
of the specified label can not reach the number of samples we want to extract, for example there are
only n (n is smaller than 6000) samples labelled non-split, and all the n samples will be extracted.
Then, to balance the samples of different labels, we also extract n samples whose label is split. In this
way, 12,000 samples (this number will be smaller, if the number of samples in a class is smaller than
6000) are extracted for each depth. The samples from depth 1 and depth 2 are generated in the same
way. So we can generate a dataset consisting of 36,000 samples for one bagged tree model. As a result,
there are 20 data sets in total, each of which is for a model of a certain QP and resolution class.

4.5. Bagged Tree Design

After getting the splitting probability of a CU, we can decide that if current CU should be split
or not. Traditional bagged tree classifier usually generates the final predicted labels by implying one
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threshold on the output probability. In this way, it will generate a classification edge between two
classes as shown in Figure 9a. Setting the threshold as 0.5, we calculate the prediction accuracy of
different depths on our datasets. Statistical results are shown in Table 2. It can be observed from
Table 2 that the average accuracy of the traditional bagged tree model for depth 0 is 92.65%, and it’s
85.05% and 79.40% for depth 1 and 2, respectively.

Table 2. prediction accuracy of CUs in different depth.

Prediction Accuracy
Class Sequence QP Depth0 Depth1 Depth2

22 86.80% 82.50% 79.71%
27 91.76% 84.19% 77.35%
32 87.36% 82.63% 70.05%A Traffic

(2560 × 1600)
37 79.17% 79.19% 75.00%

22 86.34% 81.17% 77.65%
27 88.66% 85.14% 77.27%
32 88.50% 83.98% 75.33%B ParkScene

(1920 × 1080)
37 85.77% 79.99% 74.54%

22 99.87% 91.39% 70.84%
27 99.49% 77.89% 70.74%
32 98.33% 74.36% 77.40%C BasketballDrill

(832 × 480)
37 92.27% 76.83% 84.23%

22 99.91% 91.29% 85.90%
27 98.86% 93.10% 90.86%
32 98.24% 94.42% 91.09%D BQSquare

(416 × 240)
37 96.65% 94.68% 91.35%

22 93.17% 85.04% 80.85%
27 94.20% 89.54% 79.88%
32 94.88% 88.55% 79.46%E FourPeople

(1280 × 720)
37 92.86% 85.06% 78.47%

Average 92.65% 85.05% 79.40%

(a) two-output classifier (b) three-output classifier

Figure 9. Classification edge of binary output and three-output classifiers. Class 0 represents
non-split CUs, while class 1 represents splitting and class 2 is the CU category in which rate-distortion
optimization (RDO) is performed. Red line is the classification edge between different categories.

To improve the prediction accuracy, we model the CU partitioning process as a three-class
classification problem through using the probability output by the bagged tree and the thresholds we
set. Instead of using two classifiers to complete this task, we only imply one bagged tree model with
two threshold to achieve this. Hence we can enhance the prediction accuracy as well as simplifying
the complexity.

Figure 9b shows the example classification edges of the three-output classifier proposed by us.
In Figure 9, Class 0 represents non-split and class 1 stands for split. As for other samples which are
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predicted to neither class 0 nor class 1, we put them into class 2, which are going to be processed with
RDO. By controlling the classification edges, we can tell the precision of class 0 and class 1 is improved,
and the encoding performance also improves.

Obviously, two corresponding thresholds are needed to generate two edges in Figure 9b. In the
proposed approach, the edge between class 0 and class 2 is generated by comparing a low threshold
(represented as TL) and a possibility output by bagged tree model. Similarly, we generate the edge
that divides class 1 and class 2 by comparing the possibility with a high threshold (as known as TH).
In this way, the final label of a CU is decided. Equation (23) shows how to label a CU according to the
related probability and thresholds, it is shown as follows:

splitFlag =


0(nonsplit), p < TL
1(split), p ≥ TH
2(RDO), otherwise

(23)

where splitFlag is used to represent the predicted labels of a CU.
As described in Section 3-B, different actions are carried out for CUs which are predicted to

different classes. However, RDO is time consuming so that the more the samples of class 2 have,
the more time the encoding process takes. Obviously, we can control encoding time and accuracy
by controlling the two classification edges of a classifier. If we increase TH, the number of samples
predicted to class 1 decreases while the number of samples predicted to class 2 increases. Similarly, if we
decrease TL, less samples are predicted to class 0 but more samples are predicted to class 2. Moreover, in
any condition of these two cases, the encoding performance both improves, because more correct
predictions are generated in whichever case.

4.6. Adaptive Threshold Determination

In this paper, we apply only one bagged tree model on video sequences that are in the same
resolution and QP value. Because false predictions at different CU depths will lead to a different
increase of BD-rate loss as well as encoding time, we can not implement the same TH and TL on CUs
in different depths, even in the same sequences. Thus, for CUs from the same sequence but in different
depths, a classifier must have the corresponding individual thresholds. Moreover, we denote TL and
TH for depth 0 as TL0 and TH0, similarly, TL1 and TH1 for depth 1, TL2 and TH2 for depth 2.

Table 3 shows the confusion matrix of the proposed bagged tree classifier. Because RDO performed
on CUs in class 2 doesn’t bring BD-rate loss, only class 0 and class 1 are considered. In Table 3, TN is
the number of CUs that are correctly classified as Class 0. FP is the number of CUs that are falsely
classified as Class 1. Similarly, FN and TP are the number of CUs whose ground truth is class 1,
while they are falsely classified and correctly classified, respectively. We can derive that the number
of CUs labeled as Class 0 is TN+FP, and the number of CUs, whose true labels are 1, is FN+TP.
According to numerous of experiments, we find that FP decreases as TL decreases in each depth.
Besides, FN decreases as we increase TH. As expected, we can improve the accuracy by adjusting TH
and TL for each depth. However, we achieve less time saving, because we carry out full RDO for these
CUs whose splitting probability is between TL and TH. As a result, the more CUs classified to class 2
are, the more RDO process is carried out.

Table 3. Confusion matrix of the proposed bagged tree model

Predicted Label

0 1

True
Label

0
true

negative(TN)
false

positive(FP)

1
false

negative(FN)
true

positive(TP)
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To maintain sufficient prediction accuracy, we propose an adaptive threshold determination
method to calculate these six thresholds (TL0, TH0, TL1, TH1, TL2 and TH2) for each video sequence
to be encoded. In this method we adaptively calculate TL and TH of each depth by using negative
misclassification rate (denoted as MCRL) and positive misclassification rate (denoted as MCRH).
MCRL and MCRH can be calculated according to the following equations.

MCRL = FN
FN+TP (24)

MCRH = FP
TN+FP (25)

Obviously, TH and TL for each CU depth must be calculated before activating the proposed fast
CU splitting approach in video encoding process. We first use RDO to encode the first 256 CTUs of a
video sequence, which contains 1024 CUs of depth 1 as well as 4096 CUs of depth 2, and the splitting
probabilities are calculated by our bagged tree model in the mean time. In this way, the splitting
probabilities and the corresponding ground truths for CUs in the same depth are collected as the
samples. They are denoted as P and GT in Figure 10. Figure 10 shows that how TL and TH for a
certain depth are calculated from these samples.

Figure 10. Flowchart of adaptive thresholds calculation method. P is the splitting probabilities of
samples, and it is the output of classifier. T is possible thresholds used to generate a predicted CU label.
PL represents the predicted labels of samples, and it is transferred from P with T. GT is the ground
truth of samples. Part I is the mapping process from the probabilities to the predicted labels. Part II
is the confusion matrix calculation process according to PL and GT. Part III illustrates the thresholds
determination according to misclassification rates with corresponding thresholds. Blocks in the same
color are the results generated under the same value of T.

Using a threshold, we can transfer the splitting possibility calculated by the bagged tree model to
a CU’s predicted label, and it is illustrated in Part I of Figure 10. Generally, there will be a number
of samples predicted falsely, and so the confusion matrix is generated. First, we go through all the
possible thresholds (denoted as T) from 0 to 1 with step 0.0005, i.e., 0, 0.0005, 0.001, . . . , 0.9990, 0.9995,
1, and calculate the corresponding MCRL and MCRH (shown as MCRL1, MCRL2, MCRH1, MCRH2
and so on in Figure 10). The calculation process is shown in Part II of Figure 10. Then according
to the preset thresholds th_MCRL and th_MCRH, we pick the highest probability whose MCRL
is smaller than th_MCRL as the final low threshold TL. Similarly, the lowest probability whose
MCRH is smaller than th_MCRH is chosen as the final high threshold TH. In this way, the encoder
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can adaptively calculate TL and TH of each depth for every video sequence only by using of two
parameters th_MCRL and th_MCRH. The adaptive thresholds determination process is shown in Part
III of Figure 10, and its mathematical expression is shown as following equations.

TL = max (T) s.t.MCRL ≤ th_MCRL (26)

TH = min (T) s.t.MCRH ≤ th_MCRH (27)

For CUs in depth 1 and 2, we will execute this process so that we get 4 thresholds in total (TH1
and TL1 for depth 1, TH2 and TL2 for depth 2). According to Table 2, we do not imply the adaptive
threshold determination process for depth 0, because the accuracy of depth 0 is high enough and the
additional process will not bring too much improvement. As a result, TH and TL for depth 0 (i.e.TH0,
TL0 ) are set to 0.5 directly.

In summary, the encoder can adaptively decide TH and TL for depth 1 and 2 by processing the
data collected from the samples encoded before the start of the proposed approach. We only need to
set two misclassification rates th_MCRL and th_MCRH, which work for both depth 1 and 2. However,
their value settings need sufficient experience.

5. ABTFA

For BTFA, an adaptive thresholds determination algorithm is proposed to calculate TL1, TH1,
TL2 and TH2 according to the coding results of several beginning frames of current video sequence.
However, in some cases including fast motion, the thresholds calculated according to the several
beginning frames may not suit for the whole video sequence. Besides, a proper thresholds setting
requires many experiences to achieve a certain BD-rate loss or a target time saving. To address
this problem, we upgrade BTFA to the advanced bagged tree based fast algorithm (ABTFA),
with which more general thresholds are calculated according to the analysis of training sequences.
Furthermore, using ABTFA, we can calculate optimal thresholds satisfying a certain constraint,
i.e., a target BD-rate loss or a target time saving.

First, we use the encoder, in which the bagged tree based fast algorithm without adaptive
thresholds determination algorithm is implied, to encode the five sequences in training set. As for
the thresholds TL1, TH1, TL2, TH2, their values are picked from their domain with step 0.1.
Specifically, TL1 and TL2 are set to be 0, 0.1, 0.2, 0.3, 0.4, 0.5 one by one, while TH1 and TH2
are set to be 0.5, 0.6, 0.7, 0.8, 0.9, 1. In this way, we obtain 6 × 6 × 6 × 6 = 1296 thresholds combinations,
and the videos in the training set are encoded with each of these combinations. Finally, 1296 pairs of
BD-rate loss and time saving are generated under the corresponding thresholds. The 3-D surface in
Figure 11 shows the relationship among them. For the purpose of visualization, only BD-rate loss and
time saving with respect to TL1, TH1 as well as TL2, TH2 are shown in Figure 11, because we can not
visualize the surface of a 5-D space.
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Figure 11. Surface of Bit-Distortion (BD)-rate loss and time saving in the training set with respect to
TL1, TH1 and TL2, TH2. (a) the surface of BD-rate loss with respect to TH1 and TL1. (b) the surface
of time saving with respect to TH1 and TL1. (c) the surface of BD-rate loss with respect to TH2 and
TL2. (d) the surface of time saving with respect to TH2 and TL2.

According to the experiments on the training sequences, the exact mathematical relationship
among the BD-rate loss and four variables (TL1, TH1, TL2, TH2), as well as that of time saving and
these four variables can be explored. In Equation (28), f (x) is used to represent the function between
BD-rate loss and TL1, TH1, TL2, TH2. Similarly, the function g(x) represents the relation between
time saving and TL1, TH1, TL2, TH2. Function f (x) and g(x) are shown as follows.

bitrateLoss = f (x) = f (TL1, TH1, TL2, TH2) (28)

timeSaving = g(x) = g(TL1, TH1, TL2, TH2) (29)

Due to the nonlinear relation of these variables, we use neural network to fit these data points
generated from massive experiments. The structure of the neural network used by us is shown in
Figure 12. Only two layers are implied and the number of neurons in hidden layer is set to be 10.
Given consistent data and enough neurons in its hidden layer, a two-layer feed-forward network
with Sigmoid hidden neurons and linear output neurons (fitnet), can fit multi-dimensional mapping
problems arbitrarily well. The network will be trained with Levenberg-Marquardt backpropagation
algorithm (trainlm), unless there is not enough memory, in which case the scaled conjugate gradient
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backpropagation (trainscg) will be used. As a result, we generate two mathematic modules after the
neural network training. One module is f (x) and the other is g(x).

Figure 12. Structure of neural network used to fit the mathematical relation among BD-rate
loss, time saving and thresholds. Number under blocks represents the number of neurons in
corresponding layer.

As we can see from Figure 11, BD-rate loss (the less the better) increases with the increment of
time saving (the more the better). In real applications, there usually is an exact constraint of BD-rate
loss or time saving, which can not be achieved by setting thresholds roughly. On the one hand, for a
given upper bound of BD-rate loss, we want to maximize the time saving. On the other hand, we also
want to minimize the BD-rate loss for a given lower bound of time saving. They can be modeled as the
following optimization problem.

TL1, TH1, TL2, TH2 = arg max
TL1,TH1,TL2,TH2

g(x)

s.t. f (x) < BLtar

(30)

TL1, TH1, TL2, TH2 = arg min
TL1,TH1,TL2,TH2

f (x)

s.t.g(x) > TStar

(31)

where BLtar is the target BD-rate loss, i.e., the upper bound of BD-rate loss and TStar is the target time
saving which should be achieved.

To calculate the optimal thresholds TL1, TH1, TL2, TH2, which satisfy the conditions above,
the Matlab function f mincon() is used to solve the above optimization problems. As a result, once given
a target BD-rate loss or time saving, the optimal thresholds can always be found to meet the constraints.
Thus, using ABTFA, we can not only maximize the time saving according to a constraint of BD-rate
loss exactly, but also can minimize the BD-rate loss according to a given time saving constraint.

6. Experiments

To verify this proposed fast CU splitting algorithms BTFA and ABTFA, we implement them on
the reference HEVC platform HM16.7. In our experiments, the sequences of HEVC standard test sets,
whose resolutions are 2560 × 1600 (Class A), 1920 × 1080 (Class B), 832 × 480 (Class C), 416 × 240
(Class D), 1280 × 720 (Class E), are encoded to verify the performance. Coding parameters such
as number of frames to be encoded are set as default [31]. Besides, all-intra-main configuration is
adopted and all the frames are encoded as intra-frames. The bit distortion rate (denoted as BD-rate) is
employed to evaluate the coding performance of the proposed method. Simulations are executed on a
windows 10 64-bit operating system workstation with Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00 GHz
and 3.00 GHz (2 processors), 64.0 GB. Experiments are taken under QPs 22, 27, 32, 37, respectively.
Besides, the time saving ratio denoted by TS is used to measure complexity reduction of encoding
methods. It is defined as

TS =
timeori − timepro

timeori
× 100% (32)

where timeori denotes the time spent by the original HM16.7 encoder. Moreover, timepro is the time
spent by the encoder on which the fast algorithm is implemented.
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We use α and Nbags to control the size and the number of the trees, respectively. α is set as
0.01, 0.01, 0.01, 0.01, Nbags is set to be 50 for QP values 22, 27, 32, 37. As for the adative threshold
determination in BTFA, it is only implied on depths 1 and 2, and TH_MCRL, TH_MCRH are set
separately for the corresponding depths 1, 2. TH and TL for depth 0 are both set to be 0.5.

6.1. Experiment Results Of BTFA

Table 4 shows the BD-rate loss and the time saving achieved at each test sequence encoded by the
encoder on which BTFA is implemented. Different combinations of the values for MCRL1, MCRH1,
MCRL2 and MCRH2 are set for comparison. Specifically in Table 4, five groups of their values are
tested. Respectively, they are [0.02, 0.03, 0.02, 0.03] as group one (G1), [0.07, 0.03, 0.07, 0.03] as group
two (G2), [0.02, 0.08, 0.02, 0.08] as group three (G3), [0.07, 0.08, 0.02, 0.08] as group four (G4) and [0.02,
0.08, 0.07, 0.08] for group five (G5). Besides, for the value set of [0.05, 0.05, 0.05, 0.05] (namely group
6 denoted as G6), its result is discussed in Section 6.3. The thresholds of misclassification rates (i.e.,
MCRL1, MCRH1, MCRL2 and MCRH2) influence the rate distortion and the complexity reduction.
Results in Table 4 confirm the influence. As we can see, with the general increase of thresholds for
misclassification rate, BD-rate loss and time saving increase proportionally.

Table 4. BD-rate loss and time saving results of bagged trees based fast approach (BTFA) under different
threshold groups.

Class Sequence
BTFA-G1 BTFA-G2 BTFA-G3 BTFA-G4 BTFA-G5

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rrate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A
Traffic 0.57 31.82 0.72 38.26 0.91 35.43 1.03 40.09 0.97 38.54

PeopleOnStreet 0.50 30.34 0.58 34.90 1.11 35.48 1.16 38.06 1.15 38.67
Average 0.53 31.08 0.65 36.58 1.01 35.46 1.09 39.07 1.06 38.61

B

Kimono 1.98 55.95 2.00 57.31 3.31 58.51 3.32 59.23 3.33 58.95
ParkScene 0.35 31.01 0.48 37.61 0.57 35.21 0.67 39.69 0.63 37.84

Cactus 0.57 34.80 0.84 42.33 0.89 39.50 1.11 44.95 0.99 42.50
BasketballDrive 1.58 41.25 1.70 46.44 2.35 45.17 2.46 49.09 2.40 47.85

BQTerrace 0.52 39.09 0.68 45.46 1.06 44.31 1.09 46.88 1.18 49.22
Average 1.00 40.42 1.14 45.83 1.64 44.54 1.73 47.97 1.71 47.27

C

BasketballDrill 0.23 25.41 0.51 30.91 0.46 28.88 0.67 33.24 0.55 31.30
BQMall 0.31 32.12 0.97 41.52 0.45 35.01 0.97 41.52 0.63 38.96

PartyScene 0.49 30.47 1.56 37.56 0.51 34.34 1.36 37.68 0.79 38.95
RaceHorses 0.28 36.74 0.58 45.85 0.38 40.39 0.60 47.49 0.50 43.71

Average 0.33 31.18 0.90 38.96 0.45 34.66 0.90 39.98 0.62 38.23

D

BasketballPass 0.17 29.36 0.40 36.59 0.47 32.27 0.67 36.34 0.57 35.14
BQSquare 0.35 35.46 1.26 40.00 0.41 36.79 1.18 38.64 0.57 39.25

BlowingBubbles 0.01 22.70 0.16 25.76 0.05 25.07 0.14 25.95 0.11 26.93
RaceHorses 0.25 27.20 0.82 33.29 0.29 30.11 0.73 33.76 0.48 32.86

Average 0.20 28.68 0.66 33.91 0.31 31.06 0.68 33.67 0.43 33.55

E

FourPeople 0.34 37.18 0.74 44.96 0.89 41.87 1.14 47.65 1.08 45.87
Johnny 0.91 55.17 1.32 61.62 2.15 58.49 2.38 63.13 2.41 62.23

KristenAndSara 0.86 49.10 1.21 56.38 1.89 52.56 2.09 58.57 2.19 55.90
Average 0.70 47.15 1.09 54.32 1.65 50.97 1.87 56.45 1.89 54.67

Overall Average 0.57 35.84 0.92 42.04 1.01 39.41 1.26 43.44 1.14 42.48

G1 represents group 1 for values of MCRL1, MCRH1, MCRL2 and MCRH2, and it is set as [0.02, 0.03, 0.02,
0.03]. G2 is [0.07, 0.03, 0.07, 0.03]. G3 is [0.02, 0.08, 0.02, 0.08]. G4 is [0.07, 0.08, 0.02, 0.08]. G5 is [0.02, 0.08,
0.07, 0.08].

Compared to the results of G1, G2 achieves more time saving with the sacrifice of little BD-rate
loss. Moreover, the difference of thresholds is only 0.05 increase of MCRL1 and MCRL2. Furthermore,
when we increase 0.05 to the values of MCRH1 and MCRH2 in G1 (so G3 is generated), similar
increments of BD-rate loss and time saving occur. However, when having a close-up view of the
performance change of G2 and that of G3, we observe that the time saving of G2 increases more. It
shows that the same change of the values for low misclassification rate thresholds takes more effect



Electronics 2020, 9, 1523 20 of 28

on time saving than that for high misclassification rate thresholds. Because once a CU is predicted
to be nonsplit, the encoding check of all its corresponding sub-CUs will be skipped. As a result,
the misclassification of class 0 influences the encoding time wider than that of class 1.

Compared with G3, the value of MCRL1 for G4 is increased by 0.05. As a result, the BD-rate loss
and the time saving of G4 both increase. Similarly, only the value of MCRL2 in G5 is increased by 0.05
compared to that in G3. However, the BD-rate loss under G4 is higher than that under G5, and the
time saving also changes more. It means that the influence brought by the change of misclassification
rate thresholds for depth 1 is greater than that for depth 2. This is because sub-CUs under a CU of
depth 1 outnumbers sub-CUs under a CU of depth 2, and the effect of changing MCRL1 and MCRH1
is bigger than that of changing MCRL2 and MCRH2. It reminds that smaller values of MCRL1 and
MCRH1 should be prioritized when possible.

6.2. Experiment Results Of ABTFA

With ABTFA, we can calculate proper thresholds of TL1, TH1, TL2 and TH2 under a given target
BD-rate loss or time saving according to Equations (30) and (31). To verify the feasibility and the
accuracy of ABTFA, rate-distortion and encoding time under different constrains are shown in Table 5.
As we can see, when BLtar is set to be 0.6%, the results of BD-rate loss vary from 0.06% to 1.67%,
and the average value of BD-rate loss is 0.68%, which is 0.08% higher than BLtar. To achieve a higher
encoding time reduction with a sacrifice of bit-rate, BLtar is set to be 0.9%, which is shown in the last
two columns of Table 6. The difference between BD-rate loss results and BLtar is as low as 0.06%.
Meanwhile, the encoder achieves a satisfactory value as high as 47.87%. Besides, when the value of
TStar is set to be 45% and 50% as shown in Table 5, the encoding time is reduced by 46.15% and 57.11%
while the BD-rate loss is 1.27% and 2.45%, respectively. While there is still some bias between encoding
results and target constrains, the errors in terms no matter of BD-rate loss or time saving are both
acceptable. Obviously, the samples used to generate regression models (i.e., f (x) and g(x)) can not
reflect the relations in all video sequences, so we can only achieve the results around the target value
rather than precise ones. In short, experimental results show that the proposed ABTFA works well
on calculation thresholds for each depth according to a certain constraint. This also means that the
encoder can achieve the results according to the people’s requirement without requests of additional
thresholds setting experience.

Table 5. BD-rate loss and time saving of advanced bagged trees based fast approach (ABTFA) under
different target BD-rate loss constraint and target time saving constraint.

Class Sequence

ABTFA
BLtar = 0.6%

ABTFA
TStar = 45%

B
TStar = 50%

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A

Traffic 0.94 32.87 1.74 44.64 3.49 62.12
PeopleOnStreet 0.91 32.04 1.75 43.68 3.01 54.99

Average 0.92 32.45 1.74 44.16 3.25 58.55

B

Kimono 1.23 56.05 1.87 66.80 3.36 78.40
ParkScene 0.63 32.95 1.12 44.18 2.40 61.01

Cactus 0.89 34.42 1.43 45.07 2.74 60.30
BasketballDrive 1.67 43.17 2.58 55.22 4.38 67.74

BQTerrace 0.79 39.32 1.09 46.53 1.60 54.03
Average 1.04 41.18 1.62 51.56 2.89 64.30

C

BasketballDrill 0.25 24.53 1.14 39.10 3.71 58.12
BQMall 0.38 32.25 1.12 44.21 2.55 57.08

PartyScene 0.10 31.57 0.36 36.99 0.85 43.47
RaceHorses 0.41 39.26 0.96 51.76 1.85 62.84

Average 0.28 31.90 0.89 43.02 2.24 55.38
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Table 5. Cont.

Class Sequence

ABTFA
BLtar = 0.6%

ABTFA
TStar = 45%

B
TStar = 50%

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

D

BasketballPass 0.20 30.91 0.82 41.44 1.76 49.75
BQSquare 0.08 30.03 0.21 35.36 0.42 39.52

BlowingBubbles 0.06 25.82 0.25 30.36 0.51 34.56
RaceHorses 0.16 30.29 0.60 37.91 1.31 45.56

Average 0.13 29.26 0.47 36.27 1.00 42.35

E

FourPeople 1.15 36.20 1.85 47.20 3.06 59.58
Johnny 1.26 54.97 2.15 63.23 3.69 70.82

KristenAndSara 1.15 46.71 1.78 57.04 3.35 68.15
Average 1.19 45.96 1.93 55.82 3.37 66.19

Overall Average 0.68 36.30 1.27 46.15 2.45 57.11

Table 6. BD-rate loss and time saving comparison between the proposed BTFA, ABTFA
and state-of-the-art.

Class Sequence
DDET FADT FARF DA-SVM BTFA-G6 ABTFA

( BLtar = 0.9)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rrate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A
Traffic 0.72 39.75 1.27 38.96 0.90 44.80 0.98 45.69 0.80 38.06 1.01 48.66

PeopleOnStreet 0.52 36.23 1.03 38.06 0.60 40.60 1.20 44.81 0.80 36.42 0.59 42.54
Average 0.62 37.99 1.15 38.51 0.75 42.70 1.09 45.25 0.80 37.24 0.80 45.60

B

Kimono 1.00 55.26 2.22 39.66 1.80 76.10 3.72 80.53 2.50 57.92 1.99 72.06
ParkScene 0.73 37.79 1.00 37.90 0.60 47.00 0.67 40.01 0.50 37.89 0.82 48.43

Cactus 1.32 42.05 0.73 34.83 0.70 45.80 1.02 45.50 0.80 42.59 1.02 49.00
BasketballDrive 0.67 48.07 1.69 40.57 1.80 63.40 1.87 61.09 1.90 45.99 2.20 58.21

BQTerrace 1.03 46.96 1.00 38.50 0.30 47.80 1.05 51.03 0.80 45.63 0.62 44.97
Average 0.95 46.03 1.33 38.29 1.04 56.02 1.67 55.63 1.30 46.00 1.33 54.54

C

BasketballDrill 0.36 31.07 1.38 37.99 0.60 38.10 0.99 39.74 0.50 32.28 1.50 44.12
BQMall 1.05 36.10 0.48 36.93 0.20 35.30 1.07 38.38 0.70 40.18 1.10 46.49

PartyScene 0.91 30.77 0.32 36.01 0.00 31.20 0.24 28.82 1.20 37.57 0.32 35.92
RaceHorses 1.86 28.50 0.71 38.67 0.40 37.90 1.18 40.11 0.50 43.94 0.94 54.51

Average 1.05 31.61 0.72 37.40 0.30 35.63 0.87 36.76 0.73 38.49 0.96 45.26

D

BasketballPass 0.91 41.21 1.54 34.29 1.10 48.20 1.34 45.99 0.40 36.29 0.86 43.76
BQSquare 1.32 23.38 0.65 40.31 0.10 39.90 0.50 36.29 0.80 39.25 0.17 35.60

BlowingBubbles 0.42 21.45 0.63 29.68 0.20 38.20 0.48 27.95 0.10 26.27 0.17 28.50
RaceHorses 1.14 30.69 0.10 33.10 0.60 33.16 0.57 36.93

Average 0.88 28.68 0.99 33.74 0.38 39.85 0.77 36.74 0.48 33.74 0.44 36.20

E

FourPeople 1.09 43.73 0.39 40.75 0.60 40.00 1.70 51.76 0.80 44.01 0.78 47.07
Johnny 1.17 55.94 2.62 45.75 1.90 57.10 3.01 67.99 1.60 61.65 1.40 64.21

KristenAndSara 1.15 54.78 1.92 42.15 1.30 52.30 2.39 63.56 1.50 56.41 1.23 60.73
Average 1.14 51.48 1.64 42.88 1.27 49.80 2.37 61.10 1.30 54.02 1.14 57.34

Overall Average 0.95 39.59 1.15 37.87 1.30 52.30 1.38 47.60 0.92 41.90 0.96 47.87

6.3. Comparison with State-of-the-Art

To testify the coding effectiveness of the proposed fast CU size decision algorithms, we select
five state-of-the-art algorithms including one algorithm DDET [32] based on traditional analysis,
and three machine learning algorithms, FADT [33], FARF [34] and DA-SVM [17], for the comparison
of performance. Specifically for machine learning methods employed in these three algorithms,
FADT uses decision tree, FARF is based on random forest, and DA-SVM uses SVM. As one knows,
the key technique of random forest and bagged tree is both decision tree, so the comparison is
very meaningful.

Table 6 presents BD-rate loss and time saving among DDET, FADT, FARF, DA-SVM and the
proposed BTFA and ABTFA. In Table 6, the thresholds for misclassification rate are the same as those
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in group 6 (G6), i.e., [0.05, 0.05, 0.05, 0.05]. Moreover, the result of ABTFA is under a constraint for
BD-rate loss which is 0.9%.

It is observed that DDET achieves a BD-rate loss from 0.36% to 1.86%, and 0.95% on average.
Though the BD-rate loss is similar with that of ABTFA, the time saving is only 39.59%, which is 8.28%
less than the 47.87% of ABTFA. Even compared with BTFA, DDET still does not have advantages in
terms of both BD-rate loss and time saving. Its time saving can not exceed that of BTFA, moreover,
the BD-rate loss of BTFA is 0.03% less.

As a fast approach based on decision tree, FADT scheme is quite a good competitor. Moreover, it
achieves an average BD-rate loss of 1.15% as well as a time saving of 37.87%. However, no matter of
the BD-rate performance or the time saving performance of FADT are worse than those of BTFA and
ABTFA. Results show that the proposed bagged tree based approach exceeds the traditional decision
tree based approaches.

Based on decision tree techniques, FARF uses random forest to improve the model performance.
As a result, FARF achieves 1.30% BD-rate loss on average and saves as high as 52.30% encoding time,
and it is very competitive. The complexity reduction of FARAF is 10.4% higher than that of BTFA
while the BD-rate loss is about 0.38% more. Generally speaking, FARF and BTFA are equally matched.
However, compared to ABTFA, FARF is only 4.43% higher in terms of time saving, while the BD-rate
loss of FARF increases by as much as 0.34%. Obviously, the general performance of the proposed
ABTFA approach is a little better than that of FARF.

According to related works [9,16,17], we can find that SVM based approaches are extensively
researched and well performed. As we can see from Table 6, DA-SVM saves on average 47.6% encoding
time than the original HM16.7. The time saving of DA-SVM is quite similar with that of the ABTFA,
however the BD-rate loss of ABTFA is 0.42% less. It means the proposed ABTFA outperforms DA-SVM
in terms of BD-rate loss, when maintaining the encoding time. Actually, if we set the bit-rate constraint
of ABTFA as 1.38%, the time saving achieved by ABTFA is higher than the 47.6% of DA-SVM.

For the comparison between BTFA and ABTFA, we can observe that ABTFA gains about 5.78%
time saving while the difference of BD-rate loss is negligible. This is because more advanced deep
learning technique is applied to find the optimal thresholds for depths 1 and 2 under a target constraint.

Table 7. BD-rate loss and time saving comparison between the proposed algorithm and the most
recent works.

Sequence
Huang [5] Liu [9] Fu [25] BTFA-G1 ABTFA( BLtar = 0.9)

BD-Rate (%) TS (%) BD-Rate (%) TS (%) BD-Rate (%) TS (%) BD-Rate (%) TS (%) BD-Rate (%) TS (%)

BasketballDrill 1.02 48.23 1.06 43.25 1.49 42.20 0.23 25.41 1.50 44.12
BasketballDrive 1.43 65.37 1.38 50.73 1.32 59.80 1.58 41.25 2.20 58.21

Johnny 1.89 66.21 1.93 63.15 1.45 62.90 0.91 55.17 1.40 64.21
KristenAndSara 1.65 67.41 1.68 59.25 1.17 59.20 0.86 49.10 1.23 60.73

ParkScene 0.74 49.86 0.79 45.21 0.72 48.30 0.35 31.01 0.82 48.43
Average 1.34 59.41 1.36 52.31 1.23 54.48 0.78 40.38 1.43 55.14

To further demonstrate the performance of our proposed algorithm, we compare it with three
additional algorithms on five video sequences. These three algorithms are all proposed most recently,
and they are Huang’s algorithm [5], Liu’s algorithm [9] and Fu’s algorithm [25]. The BD-rate loss and
the encoding complexity reduction are shown in Table 7.

From Table 7, we can find that the complexity reduction of the ABTFA is 2.83% and 0.66% more
than that of Liu’s algorithm and Fu’s algorithm, respectively, while the BD-rate loss is 0.07% and 0.20%
larger. We can conclude that their overall performances are about the same. Compared with Huang’s
algorithm, the ABTFA does not have obvious advantage. However, there are various versions of the
proposed algorithm, according to which we can make a tradeoff between the BD-rate loss and the
complexity reduction. From Table 7, we can observe that the proposed BTFA-G1 outperforms all these
three competitors with a huge advantage in terms of BD-rate loss, while its complexity reduction is
slightly less. Specifically, the BD-rate loss of the BTFA-G1 is about half smaller than that of Huang’s
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algorithm, while the time saving is less by 19.03% which is acceptable considering the difference on
BD-rate loss. While the time saving of BTFA-G1 is less than both Liu’s and Fu’s algorithms, the BD-rate
loss is as much as 0.58% and 0.45% less, respectively. Generally speaking, the proposed algorithm
is very flexible and can be applied according to various conditions. Our algorithm outperforms
Huang’s, Liu’s and Fu’s algorithms by using different configurations (i.e., different versions of the
proposed algorithm).

6.4. CU Partition Result Comparison between ABTFA and the Original HM16.7

To compare the decisions taken by the proposed ABTFA and the original HM16.7, we illustrate
their partition decisions for the same frame. First, the 200th frame of sequence BasketballPass is
encoded with original HM16.7 under QP 22, as a result, the partition results are shown in Figure 13.
Black line in Figure 13 represents CU boundaries. Then, the same frame is encoded by HM16.7,
in which the proposed ABTFA with BD-rate loss constraint 0.9% is applied. Figure 14 shows the CU
boundaries decided by ABTFA. In Figure 14, black line represents the same partition decisions as those
in Figure 13. Green line represents boundaries of CUs, which are split by original HM16.7 but are not
split by ABTFA. On the contrary, red lines represents boundaries of CUs decided to be split by ABTFA
but non-split by original HM16.7.

As we can see, the decoded two frames are almost of the same image quality. Compared with
the partition results generated by original HM16.7, ABTFA maintains much correctness of partition
decisions (i.e., black line in Figure 14). However, there are still some differences (i.e., green line and red
line in Figure 14) between the decisions of the original and the ABTFA.

Taking a careful observation of Figures 13 and 14, we find most of the differences occur in CUs
with flat and homogeneous property, while the partition decisions are almost the same in areas full of
detail. This phenomenon indicates that the proposed approach achieves high prediction accuracy on
complex CU contents, while the prediction performance is not very good among flat and plain contents.

Figure 13. Partition result of the 200th frame in sequence BasketballPass, which is encoded by original
HM16.7 under QP 22. Solid black line represents the partition result of CUs.
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Figure 14. Partition result of the 200th frame in sequence BasketballPass encoded under QP 22 by
encoder HM16.7, in which the proposed ABTFA with BD-rate loss constraint 0.9% is applied. Black
line represents the same partition results as those of original HM16.7. Green line represents boundaries
of CUs, which are split by original HM16.7 but are not split by ABTFA. Boundaries of CUs, that are
decided non-split by original HM16.7 but are split by ABTFA, are shown with red line.

6.5. Application of the Proposed Research

The proposed algorithm has a broad application and plays a very important role in the video
dissemination scene of the modern Internet. Figure 15 shows the main process of video from capture
to display in Internet, which includes collection, transmission, storage and playback. As we can see
from Figure 15, raw videos are collected by various equipment firstly. Then every videos are encoded
by the encoder in which the proposed algorithm can be implemented. Thus, to make people have a
good viewing experience, the encoder must be fast and of high quality.

To further analyze the application effects of the proposed research, we compare the visual quality
of videos encoded by the proposed ABTFA with that of the original HM16.7. Specifically, we encode
the 150-th frame of video sequence RaceHorses (416 × 240) under QPs 22, 27, 32, 37, using the ABTFA
and the original HM16.7, respectively. Figure 16 shows the visual quality of the frame. Figure 16a–d
show the 150-th frame of video sequence RaceHorses (416 × 240) which is encoded by the original
HM16.7 under QPs 22, 27, 32, 37, respectively. Figure 16e–h show the 150-th frame of video sequence
RaceHorses (416 × 240) which is encoded by the proposed ABTFA with BD-rate loss constraint 0.9%
under QPs 22, 27, 32, 37, respectively. We zoom in the pixel block with red boundary in the middle of
each sub-picture to observe the details. The details can be observed from the block with red boundary
locating at the bottom-right corner in each sub-picture of Figure 16. Observing Figure 16a–d, we
can conclude that, for the original HM16.7, the visual quality decreases with the increment of QP.
Moreover, we can draw the same conclusion for the proposed ABTFA by observing Figure 16e–h.
Besides, there is no visible difference between Figure 16a,e, Figure 16b,f, Figure 16c,g, Figure 16d,h.
This observation indicates that there is no obvious application difference between the original HM16.7
and the proposed research. Generally speaking, our algorithm works as well as the original HM16.7,
while our algorithm takes much less time.
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Figure 15. The application of the proposed research. Part in orange is where our algorithm works.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16. Visual quality comparison of videos encoded with different Quantization Parameter (QPs)
by the original HM16.7 and the encoder in which the proposed ABTFA with BD-rate loss constraint
0.9% is applied. (a–d) the 150-th frame of video sequence RaceHorses (416 × 240) which is encoded by
the original HM16.7 under QPs 22, 27, 32, 37, respectively. (e–h) the 150-th frame of video sequence
RaceHorses (416 × 240) which is encoded by the proposed ABTFA with BD-rate loss constraint 0.9%
under QPs 22, 27, 32, 37, respectively. We zoom in the block with red boundary in the middle of each
sub-picture to observe the details. The details can be observed from the block with red boundary
locating at the bottom-right corner in each sub-picture.

7. Conclusions

This paper proposes a bagged tree based fast CU size decision algorithm named BTFA with an
adaptive threshold calculation method for HEVC intra-coding. Furthermore, a more advanced fast
approach called ABTFA is also proposed by employing neural network to optimize the thresholds
calculation process. In this work, we design several novel features and perform comprehensive
analysis of all the feature candidates. We also design a three-output bagged tree model to deal with
the problem of CU partitioning. Besides, an adaptive thresholds calculation method is proposed to
further improve the encoding efficiency. Furthermore, an upgraded approach is proposed, in which
neural network is used to calculate an optimal result according to a certain constraint of BD-rate
loss or time saving. The extensive experimental results demonstrate the effectiveness of our method.
Compared with original HM16.7, the proposed BTFA algorithm reduces 41.90% encoding time with
only 0.92% BD-rate loss. To our best result, ABTFA achieves an average 47.87% of time saving while the
rate-distortion maintains a negligible 0.96%. According to the comparison with some state-of-the-art,
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the proposed algorithms show great competitive performance. We believe that there is great potential
of the proposed ABTFA algorithm to be widely used in industrial applications.

In this paper, our method only focuses on intra-coding rather that inter-coding of HEVC. Actually,
inter-coding is more widely used than intra-coding in the actual scene. We will develop the proposed
algorithm for inter-coding to achieve improvements in the future.
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The following abbreviations are used in this manuscript:

HEVC High Efficiency Video Coding
BTFA Bagged Tree based Fast Approach
ABTFA Advanced Bagged Tree based Fast Approach
CTU Coding Tree Unit
CU Coding Unit
PU Prediction Unit
JCT-VC Joint Collaborative Team on Video Coding
AVC Advanced Video Coding
RDO Rate-Distortion Optimization
SVM Support Vector Machine
SHVC Scalable High efficiency Video Coding
RD Rate Distortion
BD-rate Bit-Distortion rate
BDBR Bjontegaard Delta Bit Rate
QP Quantization Parameter
CBF Coded Block Flag
MCRL negative misclassification rate
MCRH positive misclassification rate
GT Ground Truth
P Probability
T Threshold
TL Low Threshold
TH High Threshold
G1 Group One
G2 Group Two
G3 Group Three
G4 Group Four
G5 Group Five
G6 Group Six
DDET the algorithm proposed by [32]
FADT the algorithm proposed by [33]
FARF the algorithm proposed by [34]
DA-SVM the algorithm poposed by [17]
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