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Abstract: Phishing is the easiest way to use cybercrime with the aim of enticing people to give accurate
information such as account IDs, bank details, and passwords. This type of cyberattack is usually
triggered by emails, instant messages, or phone calls. The existing anti-phishing techniques are mainly
based on source code features, which require to scrape the content of web pages, and on third-party
services which retard the classification process of phishing URLs. Although the machine learning
techniques have lately been used to detect phishing, they require essential manual feature engineering
and are not an expert at detecting emerging phishing offenses. Due to the recent rapid development of
deep learning techniques, many deep learning-based methods have also been introduced to enhance
the classification performance. In this paper, a fast deep learning-based solution model, which uses
character-level convolutional neural network (CNN) for phishing detection based on the URL of the
website, is proposed. The proposed model does not require the retrieval of target website content or
the use of any third-party services. It captures information and sequential patterns of URL strings
without requiring a prior knowledge about phishing, and then uses the sequential pattern features
for fast classification of the actual URL. For evaluations, comparisons are provided between different
traditional machine learning models and deep learning models using various feature sets such as
hand-crafted, character embedding, character level TF-IDF, and character level count vectors features.
According to the experiments, the proposed model achieved an accuracy of 95.02% on our dataset
and an accuracy of 98.58%, 95.46%, and 95.22% on benchmark datasets which outperform the existing
phishing URL models.

Keywords: phishing detection; URL features engineering; character embedding; deep learning

1. Introduction

Phishing is an offense in which the phisher seeks to trick users into disclosing critical and personal
information such as credit card details and passwords. The intent of phishers to carry out a phishing
attack is to sell the personality of the victims, to get ransom, to exploit the system’s weaknesses, or to
receive financial profits [1]. One of these common offenses is to design deceptive sites which are
imitations of benign websites (e.g., PayPal, eBay, etc.) and host them in a hacked domain.

It is hard for human eyes to distinguish between benign and deceptive web pages because they
look identical. Once the user accesses the imitated site, critical information will be robbed using scripts.
Phishing offenses increase every year due to the rapid growth of the e-commerce users. Phishers can
use malware (i.e., malicious software), web pages, and emails to carry out phishing offenses.
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According to the Anti-Phishing Working Group (APWG), the total number of phishing sites
detected by the APWG in the 1st quarter (Q) of 2019 was 180,768, that was up notably from the 138,328
seen in 4Q of 2018, and from the 151,014 seen in 3Q of 2018 [2]. A non-profit industry association has
focused on rubbing identity theft and fraud resulting from the phishing raising problem, spyware,
and e-mail fraud. Phishing has become a serious problem due to the extensive damage to its target
industry e.g., payment, financial institutions, email, etc. The rating of annual direct economic losses to
the US economy as result of phishing offenses range from 61 million to 3 billion [3].

As reported by Internet Security Threat Report (ISTR) submitted by Symantec [4], the number of
new mobile malware in 2017 grew 54% compared to 2016. The new malware programs are multitasking,
they perform many tasks, i.e., downloading and installing other malicious programs without user’s
permission, theft of critical information, etc. Kaspersky Lab reported that the anti-phishing technique
was operated 246,231,645 times in Kaspersky Lab [5].

Some existing techniques use a blacklist to reveal phishing sites. This policy fails to reveal
non-blacklisted phishing sites (i.e., zero day attacks). Many heuristic-based detection techniques
extract features based on webpage content features and third-party service features to detect phishing
sites. However, the use of third-party services such as page rank, network traffic measures, search
engine indexing, and WHOIS (domain age) may be restricted to reveal phishing sites hosted on
compromised servers and these sites are incorrectly labeled as benign because they are included in the
search results. Furthermore, webpage content features and third-party features are time consuming.

Machine learning techniques have also been used to investigate the URL of the web page with
different hand-crafted feature sets in order to refine detection efficiency [6,7]. The URLs are first
analyzed to perform the feature adaptation from phishing websites. Then, a training set is constructed
by machine learning experts using the extracted features along with their labels. Finally, the advantage
of classification supervised machine learning algorithms is used to develop a model for phishing
detection. However, there are still drawbacks due to the fact that the human effort needs time and
additional maintenance labor costs.

Deep learning has also been integrated into phishing detection, driven by recent rapid
development and many successful applications [8-10]. Unlike conventional machine learning methods,
deep learning techniques implicitly extract hand-crafted features as machine learning specialists can
use data directly without the knowledge of cybersecurity experts.

In this paper, we propose a deep learning-based solution for phishing URL detection.
Deep learning [11,12] uses layers of stacked nonlinear projections to learn representations of multiple
levels of abstraction. It has shown advanced performance in many applications, e.g., natural language
processing, computer vision, speech recognition, etc. Specifically, convolutional neural networks
(CNNSs) have shown auspicious text classification achievement recently [13,14]. After their success, we
propose using character level CNN [14] to learn a URL embedding to detect phishing URLs.

The proposed model receives a URL string as an input and applies CNN at the character
level in the URL. The model first identifies the individual characters in the training set based on
prescribing character vocabulary, and then represents each character as a fixed-length vector using
one-hot encoding. Using this, the URL sequence characters are converted into a matrix representation,
where the convolution and pooling can be applied. In order to generate the final output, fully connected
layers are used to generate an output that depends on the number of classes.

Character level CNN determines important information from specific combinations of characters
that appear together which could be symptomatic of wickedness. Basically, a URL is a sequence of
characters or words where some words have few semantic meanings. As a result that some URLs
contain separable combined words without separators and these combined words may not contain any
significance, it is difficult to extract semantic meanings from words in a URL. Furthermore, the phishers
may change unnoticeable characters in official website URLs, e.g., “www.icbc.com” as “www.1cbc.com”
to make people unable to differentiate the similar view of phishing URLs from benign URLs.

The advantages of the proposed method are listed below:


www.icbc.com
www.1cbc.com
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o Independence of third-party services: Use of third-party services such as web-based
blacklist/whitelist, page rank, search engine indexing, network traffic measures, the domain age,
etc. raise the efficiency of the detection system. However, these services also raise the detection
time, so they cannot be helpful. The proposed method does not rely on any third-party features.
It relies only on the URL of the website and the detection time for the URL classification is only
0.47 ms per URL.

e Language independence: The proposed method works effectively for websites with content in all
languages because the features are extracted from the URL string and embedded depending on
predefined character vocabulary of size M for the input language.

o New websites detection: Due to character level embedding features, character-level embedding
for new URLs can be easily generalized. The proposed model can detect new phishing sites that
have not been classified as fraudulent phishing before. Using this feature, the proposed method is
sturdy in the zero-day attack, which is one of the most serious types of phishing offenses.

e Independence of cybersecurity experts: The required expert features engineering is reduced,
as CNN automatically recognizes features to represent the URL not relying on any other complex
or expert features during the learning task.

The main contributions of this paper are summarized as follows:

o  This paper proposes a phishing detection model with a deep learning-based solution, which can
speedily and precisely detect phishing sites using only URL features of the webpage.

o  We define four different types of feature sets as hand-crafted, character embedding, character
level TF-IDF, and character level count vectors features, and then compare different machine and
deep learning algorithms using these various feature sets in order to measure the efficiency.

o  Weuse four datasets D1, D2, D3, and D4 to evaluate the performance of the proposed model, where
D1 is our dataset consisting of 318,642 empirical URLs and D2, D3, D4 are used in existing baseline
works. The accuracy of the experimental results was 95.02% on our dataset, and 98.58%, 95.46%,
95.22% on benchmark datasets, which is much better than the existing phishing URL models.

The remainder of the paper is organized as follows: Section 2 reviews related works about existing
phishing detection techniques. In Section 3, the proposed work is introduced in detail. Section 4
conducts different comparative experiments and discusses the results. Finally, the summary and future
works of the paper are presented in Section 5.

2. Related Work

Generally, phishing can be detected through list-based detection, machine learning-based
detection, heuristic-based detection, or deep learning-based detection methods. However, the problem
of phishing is so complicated that there is no decisive solution to effectively override all threats;
therefore, multiple techniques are often involved to prevent specific attacks. The protection methods
are categorized into two main groups: expanding the user knowledge and using some additional
software as described in Figure 1.
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Figure 1. Overview of phishing detection techniques.
2.1. List-Based Detection

List-based phishing detection techniques can be classified into whitelist and blacklist-based
techniques. The whitelist is a list of benign URLs and IP addresses used to validate a suspicious
URL. Wang et al. [15], Chou et al. [16], and Han et al. [17] use a whitelist-based technique to detect
phishing URLs.

Blacklist-based techniques are vastly used in overtly available anti-phishing toolbars e.g., Google
safe browsing, which checks URLs versus Google’s periodically updated blacklist of browser phishing
sites and gives warnings to users once a URL is counted as phishing. Although these list-based
methods can be comparatively high precision, it is hard to keep a comprehensive list of phishing URLs
since new URLs are created on a daily basis.

In Felegyhazi et al. [18], domain name and server information of blacklisted URLs are used to
detect new phishing URLs where registration information and Domain Name System (DNS) zone of
new phishing URLs are compared to the information of blacklisted URLs. Rao and Pais [19] developed
an improved blacklisted method for detecting phishing URLs. Instead of using blacklist of URLs,
a blacklist of signatures is generated using content-based features. Prakash et al. [20] developed an
enhanced two-component method to block hackers from avoiding the blacklist detection. One of
the components is used to extend the blacklist through simple sets of blacklist phishing sites using
five heuristics elements (i.e., the top-level range, the IP address, the directory structure, the query
string, and the brand name), whereas the other component is used to make an approximate match
to a particular URL to determine whether the phishing URL is a phishing one. However, list-based
techniques cannot catch zero-day attacks, which means that they can only react to the newly unexpected
phishing URLs when the developers update the blacklist.

2.2. Heuristic-Based Detection

The essence of the heuristic-based detection techniques, which have been developed from list-based
detection techniques, is the creation of phishing site characteristics based on many hand-crafted features,
for example, URL-based features, webpage contents, website visual similarities, etc.

Zhang et al. [21] proposed a method of detecting phishing called Cantina based on Google
search engine to retrieve keywords and domain names in a webpage. It uses the results returned
by research and other heuristic rules to determine whether the webpage is legitimate or phishing.
However, the method is responsive only to the English language. Another version of previous work
called Cantina+ was proposed by Xiang et al. [22]. It takes 15 heuristic features as the input to train
a classifier for detection of phishing sites. Ramesh et al. [23] proposed a method to detect phishing
sites by checking web pages and identifying all direct or indirect links to the web pages. Although the
method provides high detection accuracy, it is time consuming because it relies on search engines and
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third-party services such as DNS query. A phishing detection algorithm (PDA) is proposed by Jain
and Gupta [24] to decide whether a suspicious URL is a phishing website by calculating the number of
hyperlinks in the suspicious webpage. The study gives a true positive test result of 86.07% and a false
negative of 1.48% on 405 benign pages and 1120 phishing pages, which indicates that the method has
failed to attain the expected level of efficiency.

2.3. Machine Learning-Based Detection

While more information can improve the accuracy of phishing detection, it is often not feasible
to obtain a lot of features because of the limited time and computation resources available. To deal
with these limitations, in recent years phishing detection has received much research using machine
learning techniques (e.g., K-nearest neighbor, XGBoost, Naive Bayes, linear regression, support vector
machine, and random forest).

In Zhang et al. [25], the features are extracted from URLs based on bag-of-words and then trained
by a classifier through online learning. Similarly, in Sahingoz et al. [7], distributed representations
of words are adopted in a particular URL, and then seven different machine learning algorithms are
used to predict whether the URL is a phishing URL. Although these methods have shown satisfying
performances, they cannot deal with unseen information that does not exist in the training set.

Mogimi et al. [26] proposed a phish detector, in which support vector machine (SVM) algorithm
is used first to train a phishing detection model, and then the decision tree (DT) algorithm is used to
extract the hidden phishing. The true positive and false negative of the proposed method are 0.99 and
0.001, respectively in a large dataset. However, this method supposes that phishing web pages only use
benign page content, which does not apply in practice. Recently, Rao et al. [6] proposed a light-weight
application, CatchPhish which predicts the URL legitimacy without visiting the content of the website.
The proposed model extracts hand-crafted and Term Frequency-Inverse Document Frequency (TF-IDF)
features from the suspicious URL for classification using the random forest classifier.

2.4. Deep Learning-Based Detection

Due to the success of the Natural Language Processing (NLP) achieved by deep learning
techniques, some of them have recently been employed for phishing detection e.g., CNN, recurrent
neural network (RNN), recurrent convolutional neural networks (RCNN), and deep neural network
(DNN). Although deep learning techniques are not exploited much in phishing detection due to the
extensive training time, they often provide more accuracy and automatically extract the features from
raw data without any prior knowledge.

Wang et al. [8] proposed a fast phishing website detection method called precise phishing
detection with recurrent convolutional neural networks (PDRCNN) that depends only on the URL of
the website. It encodes the information of a URL into a two-dimensional tensor and feeds the tensor
into a deep learning neural network to classify the original URL. They use first a bidirectional long
short-term memory (LSTM) network, and then a convolutional neural network (CNN) to extract global
and local features of the URL. YANG et al. [9] developed a multidimensional feature phishing detection
method based on two steps. In the first step, character sequence features of the given URL are extracted
and used for classification by LSTM-CNN deep learning networks. In the second step, URL statistical
features, webpage content features, and the classification result of deep learning are combined into
multidimensional features. Wei et al. [27] present a light-weight deep learning algorithm. They use a
novel character-level multi-spatial deep learning model to detect phishing URLs.

Yuan et al. [10] developed a method that combines character embedding (word2vec) with the
structures of URLs to obtain the URLs vector representations. They partition the URL into five
parts: URL protocol, sub-domain name, domain name, domain suffix, and URL path. The vector
representations of URLs are trained by existing classification algorithms to identify the phishing URLs.
Le et al. [28] developed a URLNet method for malicious website URL detection. In this method,
character-level and word level features are extracted based on URL strings and CNN network is used
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for training and testing. Huang et al. [29] proposed the PhishingNet deep learning-based method
for detection of phishing URLs. They use a CNN network to extract character-level features of URLs;
meanwhile, they employ an attention-based hierarchical recurrent neural network (RNN) to extract
word-level features of URLs. After that, they fuse and train these features through three convolutional
layers and two fully connected layers. Bahnsen et al. [30] compared a random forest classifier against
recurrent neural networks based on a hand-crafted features method. The recurrent neural network
model achieved an accuracy of 98.7%, which is 5% higher than the random forest classifier without the
need of manual feature creation.

2.5. Hybrid Method-Based Detection

Hybrid detection techniques rely on combining more than one of the previous techniques in
order to achieve good performance in the detection of phishing sites. Yang et al. [9] propose a
multidimensional feature phishing detection approach which consists of two steps. In the first step
deep learning algorithms (CNN-LSTM) are used to extract URL features. In the second step, they
combine URL statistical features, webpage code features, webpage text features, and the classification
result of deep learning into multidimensional features, which are then classified by a machine learning
algorithm (XGBoost).

In Sahingoz et al. [7] and Rao et al. [6], heuristic-based features are extracted from different parts
of the URL and fed to a machine learning algorithm i.e., random forest (RF) to reveal the legitimacy of
the URL. Jain et al. [31] present a two-level validation approach of phishing detection using third-party
services and webpage contents. In the first level of validation, the search engine-based technique is
proposed which uses a simple query to validate the webpage. The second level of validation processes
the validity of various hyperlinks within the source code of the web page to detect phishing websites.

In this paper, we propose a convolutional neural network (CNN) to extract features automatically
from only the URL without using any manually designated features by humans. Character level CNN
is used instead of word level due to the difficulty of extracting semantic meanings from words in a
URL where the URL typically contains meaningless combined words.

3. Proposed Methodologies

In general, attackers intend to create phishing URLs so that they appear as legitimate websites
to the users. Attackers use different URL jamming techniques to trick users into revealing personal
information that can be misused. The main idea of this paper is to quickly detect phishing websites
using lightweight features. This is achieved by extracting only features from the URL without visiting
the website content. Before going to the proposed model architecture, a brief description of the
component of URLs is debated in the section below.

3.1. URL Components

The URL refers to the resource locator. It is used for locating a resource on the web such as
hypertext pages, images, files, and audio. Figure 2 illustrates the different components of a URL with
an example.

Second level domain Top Level Domain Quez
—_——— o . N
https://www.shefgetlulja.com/nunu/20 18alldomain/index.php?email=abuse@ubs.com
—— 8 ~ RN ~ ,
Protocol Host Path

Figure 2. URL components.

The first component of the URL is a protocol (https, http, ftp, etc.) that is an established set
of regulations that governs how data will be transmitted from source to destination. The second
component refers to the host IP address or resource’s location. The host name is divided into primary
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domain and Top Level Domain (TLD). The primary domain and TLD together represent the host
name of the URL. The host name is followed by a port number that is an optional field. In the third
component, the path is used to recognize the particular resource within the domain requested by the
user. The path is followed by optional field such as query. The base URL is concatenated by protocol,
hostname, and URL path.

Although the second level domain name commonly shows the type of site or company name,
the attacker can easily find or purchase it for phishing. The second domain name can be specified
only once at the inception. However, unlimited number of URLSs can be created by an attacker who
has expanded the second level by file and path names, because the internal address design depends
directly on the phishers. The unique part of the URL is the composition of the second domain and top
level domain names, which are called the host domain. Thus, cybersecurity companies are making
a great effort to identify the fraudster domains by name, which are used for phishing offenses. If a
hostname is specified as phishing, an IP address can be simply blocked to prevent it from obtaining
the web pages existing in it.

3.2. Model Design

In this section, we present the details of the proposed model configuration. The implicit deep
neural network for the proposed model is a convolutional neural network (CNN). The CNNs are used
to learn sequential information from the URL. Particularly, CNNs are applied at the character-level.
A URL u is basically a concatenation of characters. We aim to get a matrix representation u — G € RE*K,
so that the instance G includes a set of adjacent components g;,i = 1,...,L in a concatenation.
Each k-dimensional vector is depicted by an embedding such that g; € R¥. Normally, this dimensional
depiction of the component is the embedding vector extracted from the embedding matrix that is
initialized manually. An instance can be depicted in concatenation of L components as follows [28]:

C=61.1=81DPD..0QL 1)

where @ refers to the concatenation operator. Usually all sequences are filled as 0 or amputated to the
same length L. The CNN network will convolve up via this instance G € RE*K using a convolution
operator. The h-length convolution consists of convolving a filter X € R¥*" followed by a non-linear
activation f (i.e., rectified linear units) to generate a new feature:

yi = f(X®Gjjpp_1+bi) ()

where b; is the bias.

The output of this convolution layer applies the X filter with a nonlinear activation for each
h-length portion of its inputs separated by a predetermined stride value. These outputs are then
concatenated to generate output Y as follows:

Y =1[yLy2 - Yr-n+1) 3)

After convolution, the pooling step (temporal max-pooling or average pooling) is applied to trim
the dimension of the feature, to determine the most important features, and to train deeper models.
Using a filter X to convolve each portion of length /1, the CNN is able to take advantage of the temporal
relationship of length / in its input. The CNN model usually consists of multiple groups of filters with
different lengths (h), and each group consists of several filters.

The convolution that the pooling layer follows is made up of a block in this deep neural network.
There can be many of these blocks that can be stacked on top of each other. The pooled features
of the final block are grouped and passed to fully connected (FC) layers for classification purpose.
The algorithm stochastic gradient descent (SGD) can then be used to train the network, where the
gradients are obtained by back-propagation [32] to carry out optimization.
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More specifically, the URL is taken as a raw input and indexed according to the Table 1. We can
see, besides the 94 characters, we also have an unknown token(UNK) to represent the rare characters in
vocabulary. After that, the URL is settled into fixed-size sequence by truncating or zero-filling,
and one-hot vector is then used to represent these 95 words, which means that each character
has 95 dimensions. The URL features are extracted and reduced from the embedding matrix via
the convolutional and max pooling layers. However, to generate the final output, the two fully
connected layers receive the result of the pooling to generate an output equal to the number of classes.
An overview can be seen in Figure 3.

Character Deep Output
: 1 5 utpu
Input URL embedding S

v
Convolutional

Tokenizer Networks ' .
(ConvNets) Benign Phishing
Character to
index

<*-----

Padding

One — hot
encoding

Embedding
weights matrix

N———/

Figure 3. An overview of the proposed model.

3.2.1. Character Level Embedding Features

We employ the method used in [14] to represent and embed the URL with expanding of the
character vocabulary used. The processing of URL at the character level is a solution to a problem out
of vocabulary. Character-level embedding is used instead of word-level embedding because URLs
typically use words without any significance.

More information is included at the character level. Attackers also simulate the URLs of original
websites by changing several unnoticeable characters. For example, they might change google.com to
g00gle.com, replace “oo” with “00”. Character-level embedding helps to find this imitative information,
and improve the performance of detecting malicious URLs.

At the embedding stage of the URL, embedding is done by determined an m-sized alphabet for
the input language, then embedding each character using one-hot encoding (see Figure 4). After that,
the sequence of characters is converted into a sequence of these m-sized vectors with a fixed-length L.
Any character overriding length L is truncated, and any character that is not in the alphabet including
blank character is embedded as all-zero vectors.

1000 0 000
01000 000
00100 000
00010 000
00000 -~ 100
00000 -~ 010
00000 --- 00 1

Figure 4. Example of one hot-encoding.

The main processes of character level embedding are:
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o Tokenizer: The tokenizer is used to process URL in char level and add a UNK token to the
vocabulary. After fitting the training data, the tokenizer will contain all the necessary information
about the data.

e  The vocabulary: The alphabet used consists of 95 characters, including 26 lower-case English
letters, 26 upper-case English letters, 10 numbers, and 33 other characters (e.g., ,;.!?: ' /_@#$...etc.)
as illustrated in Table 1.

e  Character to index: After getting the right vocabulary according to Table 1, we can represent all
URLs by using character index as shown in Figures 5 and 6.

e Padding: URL has a different length and the neural network can only handle fixed-length vectors,
therefore all URLs must be of equal length so the CNN can process the batch data. Here, we
define the maximum length of URL as 200. If the length of the URL is smaller than 200, the
remaining part will be filled as 0. If the length of the URL is bigger than 200, the part longer will
be amputated. Therefore, all URLs will preserve the same length.

Table 1. Character dictionary.

Character Encode
abcdefghijklmnopqrstuvwxyz 1-26
ABCDEFGHIJKLMNOPQRSTUVWXYZ  27-52
0123456789 53-62
127 NN | _@#$% &~ +-=<>()[ 11} 63-94
UNK 95
Default 0
12delink.1t/2017/05/

[12,55,4,5,12,9, 14,11, 65, 12, 20, 71, 55, 53, 54, 60, 71, 53, 58, 71]

Figure 5. URL index representation example.

{a"1,'b":2,'c.3,'d"4,%" 5,':6,'¢-7,'h': 8,'1: 9, " 10, 'k": 11,'": 12, 'm": 13, 'n": 14, '0": 15, 'p": 16,'q": 17, 'r":
18,'s": 19, 't": 20, 'u": 21, 'v": 22, 'w": 23, 'x": 24, 'y": 25, 'z": 26, 'A"; 27, 'B": 28, 'C": 29, 'D": 30, 'E": 31, 'F": 32, 'G": 33,
'H" 34, 'T": 35,'T": 36,'K': 37, 'L": 38,'M": 39, N" 40,'0": 41, 'P": 42,'Q" 43, R": 44, 'S": 45, 'T": 46, 'U": 47, 'V". 48,
"W': 49, 'X": 50,'Y" 51,'Z": 52,'0": 53, '1": 54,'2": 55,'3". 56, '4": 57,'5": 58,'6" 59, '7": 60, '8": 61,'9": 62, ", 63, ';".
64,':65,"" 66, 67,"": 68,"":69,"":70,"": 71,"\: 72, 73,' = 74,'@". 75, '#:76,'$" 77,'%". 78, 79, '&"
80, "*: 81, '~': 82, ™': 83, "+": 84, 1.": 85, '=": 86, '<': 87, '>": 88, '(": 89, "): 90, '[": 91,"]": 92, (" 93,"}": 94, 'UNK": 95}

Figure 6. Character vocabulary index representation example.

3.2.2. Structure of the Convolutional Neural Networks

As shown in Figure 7, the proposed convolutional neural network (CNN) model has the following
layers: (1) embedding layer; (2) convolutional layers; (3) fully connected layers; (4) output layer.

Embedding layer: The embedding layer is generally used in the first layer of the CNN structure
for a Natural Language Processing (NLP) problem. In addition to tokenization, the sparse one-hot
matrix is reduced and converted into a dense character through the embedding layer. The multiplier
of the vector that is returned from the embedding layer can indicate the relations between characters,
which can help improve the performance.

Convolutional layers: Following the embedding layer, 7 convolutional layers are used. The
convolutional filters (i.e., filter number, filter size or kernel, and pooling size) are applied for each
convolutional layer to extract the most valuable features and remove unnecessary learning features.
Following each convolutional layer, the rectified linear unit (ReLU) activation function is used. Then,
the output of the convolutional layers is flattened.
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Fully connected layers: Three fully connected (FC) layers are used to analyze the local deep
association features from the convolutional and max pooling layers, each FC layer is followed by one
ReLU activation function, and 2 dropout modules in between the 3 fully connected layers are used to
prevent overfitting.

Output layer: The number of output units for the last FC layer is set to 2. The softmax function is
used in this layer to identify the possibility that the URL belongs to a phishing website, whereas the
output range of softmax function is between 0 and 1.

Input URL
Char level embedding 5’
Max Input length =200 E’ g
Embedding Dim K= 95 g =
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Figure 7. Configuration of the convolutional neural network (CNN).
3.3. URL Features

We used different types of URL features to measure the performance of the proposed model.
The URL-based extracted features are categorized into four groups:

e  Character embedding level features.

e  Character level TF-IDF features.

e  Hand-crafted features.

e  Character level count vectors features.

We discussed the character embedding level features in Section 3.2.1.

3.3.1. Character Level TF-IDF Features

TF-IDF stands for Term Frequency-Inverse Document Frequency. TF-IDF score represents the
relative importance of a term in the document and the entire corpus. TF-IDF score is composed of
two terms: the first computes the normalized Term Frequency (TF), the second term is the Inverse
Document Frequency (IDF), computed as the logarithm of the number of the documents in the corpus
divided by the number of documents where the specific term appears [33].



Electronics 2020, 9, 1514 11 of 24

Number of times term t appears in a document d

TE(td) = Total number of terms in the document @
Total number of documents D
IDF(t,D) =1
(t, D) = log, <Number of documents with term t in it) ©)
TF-IDF (t,d,D) = TF (t,d) * IDF (t,D) (6)

TF-IDF Vectors can be generated at different levels of input tokens (words, characters, n-grams):

e  Word level TF-IDF: Matrix representing TF-IDF scores of every term in different documents.

o  Character level TF-IDF: Matrix representing TF-IDF scores of character level n-grams in the
corpus.

e N-gram level TF-IDF: N-grams are the combination of N terms together. This matrix represents
TF-IDF scores of N-grams.

It is noted that TF-IDF has been applied in several works to detect phishing of websites by
inspecting URLs [6], to get the indirect associated links [34], target website [22], and legitimacy of
suspicious website [21]. Although TF-IDF extracts eminent keywords from the textual content, it has
some restrictions. One of the restrictions is that the technique fails when misspelled keywords are
extracted. Since URL might contain meaningless words, we applied character level TF-IDF technique
with max features as 5000.

3.3.2. Hand-Crafted Features

These are manually crafted features obtained from Python when a URL is provided as input.
Depending on the URL parts (host name, path, file, or query) used to extract features, hand-crafted
features are categorized into five groups as follows:

e  Full URL-based features.
e Domain-based features.
e  Path-based features.

e  File-based features.

e  Query-based features.

Table 2 provides a list of URL hand-crafted features. Most of these features are taken from existing
works [6,35-39] and classified into three categories.

Count-based features: These features get the number of specific characters in the URL. The
importance of these features is that, if the number or length is higher, it denotes that entered URL is
probably a phishing URL. For example, take into consideration the feature that gets the count of dots
in the URL. The higher number of dots, the more likely that URL is deceptive as the dots are used to
hide the brand name in the URL. U1, U17~U18, U20, H1, H17~ H18, P1, P17~P18, F1, F17~F18, Q1,
and Q17~Q19 features fall under this category.

Infrequent symbols in benign sites but frequent in phishing sites: There are many special
characters (e.g., -, ., " ", /, 2, = @, &, !,", """, +, % #, %, %) that appear frequently in the URL of
phishing sites but not in benign sites. An unusual amount of these characters can indicate the presence
of a malicious URL. For example, take into consideration the feature that detects the presence of @
in the URL. If it exists, it could be phishing site otherwise a benign site. Features U10, U2~U16, H2,
H4~H16, P2~P16, F2~F16, and Q2~Q16 fall under this category.

Other features: Some of the other features do not fall in any of the previous categories. Feature U19
checks if there is an email in URL is set to true; otherwise, is set to false. Features U20 and Q20 check the
amount of top-level domains (TLD) present in the URL. Top-level domains are obtained from Internet
Assigned Numbers Authority (IANA) (https:/ /www.icann.org/resources/pages/tlds-2012-02-25-en)
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and stored in a file. A list of all valid top-level domains is maintained by the IANA and is updated
from time to time. Feature H19 checks if the domain has an IP address. Feature H3 checks the total
count of vowels in domain name. Based on our dataset, we observed that there are more vowels in
phishing URLs than in benign URLs.

Table 2. List of hand-crafted features.

Full URL-Based Features

Domain-Based Features

Path-Based Features

File-Based Features

Query-Based Features

Ul:
U2:
U3:
U4:

U13:
Ul4:

U15

Ule:
U17:
U18:
U19:
U20:

dot_url
hyphe_url
underline_url
bar_url

: question_url

: equal_url

: arroba_url

: ampersand_url
: exclamation_url

: white_space_url
: plus_url

: til_url
comma_url
asterisk_url

: hashtag_url
money_sign_url
percentage_url
len_url
email_exist
count_tld_url

H1:
H2:
Ha3:
H4:
H5:
He:
H7:
H8:
H9:

HI10:
Hi11l:
H12:
H13:
H14:

H15

Hie:
H17:
H18:
H19:

dot_host
hyphe_host
vowels_host
underline_host
bar_host
question_host
arroba_host
ampersand_host
exclamation_host
equal_host
white_space_host
til_host
comma_host
asterisk_host

: hashtag_host
money_sign_host
percentage_host
len_host

ip_exist

P1:
P2:
P3:
P4:
P5:
Pé:
P7:
P8:
P9:

P10:
P11:
P12:
P13:
P14:

P15

P1l6:
P17:
P18:

dot_path
hyphe_path
underline_path
bar_path
question_path
equal_path
arroba_path
ampersand_path
exclamation_path
white_space_path
til_path
comma_path
plus_path
asterisk_path

: hashtag_path
money_sign_path
percentage_path
len_path

F1:
F2:
F3:
F4:
F5:
Fe6:
F7:
F8:
Fo:

F10:
F11:
F12:
F13:
F14:

F15

Fle6:
F17:
F18:

dot_file
hyphe_file
underline_file
bar_file
question_file
equal_file
arroba_file
ampersand_file
exclamation_file
white_space_file
til_file
comma_file
plus_file
asterisk_file

: hashtag_file
money_sign_file
percentage_file
len_file

Q1:
Q2:
Q3:

Q1é:
Q17:
Q18:
Q19:
Q20:

dot_params
hyphe_params
underline_params

: bar_params

: question_params

: equal_params

: arroba_params

: ampersand_params
: exclamation_params

: white_space_params
: til_params

: comma_params

: plus_params

: asterisk_params

: hashtag_params
money_sign_params
percentage_params
len_params
number_params
tld_params

Figures 8 and 9 illustrate a comparison between fishing and benign hand-crafted features of URL
based on the average occurrence rate per feature within each URL in our dataset.
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Figure 8. Distribution of URL hand-crafted features in our dataset.
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Figure 9. Distribution of URL hand-crafted features in our dataset.
3.3.3. Count Vectors Features

Count vector is a matrix notation of the dataset in which every row represents a document from
the corpus, every column represents a term from the corpus, and every cell represents the frequency
count of a particular term in a particular document [33]. The basic count vectors (bag-of-words)
technique does not consider the meaning of the word in the document. It completely ignores the
context in which it is used. The same word can be used in multiple places based on the context or
nearby words. For the large document, the vector size can be huge resulting in a lot of computation
and time. Here, we applied this technique at the character level instead of word level on URLs corpus.

3.4. Classification Algorithms

To evaluate the performance of URL features, we applied different classification models
(Naive Bayes, Logistic Regression, random forest, XGBoost, and deep neural networks). The main
objective of comparing different models is to choose the best model. To implement many machine and
deep learning models, the Scikit-learn (http://scikit-learn.org) and Keras (https:/ /keras.io) packages
are used.

The Naive Bayes is a classification technique based on Bayes’ Theorem with an assumption of
independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence
of a particular feature in a class is unrelated to the presence of any other feature. Naive Bayes model
is easy to build and particularly useful for very large datasets [40]. Equation (7) provides a way of
calculating posterior probability P (c|x) from P (c), p (x) and P (x|c).

P (x|e) P(c)

P(clx) = P (x)

()
where:

P(c1x) is the posterior probability of class (c, target) given predictor (x, attributes).
P(c) is the prior probability of class.

P(xIc) is the likelihood which is the probability of predictor given class.

P(x) is the prior probability of predictor.

Logistic regression classification is an estimation of logit function that measures the relationship
between the categorical dependent variable and one or more independent variables by estimating
probabilities using a logistic/sigmoid function. Logit function is simply a log of odds in favor of the
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event. This function creates a s-shaped curve with the probability estimate [41]. Figure 10 shows the
definition of logit function.

6
4 logit (P) = In ( 'l _clooth)
9 - P= Togit(P)
08 1+
2
& 06
> 0 o
S 04
-2
0.2
-4
ol
6 s
0 0.2 0.4 0.6 0.8 1 -6 -5-4-3-2-1 0 1 2 3 4 5 6
P Logit(P)

Figure 10. Logit function.

Random forest models are a type of ensemble models, particularly bagging models. They are part
of the tree-based model family. It is like the bootstrapping algorithm with decision tree (CART) model.
Suppose we have 1000 observation in the complete population with 10 variables. Random forest tries
to build multiple CART models with different samples and different initial variables. For instance,
it will take a random sample of 100 observation and 5 randomly chosen initial variables to build a
CART model. It will repeat the process (suppose) 10 times and then make a final prediction on each
observation. Final prediction is a function of each prediction. This final prediction can simply be the
mean of each prediction [42].

Boosting models are another type of ensemble model part of tree-based models. Boosting is a
machine learning ensemble meta-algorithm for primarily reducing bias, and also variance in supervised
learning, and a family of machine learning algorithms that convert weak learners to strong ones.
A weak learner is defined to be a classifier that is only slightly correlated with the true classification [33].
XGBoost algorithm is a type of boosting models and short form for eXtreme Gradient Boosting. It has
both a linear model solver and tree learning algorithms. What makes it fast is its capacity to do parallel
computation on a single machine [43].

A neural network is a mathematical model that is designed to behave similar to biological neurons
and nervous system. These models are used to recognize complex patterns and relationships that
exists within labeled data. Deep neural networks are more complex neural networks in which the
hidden layers perform much more complex operations than simple sigmoid or ReLU activations [33].
Figure 11 shows the structure of deep neural networks.

input layer hidden layer 1  hidden layer 2  hidden layer 3

output layer

Figure 11. Deep neural networks structure.
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4. Experimentation and Result Analysis

The proposed model receives suspicious URLs as an input and generates the URL status as benign
or phishing. This section provides empirical details of the proposed model’s classification algorithms
and detailed feature extraction types are used. Then, comparative test results between these algorithms
are portrayed with related features.

The extracted features are divided into four different feature groups as described below:

e  FG1: Character level TF-IDF features.

o  FG2: Character embedding level features.

e  FG3: Character level count vectors features.
e FG4: Hand-crafted features.

4.1. Dataset Description

We collected URLs from different sources (Alexa [44], openphish [45], spamhaus.org [46],
techhelplist.com [47], isc.sans.edu [48], and phishtank [49]). Before using them, URLs that are repeated
or not surviving were removed to construct a dataset. Distribution of the legitimate and phishing
URLs are shown in Table 3. The common URL parts, such as “http://”, “https://”, and “www.” are
removed. Without trimming the prefixes, inconsistent URL formats can easily affect the quality of the
model during training. The dataset was randomly split into a training set and a test set. The database
management system (i.e., pgAdmin) has been used with python to import and pre-process the data.

We divide the dataset into four groups where D1 is our dataset and D2, D3, D4 are datasets used
in situated literature as shown below:

o  D2: Legitimate sites from Yandex and phishing sites from PhishTank [7].

o DB3: Legitimate sites from common-crawl (http://index.commoncrawl.org/) and phishing sites
from PhishTank [6].

e D4: Legitimate sites from both common-crawl and Alexa database and phishing sites from
PhishTank [6].

Table 3. Dataset distributions.

Dataset Benign URLs PhishingURLs  Total

Data 1 157,626 161,016 318,642
Data 2 36,400 37,175 73,575
Data 3 43,189 40,668 83,857
Data 4 42,220 40,668 82,888

The distributions of URL length in dataset D1 for both benign and phishing URLs are shown in
Figures 12 and 13, respectively. As can be seen from the figures, the length of URL ranges from 10 to 80
for most URLSs, the maximum length for benign URLs is 400, and the maximum length for phishing
URLSs is 6000.

legitmiate URLs
12000
10000
8000

count
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4000

2000

HHHHHHHHHHHHHHHHHHHHHHHH

Figure 12. Distribution of URL length in D1.
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Figure 13. Distribution of URL length in D1.

We have proceeded five experiments on the above mentioned datasets. In experiment 1, feature
groups FG1~FG4 are extracted from D1 and evaluated using different models. In experiment 2, both
FG1 and FG2 features are evaluated using different models with regard to D3. Experiment 3 extracts
and evaluates features FG2 using different deep leaning models on D2. In experiment 4, the proposed
model is evaluated on D1, D2, and D3. Experiment 5 is about comparing our work with existing works.
A summary of the five experiments is shown in Table 4.

Table 4. Summary of the five experiments.

The Experiment

The Purpose of the Experiment

The Outputs of the Experiment

Experiment 1

A comprehensive comparison to expose
the best classifiers suitable for URL group
features

The superior URL group features with
respect to classifiers

Experiment 2

Evaluate the superior feature groups with
respect to classifiers in experiment 1 using
different dataset

The best feature group with respect to
classifier

Experiment 3

Evaluate the best feature group with respect
to classifier in experiment 2, with different
neural network models using the same
feature group

The best model as a proposed model

Experiment 4

Evaluate the best model (the proposed
model) in experiment 3 using different
benchmark datasets

Evaluation of the proposed model based on
different statistics (i.e., accuracy, precision,
recall, F1-Score, AUC value, training time,
and test time)

Experiment 5

Comparing the proposed model with
existing baselines in order to evaluate the
performance of our model

Evaluation values of our model and other
models based on different statistical metrics
used in the papers

To measure the effectiveness of our model, we used different statistics metrics such as sensitivity

or recall, accuracy, precision, F1_score, AUC and they are calculated as follows:

Accuracy = (TP+TN)/(TP+ TN + FP + FN) 8)
Precision = (TP) /(TP + FP) )

Recall = (TP)/(TP+FN) (10)

F_Measure = 2 « precision x recall / (precision + recall ) (11)

where TP is the true positive that denotes the number of URLs which are phishing and correctly
classified, TN is true negative that denotes the number of benign URLSs recognized as benign ones, FP
is false positive that denotes the number of benign URLs which are wrongly classified as phishing,
and FN is the false negative that denotes the number of phishing URLs identified as benign ones.
The receiver operating characteristic (ROC) arch and AUC are usually used to evaluate the merits
of a binary classifier. The horizontal coordinate of the ROC arch is FPR, which denotes the possibility
that the normal URL of the website is incorrectly marked as a phishing; the ordinate is TPR, which
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denotes the possibility that the phishing URL of website is correctly classified as a phishing website.
Their definitions are as follows:

FPR = (FP)/(FP +TN) (12)

TPR = (TP)/(FP + TN) (13)

4.2. Evaluation of FG1, FG2, FG3, and FG4 on D1 with Different Classifiers

In this experiment, we compared different classifiers such as Multinomial Naive Bayes (MNB),
Logistic Regression (LR), Gaussian Naive Bayes (GNB), random forest (RF), XGBoost (XGB), deep
neural network (DNN), and convolutional neural network (CNN) using all URL group features
FG1~FG4 on D1. The main purpose of this experiment was to expose the best classifiers suitable for
URL group features. The comparison results are shown in Table 5. From the results, it is observed
that MNB, LR, and GNB classifiers have good accuracy, precision, recall, F-Score, and AUC with FG1
and FG3, whereas MNB, GNB classifiers have low accuracy, precision, F-Score, and AUC with FG2
due to the independent predictors and the normal features distribution that assumed by Naive Bayes
classifier. RF and XGB classifiers are a type of ensemble classifiers, that convert weak learners to strong
ones, and suitable for all feature groups, thus they have perfect accuracy, recall, F-Score, and AUC
with FG1, FG2, and FG3. DNN has high accuracy, precision, F-Score, and AUC with regard to FG1,
high recall with FG1~FG3, good accuracy, precision, F-Score, and AUC with FG2 and FG3. Since
convolutional networks use embedding and convolution layers and deal with sequential data, CNN
is suitable for FG2 and outperforms the others with an accuracy of 95.02 %, F-Score of 95.13%, and
AUC of 95.04%. With regard to FG4, all classifiers have normal accuracy, and the reason behind less
accuracy is due to features that are not efficient enough to clearly distinguish between phishing and
benign URLSs, as phishers use new techniques to prepare deceptive URLs that are very similar to the
benign URLs.

Table 5. The results of the classification models on D1.

Model Features Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
Multinomial Naive Bayes FG1 87.58 89.15 89.25 87.64 87.59
FG2 55.45 52.97 95.14 68.05 56.19
FG3 77.06 72.87 85.43 78.48 77.62
FG4 53.37 52.83 70.89 60.54 53.22
Logistic Regression FG1 92.67 88.93 97.24 92.89 92.73
FG2 73.34 72.66 74.01 73.33 73.35
FG3 88.18 83.41 94.94 88.80 88.27
FG4 73.47 7791 66.18 71.57 73.54
Gaussian Naive FG1 89.15 95.52 95.49 89.59 89.66
FG2 55.50 52.80 96.76 68.32 55.83
FG3 75.71 67.31 99.56 80.16 76.09
FG4 62.36 94.41 26.98 4197 62.67
Random Forest FG1 92.04 87.71 97.56 92.37 92.10
FG2 91.38 88.70 94.67 91.59 91.40
FG3 91.10 86.03 97.96 91.61 91.15
FG4 74.01 78.47 66.81 7217 74.07
eXtreme Gradient Boosting FG1 91.34 86.26 98.18 91.84 91.40
FG2 93.08 88.72 98.62 93.40 93.13
FG3 90.78 86.03 97.21 91.28 90.84
FG4 73.98 78.38 66.86 72.16 74.05
Deep Neural Networks FG1 93.75 91.11 96.85 93.88 93.77
FG2 85.93 78.42 98.68 87.39 86.08
FG3 88.04 80.61 99.92 89.23 88.14
FG4 73.92 78.24 66.93 72.14 73.99
Convolutional Neural Networks FG1 51.29 50.47 99.84 67.05 51.93
FG2 95.02 92.35 98.09 95.13 95.04
FG3 75.00 74.58 73.66 74.12 74.96

FG4 73.23 69.62 81.25 74.98 73.32
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4.3. Evaluation of FG1 and FG2 on D3 with Different Classifiers

From a previous experiment, it has been observed that FG1 are superior to other features with
regard to MNB, LR, GNB, RF, and DNN classifiers, whereas FG2 are superior to other features with
respect to XGB and CNN classifiers. Therefore, FG1 are evaluated using MNB, LR, GNB, RF, and
DNN classifiers while FG2 are evaluated using XGB and CNN classifiers based on D3. Dataset D3 is
used for diversity and performance screening. The accuracy for CNN, DNN, and RF classifiers are
95.41%, 95.24%, and 93.62%, respectively. Results of the experiment are shown in Table 6. Obviously,
the accuracy of classifiers obtained in this experiment is better compared to previous experiment.

Table 6. The results of the classification models on D3.

Model Features Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
Multinomial Naive Bayes FG1 87.44 88.43 70.16 78.24 82.90
Logistic Regression FG1 91.83 92.66 88.97 86.44 80.99
Gaussian Naive FG1 80.43 63.97 89.63 74.66 82.84
Random Forest FG1 93.62 95.54 84.11 89.46 91.12
eXtreme Gradient Boosting FG2 9243 93.61 90.66 92.10 92.38
Deep Neural Networks FG1 95.24 96.17 93.93 95.04 95.20
Convolutional Neural Networks FG2 95.41 96.18 94.31 95.23 95.38

4.4. Evaluation of FG2 on D2 with Different Deep Learning Models

In this experiment, FG2 are evaluated on D2 using different deep learning techniques such as
recurrent neural networks (RNN), CNN, recurrent convolutional neural networks (RCNN), DNN,
and very deep convolutional neural networks (VDCNN) [50]. Table 7 shows the results of different
neural network models. From the results, the CNN model has the highest accuracy and best detection
performance among all models. It can be seen that the CNN model has higher accuracy of 98.58%
on D2 than that of D1 and D3 with respect to FG2. For training, we set the batch size as 128 and the
epoch number as 20. The CNN method uses 89 min as training time. VDCNN uses 350 min which
is nearly quadruple of CNN model. RNN uses 110 min, RCNN uses 92 min, and DNN uses 4 min.
Figures 14-17 show the validation loss and accuracy for the training and testing data of RNN, RCNN,
DNN, and VDCNN, respectively.

Table 7. Evaluation of FG2 on D2 with different deep learning models.

Model AUC F1(%) Precision (%) Recall (%) Accuracy (%)

RNN 97.76  97.77 97.91 97.62 97.75
RCNN 9822 98.18 98.12 98.24 98.21
DNN 81.34 80.84 82.16 79.56 81.36
VDCNN  86.58  84.52 99.77 73.33 86.76
CNN 98.58  98.56 98.55 98.62 98.58

CNN is the proposed model that has been discussed in the methodologies section.

Training and validation accuracy Training and validation loss

— Training acc —— Training loss
— Validation acc — validation loss
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Figure 14. Evaluation of recurrent neural network (RNN) model on D2 using FG2.
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Figure 15. Evaluation of recurrent convolutional neural network (RCNN) model on D2 using FG2.
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Figure 16. Evaluation of deep neural network (DNN) model on D2 using FG2.
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Figure 17. Evaluation of very deep convolutional neural network (VDCNN) model on D2 using FG2.
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4.5. Evaluation of the Proposed Model on D2, D3, and D4

Several benchmark datasets that were mentioned earlier are used to evaluate and test the
performance of the proposed model in terms of accuracy, precision, recall, F1-Score, AUC value,
training time, and test time. The training time indicates the time required to extract features and define
optimal parameters on the training set, whereas the test time indicates the time required to detect the
classification result for each sample on the test set after the training is completed. The results of this
experiment are shown in Table 8. Figures 18-20 show the validation loss and accuracy for the training
and testing data on D2, D3, and D4, respectively compared to the proposed model. As shown in the
figures, the number of epochs used is 20. Keras callback technique was used to monitor the model
during training. Callbacks techniques provide a simple way to save the model automatically when
the measure of validation loss or accuracy no longer improving, and they can take action: interrupt
training, save a model, load a different weight set, or otherwise alter the state of the model [51].

Table 8. The results of the proposed model on benchmark datasets.

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Training Time (s) Test Time (s)

D2 98.58 98.55 98.62 98.56 98.58 5281.81 32.70
D3 95.46 96.63 94.02 95.30 95.43 6063.63 39.82
D4 95.22 95.01 95.30 95.16 95.22 6027.27 37.48
Training and validation accuracy Training and validation loss
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Figure 18. Evaluation of the proposed model on D2.
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Figure 19. Evaluation of the proposed model on D3.
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Figure 20. Evaluation of the proposed model on D4.

4.6. Comparison of Proposed Model with Existing Baselines

In this part, we compare the methods of Sahingoz et al. [7], Rao et al. [6], and Le et al. [28] with our
proposed method in order to evaluate the effectiveness of our model. Notice that we have implemented
Hung Le et al. [28] on dataset D2 whereas for comparison of the proposed method with Sahingoz et
al. [7] and Routhu et al. [6], we applied our model on their datasets—D2, D3, and D4. The reason
behind the comparison with these works is due to the similarity in phishing detection techniques.
These works detect phishing sites based on URLs only without visiting the content of websites.

Rao et al. [6] applied his method to the data of Sahingoz et al. [7] and outperformed Sahingoz et al. [7]
with an accuracy of 98.25%, F1 score of 98.23%, and precision of 98.04%. We have applied Le et al. [28] to
the data of Sahingoz et al. [7], however the results of Sahingoz et al. [7] and Rao et al. [6] outperformed
those of Le et al. [28]. Finally, we applied our method to the data of Sahingoz et al. [7] and our method
performed better than the others with an accuracy of 98.58%, precision of 98.55%, F1 score of 98.56%,
and sensitivity of 98.62%, which shows the effectiveness of detecting phishing sites over the existing
methods. It is also noted that the Sahingoz et al. [7] sensitivity is 0.38% higher than our method
because of the use of third-party services. Table 9 illustrates the evaluation values of our method and
other methods (Sahingoz et al. [7], Rao et al. [6], Le et al. [28]) based on the four statistical metrics
used in the papers.

Table 9. Comparison of the proposed model with existing baseline models on D2.

Metrics (%) Sahingoz etal. Raoetal. Leetal. OurModel

Precision 97.00 98.04 97.97 98.55
Sensitivity 99.00 98.42 95.32 98.62
F-measure 98.00 98.23 96.62 98.56
Accuracy 97.98 98.25 96.48 98.58

In Table 10, we applied our method to the data of Rao et al. [6] (D3 and D4) and our method
outperformed Rao et al. on D4 with an accuracy of 95.22% and F1 score of 95.16%, and on D3 with
precision of 96.63%. In order to facilitate comparison, we calculate the three metrics (accuracy, F1 score,
and precision) based on the experiment results of Rao et al. It should also be noted that accuracy
and F1 score of Rao et al. on D3 and the precision of Rao et al. on D4 are 0.21%, 0.51%, and 0.70%,
respectively greater than our method, whereas the accuracy and F1 score of our method on D4 and the
precision of our method on D3 are 1.27%, 1%, and 0.32% higher than that of Routhu et al.
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Table 10. Comparison of the proposed model with existing baseline models on D3, D4.

Metrics (%) Raoetal. (D3) OurModel Raoetal.(D4) OurModel

Precision 96.31 96.63 95.71 95.01
F-measure 95.81 95.30 94.16 95.16
Accuracy 95.67 95.46 93.95 95.22

5. Conclusions

In this paper, we have implemented a phishing detection model by using a character level
convolutional neural network (CNN). The proposed model based on the features extracted from URL
does not need manually designed hand-crafted features, and it is independent of network accessing.
This conduct makes the technique suitable at the client side because of its low response time.

We have compared the proposed method by using different machine and deep learning algorithms,
such as Naive Bayes, Logistic Regression, random forest, XGBoost, deep neural networks, recurrent
neural networks, recurrent convolutional neural networks, and various types of features as character
level TF-IDF features, character embedding features, character level count vectors, and hand-crafted
features. The proposed model achieved an accuracy of 95.02% on our dataset and an accuracy of
98.58%, 95.46%, and 95.22% on benchmark datasets.

There are some disadvantages to the model. The main disadvantage is that the training time
is rather long, but the trained model is much better than the existing phishing models in terms of
accuracy. One of the drawbacks is that the model is not interested if the URL of the website is active or
if there is an error. So it is crucial to check the rationality of the URL in anticipation.

Another drawback is that the model may misclassify some of the phishing sites when the URL is
short or contains sensitive words such as “login” or “registered”, these sensitive words may cause a
misclassification of such URLs as phishing websites. Moreover, some URLs for deceptive websites,
that are not necessary an imitation of other websites, may not be detected based on a URL string.
So our intention in future work is to apply deep learning techniques to feature extraction of webpage
code and webpage text.
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