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Abstract: The goal of the few-shot learning method is to learn quickly from a low-data regime.
Structured output tasks like segmentation are challenging for few-shot learning, due to their being
high-dimensional and statistically dependent. For this problem, we propose improved guided
networks and combine them with a fully connected conditional random field (CRF). The guided
network extracts task representations from annotated support images through feature fusion to do
fast, accurate inference on new unannotated query images. By bringing together few-shot learning
methods and fully connected CRFs, our method can do accurate object segmentation by overcoming
poor localization properties of deep convolutional neural networks and can quickly updating tasks,
without further optimization, when faced with new data. Our guided network is at the forefront of
accuracy for the terms of annotation volume and time.

Keywords: few-shot learning; image segmentation; convolutional neural networks; conditional
random fields

1. Introduction

In the context of deep learning, each class requires at least thousands of training samples to saturate
the performance of convolutional neural networks on known categories. In addition, the generalization
ability of neural networks is weak. When the novel class comes, it is difficult for the model to
learn to identify novel concepts through a small number of labeled samples. However, humans
have the ability to quickly learn from small (single) samples. People can even accurately identify
things in a picture based on just one picture. Inspired by the rapid learning ability of human beings,
the researchers hope that the machine learning model can learn quickly after learning a large amount
of data of a certain category, and only a small sample is needed for the new category. These prompted
the emergence of few-shot learning methods [1-3]. The current few-shot learning methods mainly rely
on meta-learning to adapt to new tasks. However, these methods focus on classification rather than
structured output tasks.

Image segmentation is the core task of visual recognition, and its end-to-end system has achieved
advanced performance. Although deep convolution neural network (DCNN) has made great progress
in the field of image segmentation, there is evidence that the response of the last layer of DCNN
is not enough to accurately locate the target boundary [4]. Convolution neural network models
perform very poorly in their ability to capture fine edge details and are unable to adapt to long-range
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dependencies. In order to solve the problem of small amount of training data and precise segmentation
at the same time, we propose combining the few-shot learning method with fully connected pairwise
conditional random fields (CRFs) proposed by Kradhenbiihl and Koltun [5], for its efficient computation
and localization performance.

Specifically, we solve such a few-shot segmentation problem: just a little sparse pixelwise
annotated support images for indicating the task are given, and then segment unannotated images
correspondingly. In this work, our framework is at the pixel-level. That is to say, the input and output
are all the pixel-level. Thus, they are from inside and across images propagating pixel annotations
to unannotated pixel for inference. In addition, we can infer the latent task representation defined
by sparse pixelwise annotations through optimizing the guided network. Moreover, according to
the latent task representation, the new query image without pixel annotations is segmented accordingly.
Our guided network even requires only two annotated pixels (one positive pixel and one negative pixel)
per concept, to segment new concepts, and incorporates further annotations to renew and ameliorate
inference. Our method can spread across the spectrum from an annotated pixel to intensive entire
masks, unlike some existing methods that may fail to segment specific tasks in very sparse regimes.

In this paper, we propose a new class of guided networks which combines fully connected CRFs
(see Figure 1). Our model is composed of three fairly well-established branches, guided branch,
segmentation branch, and fully connected CRFs. Given an annotated support set, the guide (g) extracts
a potential task representation (R) and uses it to direct the segmentations of query images. We introduce
a new mechanism for merging images and annotations on encode the support, which greatly improves
learning time and inference accuracy. For the segmentation branch, we designed a small convolutional
network, which can be understood as a learning distance measure from support to query; under
the guidance of task representation, R, the segmentation branch extracts the foreground object of
the image and generates rough segmentation results. Once trained, our model does not need to make
further efforts to optimize to deal with new few-shot tasks. Finally, we use fully connected CRFs to
optimize the details of the output and pinpoint it.
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Figure 1. Proposed model overview. See Section 4 for details.

The main contributions of this paper can be summarized as the following three aspects:
(1) We implemented an image segmentation algorithm which combines the few-shot learning method
and the fully connected conditional random field (CRF), and get relatively good segmentation results;
(2) we introduce a new mechanism for merging images and annotations, to improve learning time
and inference accuracy and propagate pixels across different images; and (3) we combined the fully
connected CRF behind the guided network, to improve the ability of the network to capture detailed
features and achieve accurate segmentation of objects.
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2. Related Work

Our framework realizes the accurate segmentation of images with a little training samples. At present,
deep learning technology has made tremendous progress in the field of image segmentation [6-9].
However, due to the bottleneck of deep learning technology, which needs a large amount of label data, it
has led to the exploration of the few-shot learning method. We concentrate on one-shot, semi-supervised,
and interactive methods; at the same time, we review the relationship between few-shot learning methods
and structured output.

2.1. Few-Shot Learning

The few-shot learning method is a good generalization for the problem of limited labeled datasets,
which generally contain only a few training samples of the target class [10]. Although the interest in
few-shot learning methods is increasing, most of the current research focuses on classification [11-13]
rather than structured output, and little attention is paid to the supervision of sparse and imbalanced.
Shaban et al. [14] were the first to apply the one-shot learning method to image semantic segmentation,
which only requires an image and its corresponding pixel-level annotation per class. Few-shot learning
ensures the efficiency of data; at the extreme, one-shot learning requires only a single annotation of
a new concept.

To locate our study, we herein review methods such as segmentation associated with visual
structured output tasks. During inference, few-shot learning methods do optimize by gradients
on a learned recurrent optimizer [15,16]. Notably, the majority scarcely use task and architecture
presumptions, but these ways are unconfirmed for the skewed distributions and high dimensionality
of segmentation. Motivated by Siamese networks [17] used for metric learning [18,19], few-shot also
as embedding learns a metric and seeks the nearest target from the support. Although these mediums
are quickly and fairly uncomplicated [20] on small datasets, they are a disgrace with higher shot
and way. It is difficult to extend one-shot to few-shot, because of the way of few-shot regresses model
parameters based on the support.

2.2. Segmentation

There are many types of segmentation, e.g., semantic segmentation, instance segmentation,
panoramic segmentation, and so on. We take the semantic and interactive segmentation as our main
challenges (see Figure 2).

Semantic Segmentation Interactive Segmentation

Figure 2. Our few-shot image segmentation subsumes semantic and interactive. It is worth noting that
interactive-based cannot propagate annotations across different images. Our proposed method can be
used in both cases.

The fully convolutional network (FCN) [6] is a pioneering work that applies a convolutional
neural network (CNN) structure to the field of image semantic segmentation and achieves outstanding
segmentation results. However, its segmentation results are not precise enough to segment the details
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of the target image. For semantic segmentation, Shaban et al. [14] designed a segmented architecture
for one-shot learning method, which only needs a few training images, but requires dense annotations
and supervision at training time. For our guided architecture, we only need to randomly point a few
positive sample points and negative sample points (foreground points and background points of images)
on the training sample image. We mainly draw support from the feedforward guidance for few-shot
learning, so as to make our methods faster and better. For interactive segmentation, Xu et al. [21]
introduced a state-of-the-art segmentation method. They put the original image together with Euclidean
distance maps based on foreground and background annotations into a full convolutional network,
to generate a probability map. It is a pity that it cannot propagate pixel annotations across different
images. Undeniably, that is a bottleneck on annotation efficiency. What is amazing is that our approach
can segment new inputs independently. Thus, even if support images and query images are different,
we can also achieve accurate segmentation. This is much better than interactive seg; Xu et al. [21]
and we regard the interactive as a special case of few-shot.

2.3. Fully Connected CRFs

Structured prediction tasks such as image segmentation can gain many advantages from
conditional random fields and other probability graph models. CRF are often used for pixel-level label
prediction. Traditionally, a CRF was used to smooth the noise segmentation images [22,23]. Generally,
these models contain energy terms that couple adjacent nodes so that the same labels are assigned to
the proximal pixels in space. The basic CRF model is a graph model composed of the unary potential
function and the potential function composed of adjacent elements. Obviously, a disadvantage of
the basic CRF model in image tasks is that it only considers the adjacent neighborhood elements,
without considering the whole, so it will lose some context information. Therefore, a further idea was
born: Each pixel is made into an edge for all other pixels, to achieve a dense fully connected model,
that is, fully connected CRFs [5]. The fully connected CRF obtains as much adjacent point information
as possible by operating all nodes, thereby obtaining more accurate segmentation results [9,24,25].

3. Few-Shot Segmentation

In the few-shot learning method, the training set contains many categories, and there are multiple
samples in each category. In the training phase, N classes of data are randomly selected from the training
set, and K samples of each class (N x K data in total) are constructed to a meta-task as the model’s
support set input. Then, we take a batch of samples from the remaining data of these N classes
as the query set of the model. That is to say, the model is required to learn how to distinguish these
N classes from N x K data. Such a task is called the N-way, K-shot problem [10,15,26]. For few-shot
image segmentation tasks, in this setting, we also need to add a further pixel dimension, as annotations
may be spatially dense or sparse. We have to consider the amount of support images and the amount
of annotated pixels per support image. We express the amount of pixel annotations for every support
image as P and think over the place settings of (K, P)-shot learning for different K and P. We especially
pay attention to the sparse annotation, that is, the case where P is very little, because this can reduce
the cost of annotation and more practical to collect. More importantly, it only asks the user to point
to the segment of interest. Furthermore, we deal with mixed-shot learning, where the quantity of
annotation changes as class and task change.

We follow and expand the notation of Chen. et al. [27]. We represent the support and Query set of
the task as the following form. SupportSet: Ds = {(Ié, L;)}i\]s: l(l) and Query Set: D; = {(Ifi, L;)}i\z 1(l),
where I' represents the i (th) original image, L' are the corresponding annotations, the indexes s and q
are the support set and query set, N is the number of images in each set, and (/) is the semantic class of
the dataset.

In general, we regard each segmentation task to be binary with N = 2,orL = (L;,L-), where

every task interprets its own positive and negative is the supplement (that is the background in image
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segmentation). Note that the binary task is a natural one for interactive segmentation problem, in case
the tasks consist of a single object to be segmented. Obviously, the binary task can be extended to
the higher-way task. Because the inference for every query image is independent in our mechanism,
we keep the number of unannotated query images is one.

In order to solve the problem of few-shot image segmentation, our model is divided into
three parts:(1) extracting task representation from semi-supervised support images that can express
segmentation tasks with high quality; (2) segmenting query images according to the task representation
extracted in the previous step; and (3) introducing the fully connected conditional random fields [4], to
consider the global location information, and further optimizing the segmentation results. We express

the task representation as follows R = g(I;,L4,L-) and the query segmentationas y = f (Iq,R).

The selection of the task representation, R, and its encoder, g, are important for few-shot segmentation
to deal with the hierarchical structure of images and their pixelwise annotations. We discuss the issue
in Section 4. According to the task representation, we integrate the few-shot methods into the dense
pixelwise inference through a fully convolutional network. Compared with other few-shot methods,
our evaluation emphasizes the limits of shot and efficiency.

4. Methods

Our model can make predictions independently, while guiding the task and rectifying errors
under the guidance of users. Unlike static model parameters, our guidance is dynamically variable.
It can be expanded or rectified as directed by an annotator. It is worth noting that the process of
self-prediction could be considered as interactive segmentation when the support image and query
image are the same. It can be seen as a special case of few-shot segmentation. Specifically, we use
aguide, R = g(I;, L;), to extract a latent task representation, R, from the support through the guided
branch. Subsequently, the segmentation branch combines task representation, R, and query features to
make joint predictions, y = f| (Iq, R). We discuss how to better design the above two function formulas
in the following sections.

Our model uses VGG-16 [28] as a feature extractor, pre-training it on ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [29], and converting it into fully convolutional form.

4.1. Guided Branch: Extracting Task Representation from Support

For the sake of the segmentation of query images, the task representation, R, has to fuse pixel
annotations with the support image features. Because pixels are semi-supervised and spatially
correlated, our support is dependent statistically. In addition, the full supervision is difficult to annotate
because of the high-dimensional and class-skewed scenes. For the purpose of simplicity, let us first
think over (1, P)-shot support, and then extend it to (K, P)-shot support. We express the guidance
process as follows:

R = g(lyLy, L) = p(A(l),m(Ls),m(L-)) M

by architecturally inducing structure, where R includes both foreground object features
and background features.

Inspired by the method Rakelly et al. proposed [30,31], we first match positive annotated pixels
and negative annotated pixels to the same coordinate scale as the support image Is. We record
the position of them and set the click position to 1 and others to 0. Afterward, we gain two annotation
masks, (L1 ) and (L-),L € {0,1}. Then, we use the pre-trained VGG-16 model as a feature extractor,
A, to extract visual features from the support alone. Since the VGG-16 model contains 5 pooling
operations, the extracted support feature map is reduced by 32 times. To make sure they are the same
size, the positive mask and negative mask are both down-sampled by bilinear interpolation kernel
m(Ly.), m(L-). Finally, we use the element-wise product, 1, to fuse the support features with the positive
mask and negative mask. In this way, we can update the task representation quickly by constantly
recomputing the masking, to incorporate new positive and negative annotations. This greatly reduces
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inference time. Additionally, support and query share a feature extractor to extract visual features,
which significantly improves learning efficiency. The overview is shown in Figure 3.

Support Image Positives Negatives Support Feature Support Image Support Feature

ﬂ@ oo oEB. ’ .‘.l_l[

By

Positives
(a) Previous work (b) Our method

Figure 3. Extracting a task representation from the support. (a) Previous work simply stack the support
and annotations channel-wise. (b) Our method factorizes into image and annotations streams
and improves learning efficiency and inference accuracy.

Previous work merely concatenates the image and annotations. Xu et al. [21] proposed a method
that enables end-to-end learning to fully control how to fuse. However, due to the fact that the number
of channels has changed after concatenating the image and annotations, the original feature extractor
VGG-16 cannot handle the new input data. This will break the input structure of the network
and prevent the implementation of a unified network. Shaban et al. [14] used the method of directly
multiplying the support and dense label annotation to fuse, which ignores all background information.
Our method can well preserve the background information of the support. Moreover, the factorization
into feature-level information and annotation branches better defines the spatial dependency between
annotations and the support. The previous methods have some inherent model problems: inconsistency
of the support with query features, and the fusion is so slow.

When there are multiple foreground objects in the image, we hope to segment all the target objects
in the image, not just one of them, as shown in Figure 4. In addition, if the support and query images are
totally different, the spatial corresponding relationship between the two is unknown, and the support
and query images can only be mapped through features. For this, our method is to global pool, to
merge the local task representations for all position and abandon the spatial dimensions. In the pooling
step, we choose global average pooling to handle it. However, if the support is the same as the query
image (e.g., interactive segmentation), feature location is informative, and the global pooling process
can be ignored.

(a) Image (b) Image and Annotations (c) Local Segmentation (d) Global Segmentation

Figure 4. Globalizing the task representation propagation: In this example, we annotate a single dog (b)
on the image (a), but global guidance causes all similar dogs to be segmented (d) instead of segmenting
an annotated dog (c).
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4.2. Segmentation Branch: Feature Fusion

In the ordinary fixed segmentation model, the form of inference isjusty = fy (Iq) for input image,
I;, parameters, 6, and output results, y. However, in our method, guided inference is the further
functiony = fg(lq, R), where R is the guidance extracted from the support. We use a fusion operation,

C, to concatenate the guided task representation and the query features. The segmentation process can
be defined as follows:

y = fo(C(A(L),R)) @)
where A is the same fully convolutional encoder as the support uses. See Figure 5 for a schematic
illustration. Specifically, fusion operation, C, has this from C = /\(Iq) ® tile(r), where r is the task

representation after global pooling obtained by the guided branch. Tile function copies the original
matrix horizontally and vertically. ® represents the channel numbers stack. We keep repeating

the guidance vector, r, until it is the same as the spatial dimension of the query features, )\(Iq), to make

sure the parameters have the same dimension. Note that the method of Yoon et al. [32] is similar to our
instantiation of this method, but it has difficulties in solving sparse pixel settings. In addition, they
need to optimize for few-shot usage during the inference process.

Task Repr.

7
Global Pool Tile
— —

R )

Query Image Query Feature Prediction Target

Figure 5. Illustration of the segmentation branch. This part describes the fusion of the task representation
with the query features and generates rough prediction results.

Then we decode the fused support—query features into a binary predicted segmentation through
a small convolutional network, fyg. You could understand fy as a learned distance metric for retrieval
from the query to support. Specifically, the fy network can be summarized into two parts. The first
part uses a combination of the convolutional layer (1 X 1 kernel size), rectified linear unit (ReLU),
and drop-out layer to fuse support-query features. The parameters in the convolution layer are used
to calculate the distance of pixels from the support to query. The second part consists of only one
convolution layer (1 X 1 kernel size) with 2 channel dimensions to predict the score of foreground
and background classes on each coarse distance metric maps. Finally, the prediction results are restored
to the original size by the bilinear interpolation and learn end-to-end by back-propagation from
the pixel-wise loss.

We adopt the same training episode as Rakelly et al. [30] did. We first sample the task, and then
we sample the subset of images containing the task, which is divided into the support and query. Then,
when given inputs and targets, we train the network with cross-entropy loss between the prediction
results and the target label:

Loss = %Zi]—[yi xlog(pi) + (1 - y:) xlog(1 - p) ©
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where y; is the dense label (ground truth) of image i, and p; represents the corresponding predicted
segmentation results. After learning, our few-shot method is completed through guidance and guided
inference. As described in Section 4.1, we first train K = 1 for efficiency. Once learned, our networks
can operate under different (K, P)-shot settings to solve sparse and dense pixelwise annotations in
the same model.

4.3. Fully Connected CRFs for Accurate Localization

Asillustrated in Figure 6, few-shot guided network score maps can reliably infer the rough position
of the target object in an image, but cannot accurately delineate its precise outline. For example part of
the pixels between the legs of a horse in the image are grass, but the segmentation result accidentally
identifies that piece of grass as a horse. Moreover, the horse’s ears were not correctly identified. This is
because of the invariance of spatial transformation of convolutional networks. The invariance can
enhance the ability to learn hierarchical abstract of data, but it may hinder low-level vision tasks [9]
(for example, image segmentation).

(a) Image (b) Ground Truth (c) Few-shot Output (d) CRF Output

Figure 6. Comparison of segmentation effect. (a) The original image. (b) The ground truth of the image.
(c) The segmentation result after few-shot guided network. (d) The final output after the fully connected
conditional random field (CRF) optimization.

Eigen et al. [33] and Long et al. [6] use the information of multiple layers in convolution networks
to better estimate the target borders. Mostajabi et al. [34] take a completely different approach, using
a super-pixel representation to solve this problem. We try to solve the challenge of accurate location
by coupling the few-shot segmentation method proposed by Rakelly et al. [30] with the fine-grained
localization accuracy of fully connected CRFs. It is proved in our work that advanced results can be
obtained by this method.

Traditionally, conditional random fields (CRFs) have been widely used in image
segmentation [22,35,36]. Generally, these methods include energy terms that couple adjacent nodes,
facilitating the assignment of the same label to proximal pixels in space. However, these basic
short-range CRFs only consider the adjacent neighborhood elements, not the whole, and will lose
some context information. Therefore, a more mature idea was born. Each pixel is made up of one edge
to all other pixels, so as to achieve a dense fully connected model, which is called fully connected
conditional random field. We integrated into our few-shot guided network the fully connected CRF
model of Krahenbuhl and Koltun [5], for its efficient computation and ability to capture fine edge
details, while also catering to the long-range dependencies.

The energy function used in the fully connected CRF model is as follows:

E(x) = Z 0i(x;) + 2 03i(xi, ;) 4)
B 7
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where 0;(x;) and Qij(xi, x j), respectively, represent the unary potential function and the pairwise
potential function; x is the label assignment for pixels. The unary potential function can be specifically
expressed as follows: 0;(x;) = —logP(x;), where P(x;) represents the label assignment chance at pixel
i. Specifically, what we want is the probability value of the corresponding label x; when the observed
pixel color is y;. Intuitively, for example, in a picture of a black dog standing in the grass, if the observed
pixels are black, it is most likely to be a dog. Here we take the output of the few-shot guided network
as a unary potential function The pairwise potential function can be specifically expressed as follows:

Qij(xl-, x]-) = p(xi, x]) Z a)M -k (ﬁ,f]) If x; # xj, then p(x,-, x]-) = 1. Otherwise, p(xi, xj) = 0.
Because the model’s factor graph is fully connected, every pixel pair will have a value for each pair of
pixels i and j in the image. k ( fir f/) is the Gaussian kernel of ( fir f]), fi is the feature vector of pixel I,
and wyy is the corresponding weight. The pairwise potential function is used to measure the probability
of two events happening at the same time. To put it bluntly, it describes the relationship between
pixels. If the two pixels are similar, it may be of the same class; otherwise, it will split.

5. Experimental Evaluation

5.1. Dataset and Evaluation Metrics

We test our model on the augmented PASCAL VOC 2012 dataset, the so-called SBD (Semantic
Boundaries Dataset and Benchmark) [37]. It is usually placed in the benchmark release folder.
At present, the SBD includes annotations from 11,355 images obtained from the PASCAL VOC 2011
dataset. 8498 images of them are used for training and 2857 images for testing. These images were
annotated on Amazon Mechanical Turk and the conflicts between the segmentations were solved
by hand. We offer both category-level and instance-level segmentations and boundaries for every
image. The segmentations and boundaries provided are for the 20 foreground object classes and one
background class.

To standardize the evaluation, we report four metrics for all tasks, which are derived from pixel
accuracy and intersection-over-union (IU) of the positives. These are the common metric choice for
many segmentation problems and scene parsing evaluations. Supposing 7;; represents the number of
pixels that belong to class i but are predicted to be class j. Moreover, there are N + 1 (which contains
a background) different classes totally. We respectively express the four metrics as the following
forms [6]:

Y omi
I 0 Z?]: ot
the total that are correctly classified.

e  Pixel accuracy (PA): PA = This is the simplest metric of the percentage of pixels in

e  Mean pixel accuracy (MPA): MPA = {5 +1 Z . This is a simple upgrade of PA, which
=0

ENf 0"ij
calculates the proportion of correctly classifled plxels in each class, and then calculates the average
of all classes.

nll
— oML — o i
semantic segmentation, which represents the ratio between the intersection and union of the two
sets ground truth and predicted segmentation.

This is a standard metric for

e Intersection-over-union: IU = §ig Zo I

1 N i
11
Y =% N .
o N omij 1 S0 N oyt XN gmjii

This method sets weights for each class based on its frequency of occurrence.

e  Frequency weighted intersection-over-union (FWIU): FWIU =
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5.2. Experiments

We employed the easiest form of piecewise training, decoupling the few-shot guided network
and CREF training stages, supposing the unary potential function offered by the few-shot guided
network is stationary during CRF training.

We evaluated our few-shot guided network on a variety of problems that are interactive segmentation
and semantic segmentation. We take fine-tuning and foreground-background segmentation as baselines
for all problems. Fine-tuning is just an attempt to optimize the model on the support, as Caelles et al. [38]
did. Foreground-background proves the learning of few-shot methods, and their output changes with
the support. We train for binary segmentation on each split training classes.

Turning to qualitative results, we provide the visual segmentation results of our model with
and without the fully connected CRF in Figure 7. Our few-shot guided network before CRF can
already predict the target with high accuracy. After employing a fully connected CRF, we improved
the prediction along target boundaries and allowed the model to capture fine edge details of the object
by rule and line. Of course, the model proposed in this article also has certain flaws. Our model needs
to extract the semantic information of foreground and background from the support and determine
the category of the pixel by calculating the distance metric for each pixel in the query to foreground
and background. Therefore, when the foreground and background have similar representations,
the model will make a mistake. In the last row of Figure 7, The color of the snow on the motorcycle’s
wheel is the same as the snow background, which leads to the wrong judgment of some wheels
as the background after using CRF post-processing. We solved this problem with reference to
the high-resolution feature maps [9,39] and leave it as a future work.

Figure 7. Visualization results on Semantic Boundaries Dataset (SBD)-val. For each row, we show
the query image, the segmentation result delivered by the few-shot guided network, and the refined
segmentation result of the fully connected CRF. The last row shows failure modes.
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5.2.1. Interactive Segmentation

Asmentioned in the previous section, we restore the issue as a special case of few-shot segmentation
when the support and query images are the same. We mainly compare our methods with Xu et al. [21],
because it is state-of-the-art, and we pay more attention to the efficiency and generality of learning
labels. Our methods are different from them in support encoding. They fuse by simply stacking, but
our fusion factorizes into images and annotations, and we fuse globally. In contrast, our approach is
more accurate, with sparse annotations, and it is faster to update, due to a full forward pass of previous
methods (see Figure 8). We decided on late-global guidance throughout.

0.8

Accuracy(IU)
o
=

=#—early method
0.1 -I-late-no-global
-#—late-global(ours)

1 2 3 4 5 6
The number of pixel annotations on one-shot.

Figure 8. Interactive segmentation of objects in the support. The experimental results show that
the accuracy of intersection-over-union (IU) is not significantly improved when the number of annotated
pixels is more than five.

5.2.2. Semantic Segmentation

Because of the high intra-class variance of each task’s appearance, it is not a simple work to apply
few-show learning to semantic segmentation. For this problem, we follow the experimental protocol of
Shaban et al. [14] and define four class-wise splits [30]. We set up training set from the whole images
including non-held-out classes. It has 21 classes (containing background).

We concentrated on evaluating both dense and sparse annotations of the support with full masks
and a single point per positive/negative separately (see Table 1). We achieved state-of-the-art results
on both dense and sparse with just two annotated pixels. The early method of Shaban et al. [14] is
incompatible with missing annotations, regrettably, and so is Xu et al. [21]. They are just defined for
binary annotation.

In the semantic segmentation problem, we also found a strange phenomenon: Our method is not
sensitive to the number of annotations. As shown in Table 2, the IU accuracy increases very slowly
and inconspicuously by increasing the number of annotations. Basically, this is because one-shot
cannot cover all the visual variation in a category. Think about it in terms of segmenting a black
long-haired dog, and the guidance information given is obtained from a white short-haired dog.
The color and shape between the two are quite different, resulting in inaccurate guidance information.
We took another way of thinking and considered solving this problem by increasing one-shot to
few-shot. We increased the one-shot to five-shot, while keeping two annotated pixels (one positive
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pixel and one negative pixel) unchanged, and found that the accuracy of IU increased by about 6%.
This is a big promotion.

Table 1. Few-shot semantic segmentation evaluation on SBD with the IU (%) metric over binary
tasks. As shown in the table, our approach is much better than previous methods. Note that
foreground-background (FG-BG) is a strong baseline and rivals fine-tuning.

Dense Sparse
Method 1-shot 5-shot 1-shot 5-shot
FG-BG 55.0 - - -
Fine-tuning 55.1 55.6 - -
Xu et al. 54.5 57.3 50.8 52.6
Shaban et al. 61.3 61.5 52.5 52.9
Ours 62.2 65.2 59.4 64.8

Table 2. Our method is strangely insensitive to the amount of annotations in semantic segmentation.
It improves the accuracy of IU (%) very little.

(K,P)-Shot Accuracy (IU)

(1,1)-shot 59.4
(1,2)-shot 61.3
(1,3)-shot 61.6
(1,4)-shot 61.9
(1,5)-shot 62.1
(1,6)-shot 62.2

At the end of the experiment, we put the interactive segmentation and few-shot semantic
segmentation together and compared their methods with the four metrics mentioned above. We report
the evaluation results in Table 3. Our method achieved the best results for semantic segmentation
and interactive segmentation. Then we incorporated the fully connected CRF to our model, respectively,
which produced a significant performance boost, about 4% improvement, as shown in Table 4.

Table 3. Evaluation results under the settings of (1,3)-shot. For interactive segmentation, our
interactive-late-global has a significant improvement in all four metrics, especially in IU. For semantic
segmentation, our approach also has about 10% improvement in IU.

PA MPA IU FWIU

Interactive-early 90.7 69.4 60.0 83.4
Interactive-late-no-global 79.9 394 29.3 67.6
Interactive-late-global (ours) 91.0 84.9 66.2 84.6
Semantic-early 88.2 58.1 51.2 79.2
Semantic-late (ours) 91.5 70.9 61.6 84.8

Notes: PA, pixel accuracy; MPA, mean pixel accuracy; FWIU, frequency weighted intersection-over-union.

Table 4. Performance of our proposed model with the IU(%) metric before and after CRE. About 4%
improvement after CRE.

Method Before CRF After CRF

Interactive-late-global (ours) 66.2 69.9
Semantic-late (ours) 61.6 65.4
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6. Discussion

Our work combines few-shot segmentation with the fully connected CRF to solve the problem
of image segmentation under low data settings, producing accurate segmentation predictions
and recovering object boundaries as much as possible. At the same time, it keeps a high computing
efficiency. The specific method of few-shot segmentation is as follows. Few-shot-guided networks
extract the latent task representation from any amount of supervision given of support for interactive
inference. Once learned, it can segment new inputs without the supervisor, while maintaining its
accuracy and high efficiency. Our experimental results show that the proposed method achieves a good
result in the augmented PASCAL VOC 2012 image segmentation dataset, the so-called SBD.

Although we have achieved good results by integrating into our networks the fully connected CRF,
there are also some unavoidable limitations. For example, our model is not an end-to-end system. It is
just that CRF uses the results of few-shot networks as unary potential function. Therefore, we plan to
entirely integrate its two major parts (few-shot networks and fully connected CRFs) and train the whole
system in an end-to-end fashion. In addition, we intend to experiment with more datasets. We think
this is an area full of challenges, and we hope to make continuous improvement in our future work.
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