
electronics

Article

Compact Hardware Architectures of Enocoro-128v2
Stream Cipher for Constrained Embedded Devices

Lampros Pyrgas 1,2 and Paris Kitsos 1,2,*
1 Electrical and Computer Engineering Department, University of the Peloponnese, Koukouli,

26334 Patras, Greece; pyrgas@isi.gr
2 Industrial Systems Institute of “Athena” RIC in ICT and Knowledge Technologies, Platani,

26504 Patras, Greece
* Correspondence: kitsos@uop.gr

Received: 11 August 2020; Accepted: 10 September 2020; Published: 14 September 2020
����������
�������

Abstract: Lightweight cryptography is a vital and fast growing field in today’s world where billions
of constrained devices interact with each other. In this paper, two novel compact architectures of
the Enocoro-128v2 stream cipher are presented. The Enocoro-128v2 is part of the ISO/IEC 29192-3
standard. The first architecture has an 8-bit datapath while the second one has a 4-bit datapath.
The proposed architectures were implemented on the BASYS3 board (Artix 7 XC7A35T) using the
VERILOG hardware description language. The hardware implementation of the proposed 8-bit
architecture runs at a 189 MHz clock and reaches a throughput equal to 302 Mbps, while at the same
time, it utilizes only 254 Look-up Tables (LUTs) and 330 Flip-flops (FFs). Each round of computations
requires 5 clock cycles. The 4-bit implementation has an operating frequency of 204 MHz and reaches
a throughput equal to 181 Mbps, with each round requiring 9 clock cycles. The 4-bit implementation
utilizes 249 LUTs and 343 FFs. To our knowledge, this is the first time that such implementations of
the Enocoro-128v2 are presented. Both implementations utilize a very low number of resources (only
78 FPGA slices are required for the 8-bit architecture and only 83 for the 4-bit one) and the results
demonstrate that they are sustainable for area constrained embedded devices.

Keywords: Enocoro-128v2 stream cipher; FPGA implementations; lightweight cryptography;
hardware security; constrained embedded devices

1. Introduction

In today’s world, wireless communication is an essential part of our life, present in a wide field of
our everyday affairs, such as health care, entertainment, or the exchange of information. Personal data
are constantly exchanged between devices that are connected with each other, creating a system of
interrelated computing devices known as the Internet of things (IoT). In addition, with the development
of the fifth generation (5G) technology standard for cellular networks, the amount of the exchanged
data, the speed of this exchange, and the number of the simultaneously connected devices are expected
to be significantly increased.

As the number of the connected IoT devices rises, their vulnerability to cyber-attacks increases as
well, with information being the most common target, through privilege abuse [1,2]. The connected
devices, referred as Cyber-Physical Systems (CPS), combine both hardware and software. This
combination and the required abstraction between hardware and software leads to safety and security
problems and concerns [3]. Therefore, the need for security, through dedicated security modules, is one
of the main factors that must be taken into consideration during the design of a device. These devices,
however, must be small in size and, due to the fact that they usually run on some type of battery, must
have low power dissipation. This leads to resource-constrained devices where the available resources

Electronics 2020, 9, 1505; doi:10.3390/electronics9091505 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8606-511X
https://orcid.org/0000-0003-1851-8775
http://dx.doi.org/10.3390/electronics9091505
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/9/1505?type=check_update&version=2

Electronics 2020, 9, 1505 2 of 14

must be carefully split and distributed between all of the device’s modules, leaving a very limited
amount of resources for security [4].

Moreover, with additional modules to be constantly added on these devices, the resources that
can be utilized for the implementation of cryptographic algorithms (ciphers) are constantly restricted.
This problem can be solved through the implementation of lightweight versions of existing ciphers or
through the design and the implementation of completely new ones, depending usually on additional
requirements such as the cipher’s type. Ciphers can be fitted into two big categories: asymmetric and
symmetric. Asymmetric ciphers, also known as public key ciphers, use two different keys, a public
and a private key, for encryption and decryption. The most important asymmetric ciphers include
the Rivest–Shamir–Adleman (RSA) Public-key Cryptosystem, the Digital Signature Algorithm (DSA)
and Elliptic Curve Cryptography (ECC) techniques. Symmetric ciphers, also known as private key
ciphers, use a common private key, known only to the sender and the receiver, for both encryption and
decryption. The Advanced Encryption Standard (AES) and the Data Encryption Standard (DES) are
two widely known algorithms of this category.

Symmetric ciphers, depending on the way that encryption and decryption are performed, can
be divided to block and stream ciphers. Block ciphers process the incoming data in large blocks of
predetermined size. Stream ciphers, on the other hand, encrypt and decrypt the incoming data in
significantly smaller parts, usually in one byte parts. Stream ciphers operate as random number
generators and generate a pseudo-random output stream. This keystream, as it is widely referred
to in literature, is then XORed with the incoming data, in order to encrypt or decrypt the data.
The fact that both encryption and decryption are done on each bit independently of the others makes
the stream ciphers easier and faster to implement, especially in hardware. It is well known that
hardware implementations can offer better security levels as well as better performance regarding
power dissipation compared to software implementation [5,6].

In this paper, two compact architectures of Enocoro-128v2 are proposed. They follow the
standards and the suggested methods of the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC) for lightweight cryptography. Lightweight
cryptography employs many novel methods that are specifically targeted at constrained devices and
can overcome many of the problems of conventional cryptography [7]. The proposed architectures are
very efficient for resource-critical devices such as embedded hardware devices, smart cards, or other
devices with low power dissipation requirements. In order to reduce the required hardware resources
without any loss in efficiency, first, many architectural design optimizations are presented and second,
an area-optimized implementation for the cipher’s S-box is used.

The first proposed implementation has an 8-bit datapath, a round latency equal to 5 clock cycles,
runs on a clock frequency of 189 MHz for both encryption and decryption and achieves a throughput
equal to 302 Mbps. At the same time, it requires a very low number of hardware resources, as it
utilizes only 254 Look-up Tables (LUTs) and 330 Flip-flops (FFs). The second implementation has a
4-bit datapath, reaches a clock frequency of 204 MHz, and has a latency of 9 clock cycles per round for
encryption or decryption, leading to a throughput equal to 181 Mbps, with the utilization of only 249
LUTs and 343 FFs.

The rest of this paper is organized as follows: In Section 2 the specifications of the Enocoro-128v2
stream cipher and all the related work are presented. Section 2 also contains a detailed description
of the proposed 8-bit and 4-bit architectures. In Section 3, the results of the proposed architectures’
implementations are presented and, in Section 4, are compared with results from implementations of
other lightweight ciphers. Finally, the conclusions and directions for future works are presented in
Section 5.

Electronics 2020, 9, 1505 3 of 14

2. Materials and Methods

2.1. Specifications of Enocoro-128v2 Stream Cipher

In general, the term Enocoro refers to a family of security algorithms, developed by Hitachi Ltd.
in Tokyo, Japan, that are aimed for hardware implementation in constrained environments. The latest
member of this family of stream ciphers is called Enocoro-128v2. It was proposed in [8] and [9] as a
new concreate 128-bit security algorithm. It is included in the ISO/IEC 29192 [10], an international
standard for lightweight cryptography. Specifically, it is included in part three of this standard, which
is dedicated on stream ciphers. It is important to note that Enocoro-128v2 can perform encryption and
decryption up to 10 times faster than the light-weight implementation of AES-128, while maintaining
the same level of security, according to the International Electrotechnical Commission (IEC) [11].

Enocoro-128v2 is a PANAMA-like keystream generator (PKSG) [12], a pseudorandom number
generator (PRNG) subclass. It takes two inputs, a 128-bit secret Key and a 64-bit public initialization
vector (IV) and produces an 8-bit output on every round. It has a 256-bit storage buffer (consisting of
8-bit subparts, denoted b0 to b31), a 16-bit internal state (split into two bytes, denoted a0 and a1, with
the byte a1 being also the output of the algorithm), and an 8-bit counter, denoted as ctr. The buffer is
initially filled with the Key, the IV and six constants that are defined in the algorithm’s specifications.
Its contents, as well as the contents of the internal state and the ones of the counter, are updated on
every computational round. Their initial values are shown in Table 1.

Table 1. Initial values of the Enocoro-128v2 according to the specifications.

ctr a0 a1 b0 to b15 b16 to b23 b24 b25 b26 b27 b28 b29 b30 b31

0x01 0x88 0x4c KEY IV 0x66 0xe9 0x4b 0xd4 0xef 0x8a 0x2c 0x3b

The most important part of the algorithm is its two update functions, denoted as ρ and λ.
The function ρ consists of two parts, first, an 8-bit substitution box, named S8, that performs a
permutation on the input bits and, second, a linear transformation called L (also referred to as Liner).
The S8-box consists of smaller 4-bit substitution boxes, named S4, which are connected through a new
linear transformation. The computations of Enocoro-128v2 are defined over two finite fields in GF(28)
and GF(24). An element of GF(28) is given by the polynomial:

ϕ8 = x8 + x4 + x3 + x2 + 1 (1)

while an element of GF(24) is given by the polynomial:

ϕ4 = x4 + x + 1 (2)

On each round, both update functions are executed and the values of both the storage buffer and
the internal state are updated. It is important to note that the execution of the algorithm is a two-step
processes. The first step, that is called the initialization step and lasts for 96 rounds, and the second step,
that lasts until the completion of the algorithm. The only difference between these steps is that during
every round of the initialization step the ctr counter’s value is incremented by the multiplication by
0x02 in the previously defined finite field GF(28), while during the next step the ctr counter’s value is
permanently set to zero. The complete architecture of Enocoro-128v2 is shown in Figure 1.

Electronics 2020, 9, 1505 4 of 14

Electronics 2020, 9, x FOR PEER REVIEW 3 of 13

member of this family of stream ciphers is called Enocoro-128v2. It was proposed in [8] and [9] as a
new concreate 128-bit security algorithm. It is included in the ISO/IEC 29192 [10], an international
standard for lightweight cryptography. Specifically, it is included in part three of this standard, which
is dedicated on stream ciphers. It is important to note that Enocoro-128v2 can perform encryption
and decryption up to 10 times faster than the light-weight implementation of AES-128, while
maintaining the same level of security, according to the International Electrotechnical Commission
(IEC) [11].

Enocoro-128v2 is a PANAMA-like keystream generator (PKSG) [12], a pseudorandom number
generator (PRNG) subclass. It takes two inputs, a 128-bit secret Key and a 64-bit public initialization
vector (IV) and produces an 8-bit output on every round. It has a 256-bit storage buffer (consisting of
8-bit subparts, denoted b0 to b31), a 16-bit internal state (split into two bytes, denoted a0 and a1, with
the byte a1 being also the output of the algorithm), and an 8-bit counter, denoted as ctr. The buffer is
initially filled with the Key, the IV and six constants that are defined in the algorithm’s specifications.
Its contents, as well as the contents of the internal state and the ones of the counter, are updated on
every computational round. Their initial values are shown in Table 1.

Table 1. Initial values of the Enocoro-128v2 according to the specifications.

ctr a0 a1 b0 to b15 b16 to b23 b24 b25 b26 b27 b28 b29 b30 b31
0x01 0x88 0x4c KEY IV 0x66 0xe9 0x4b 0xd4 0xef 0x8a 0x2c 0x3b

The most important part of the algorithm is its two update functions, denoted as ρ and λ. The
function ρ consists of two parts, first, an 8-bit substitution box, named S8, that performs a permutation
on the input bits and, second, a linear transformation called L (also referred to as Liner). The S8-box
consists of smaller 4-bit substitution boxes, named S4, which are connected through a new linear
transformation. The computations of Enocoro-128v2 are defined over two finite fields in GF(28) and
GF(24). An element of GF(28) is given by the polynomial: = + + + + 1 (1)

while an element of GF(24) is given by the polynomial: = + + 1 (2)

On each round, both update functions are executed and the values of both the storage buffer and
the internal state are updated. It is important to note that the execution of the algorithm is a two-step
processes. The first step, that is called the initialization step and lasts for 96 rounds, and the second
step, that lasts until the completion of the algorithm. The only difference between these steps is that
during every round of the initialization step the ctr counter’s value is incremented by the
multiplication by 0x02 in the previously defined finite field GF(28), while during the next step the ctr
counter’s value is permanently set to zero. The complete architecture of Enocoro-128v2 is shown in
Figure 1.

a1 a0

s8

s8

s8

L

a1

XOR

a0

XOR

XOR

XOR s8

b0b1b2b3b4b5b6b7b9 b8b10b11b12b13b14b15b20 b19 b18 b17 b16b21b22b23b24b25b26b27b28b29b30b31

b0b1b2b3b4b5b6b7b9 b8b10b11b12b13b14b15b20 b19 b18 b17 b16b21b22b23b24b25b26b27b28b29b30b31

XOR

XOR

XOR

XOR

ctr

ctr

mult 0x02

Figure 1. The architecture of Enocoro-128v2 stream cipher according to [9]. Figure 1. The architecture of Enocoro-128v2 stream cipher according to [9].

2.2. Related Work

The Enocoro-128v2 stream cipher was first proposed in [8] and updated in [9]. In those two works,
the specifications of the algorithm were presented. The definition and an architecture for the S8-box
were given as well as the mathematical definition of the linear transformation called L (also referred as
Liner) through a 2-by-2 matrix.

Due to the fact that there are not many Enocoro-128v2 FPGA implementations, we also compared
our implementations with FPGA implementations of other lightweight stream ciphers. The primary aim
of every lightweight stream cipher design is the creation of an architecture that utilizes as few resources
as possible while at the same time has a throughput that is high enough for the target application.

In [13] an implementation of DECIM v2 is proposed. This implementation reaches a frequency of
185 MHz and achieves a throughput equal to 46 Mbps, while it utilizes 80 slices and has a T/#Slices
factor of 0.58. Additionally, in [13], an implementation of DECIM-128 that can run at a frequency of
174 MHz and has a throughput of 43 Mbps is presented. It utilizes 89 slices and has a T/#Slices factor
of 0.49. An implementation of E0 is presented in [14]. It has a maximum frequency of 187 MHz and a
maximum throughput equal to 187 Mbps, while it utilizes 140 slices and has a T/#Slices factor of 1.33.

Four implementations of Grain v1 are presented in [13–16]. The first one, in [13], has a frequency
of 196 MHz, a throughput of 196 Mbps, it utilizes 44 slices and has a 4.45 T/#Slices factor. The second
one, in [14], reaches a frequency of 177 MHz, a throughput of 177 Mbps, it uses 318 slices and has a
T/#Slices factor of 0.55. The third one, in [15], has a frequency of 193 MHz, a throughput of 193 Mbps,
it utilizes 122 slices and has a 1.58 T/#Slices factor. The fourth one, in [16], reaches a throughput of
105 Mbps, it uses 48 slices and has a T/#Slices factor of 2.19. Two implementations of Grain-128 are
presented in [13,17]. The one in [13] has a frequency of 196 MHz, a throughput of 196 Mbps, it uses 50
slices and has a 3.92 T/#Slices factor. The one in [17] has a frequency of 181 MHz, a throughput of 181
Mbps, it uses only 48 slices and has a 3.77 T/#Slices factor.

In [13,14], two MICKEY 2.0 implementations are proposed. The implementation in [13] reaches a
frequency of 233 MHz, a throughput of 233 Mbps, it utilizes 115 slices and has a T/#Slices factor of
2.03. The implementation in [14] reaches a frequency of 250 MHz, a throughput of 250 Mbps, it utilizes
98 slices and has a T/#Slices factor of 2.55. In [13,15,17,18] four implementations of MICKEY-128 2.0
are proposed. The one in [13] has a frequency of 223 MHz, a throughput of 223 Mbps, it utilizes 176
slices and has a 1.27 T/#Slices factor. The one in [15] reaches a frequency of 156 MHz, a throughput of
156 Mbps, it uses 261 slices and has a T/#Slices factor of 0.60. The implementation in [17] reaches a
maximum frequency of 200 MHz, a throughput of 200 Mbps, it uses 190 slices and has a 1.05 T/#Slices
factor. Finally, the one in [18] has a frequency of 170 MHz reaches a throughput of 170 Mbps, it uses
167 slices and has a T/#Slices factor of 1.02.

In [13] and [19], two implementations of Moustique are proposed. The one in [13] has a frequency
of 225 MHz, a throughput of 225 Mbps, it uses 278 slices and has a 0.81 T/#Slices factor. The one in [19]
has a throughput of 369 Mbps, it uses 252 slices and has a 1.46 T/#Slices factor. In [16] a Mosquito

Electronics 2020, 9, 1505 5 of 14

implementation is presented. It reaches a throughput of 137 Mbps, it uses 298 slices and has a T/#Slices
factor of 0.46.

Five implementations of Trivium are presented in [13–17]. The first one, in [13], has a frequency
of 240 MHz, a throughput of 240 Mbps, it utilizes 50 slices and has a 4.80 T/#Slices factor. The second
one, in [14], reaches a frequency of 326 MHz, a throughput of 326 Mbps, it uses 149 slices and has a
T/#Slices factor of 2.18. The third one, in [15], has a frequency of 201 MHz, a throughput of 201 Mbps,
it utilizes 188 slices and has a 1.07 T/#Slices factor. The fourth one, in [16], reaches a throughput of
102 Mbps, it uses 40 slices and has a T/#Slices factor of 2.55. The fifth one, in [17], has a frequency of
207 MHz, a throughput of 207 Mbps, it utilizes 41 slices and has a 5.05 T/#Slices factor.

The work in [20] includes two FPGA implementations of the Enocoro-128v2 stream cipher that
were optimized based on the throughput/slice (T/#Slices) metric. The first achieves a maximum
frequency of 118 MHz while it utilizes 292 slices and has a T/#Slices factor of 0.40. The second reaches
a maximum frequency of 149 MHz, requires 442 slices, and has a T/#Slices factor of 0.33.

For the 8-bit architecture of the Enocoro-128v2 that is presented in our paper, we followed the
architecture that is presented in [8] and [9] for the S8-box. However, for our 4-bit Enocoro-128v2
architecture we designed and implemented a novel architecture for the S8-box that has a 4-bit datapath.
For both architectures, we designed and implemented new architectures for the Liner subpart. Our
primary aim was to take advantage of the symmetry in the underling matrix and reduce the elements
that are needed for the arithmetic calculations. While the elemental data size of the Enocoro-128v2
is a byte, we designed a Liner with a 4-bit datapath for the 4-bit architecture that performs correct
calculations while utilizing minimal resources. In addition, we designed a new architecture for the
multiplication by 0x02 that has a 4-bit datapath that, again, requires minimal resources. Finally, for
both the architectures, we optimized the control logic and the connections between the architecture’s
subparts in order to keep the resource usage to a minimum.

2.3. Proposed 8-Bit Architecture of Enocoro-128v2 Stream Cipher

The proposed 8-bit architecture, for the Enocoro-128v2 stream cipher, is shown in Figure 2.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 13

For the 8-bit architecture of the Enocoro-128v2 that is presented in our paper, we followed the
architecture that is presented in [8] and [9] for the S8-box. However, for our 4-bit Enocoro-128v2
architecture we designed and implemented a novel architecture for the S8-box that has a 4-bit
datapath. For both architectures, we designed and implemented new architectures for the Liner
subpart. Our primary aim was to take advantage of the symmetry in the underling matrix and reduce
the elements that are needed for the arithmetic calculations. While the elemental data size of the
Enocoro-128v2 is a byte, we designed a Liner with a 4-bit datapath for the 4-bit architecture that
performs correct calculations while utilizing minimal resources. In addition, we designed a new
architecture for the multiplication by 0x02 that has a 4-bit datapath that, again, requires minimal
resources. Finally, for both the architectures, we optimized the control logic and the connections
between the architecture’s subparts in order to keep the resource usage to a minimum.

2.3. Proposed 8-Bit Architecture of Enocoro-128v2 Stream Cipher

The proposed 8-bit architecture, for the Enocoro-128v2 stream cipher, is shown in Figure 2.

XORXOR

XOR

a1

0x4c

A1_MUX

a0

0x88

A0_MUX

Z (output)

L2

L1

L_MUX R_MUX

R1

XOR

Mult
0x02

A_MUX

S4

S4
Mult
by e

Mult
by e

XOR

XOR XOR

XOR

<<<1
0xA
0x5

4

4

4

4

8 88

S4

S4

XOR_2_to_buffer

M_MUX

Mult
0x02

ctr

0x00

0x01

I_MUX

C_M
UX

XORXORXOR

XOR

XOR

X1_MUX X2_MUX

b7b2 b31b16 b6a0 b28b15

XOR_1_to_buffer

S_MUX

b30

a0

b6 b7 b15 b16 b28 b29
Data_in

B_M
UX8

8

b2b0 b31

D1D2

Liner

S8-box

State a

Βuffer

λ function

ctr counter

Figure 2. The proposed 8-bit architecture of Enocoro-128v2 stream cipher.

Responsible for the correct operation of the circuit is the Control subsystem, which generates the
control signals for the multiplexers. This is done primarily by two counters, one that counts how
many rounds have been completed and one that counts how many clock cycles have passed during
the current round. The completion of a round requires 5 clock cycles.

In order to store the values that are computed on each round, a storage scheme that follows the
algorithm’s specifications is required. We opted for a dynamic storage scheme, a buffer named b,
instead of a static one. On each round a byte-wise right rotation of the stored values is required.
Instead of performing this rotation on a single clock cycle, we perform rotations on each clock cycle
in a way that leads to the same result. Specifically, we rotate the values that are stored in the storage
buffer by 13 bytes to the right on each of the round’s 5 clock cycles. This way the buffer’s contents
end up in the necessary byte-wise right rotation at the start of the next round. We made this choice,
of constantly changing the contents of the buffer, in order to increase the security of our architecture
against side channel attacks (mainly Power and Electromagnetic analysis attacks), as measurements
that can provide any helpful information for an attacker are more difficult to be obtained.

In addition to the buffer b, the architecture contains three more core components: an internal
state named a and two functions named λ and ρ, respectively. The internal state consists of two bytes,
a0 and a1, that are updated on every round. The byte a1 is the output of the algorithm. The proposed
architecture for the two functions will be described in the following paragraphs.

Figure 2. The proposed 8-bit architecture of Enocoro-128v2 stream cipher.

Responsible for the correct operation of the circuit is the Control subsystem, which generates
the control signals for the multiplexers. This is done primarily by two counters, one that counts how
many rounds have been completed and one that counts how many clock cycles have passed during
the current round. The completion of a round requires 5 clock cycles.

Electronics 2020, 9, 1505 6 of 14

In order to store the values that are computed on each round, a storage scheme that follows
the algorithm’s specifications is required. We opted for a dynamic storage scheme, a buffer named
b, instead of a static one. On each round a byte-wise right rotation of the stored values is required.
Instead of performing this rotation on a single clock cycle, we perform rotations on each clock cycle in
a way that leads to the same result. Specifically, we rotate the values that are stored in the storage
buffer by 13 bytes to the right on each of the round’s 5 clock cycles. This way the buffer’s contents
end up in the necessary byte-wise right rotation at the start of the next round. We made this choice,
of constantly changing the contents of the buffer, in order to increase the security of our architecture
against side channel attacks (mainly Power and Electromagnetic analysis attacks), as measurements
that can provide any helpful information for an attacker are more difficult to be obtained.

In addition to the buffer b, the architecture contains three more core components: an internal state
named a and two functions named λ and ρ, respectively. The internal state consists of two bytes, a0

and a1, that are updated on every round. The byte a1 is the output of the algorithm. The proposed
architecture for the two functions will be described in the following paragraphs.

Prior to the first round of computations, an initialization step is necessary. Following the
algorithm’s specifications, the registers b24 to b31 are initialized with the specified constants, the
registers b16 to b23 with the public initialization vector IV and the registers b0 to b15 with the secret
input Key. The input Key and the IV are fed to the algorithm byte by byte. After all the above values
are stored in the buffer b, in their corresponding positions, the first round of the algorithm can begin.

2.3.1. Function λ of the 8-Bit Architecture

The λ function is responsible for the computation of four XORings, according to the algorithm’s
specifications in [9]. These XORings are computed, in sequential clock cycles, using the same XOR gate
for the first three (e.g., for the input pairs [b2, b6], [b7, b15], [b16, b28] in the initial round). For the fourth
XORing an additional XOR gate is required because the result of the XORing of a0 with the rightmost
byte of the buffer (b31 in the initial state) must be XORed with the value of the ctr counter. All the
final results from the XORings are fed back and stored in the appropriate registers of buffer b. The ctr
counter’s size is one byte and its initial value is 0x01. The ctr counter’s value is incremented by the
multiplication by 0x02. The result of this multiplication is stored in the corresponding register in the
final clock cycle of the current round, in order to the ctr counter has the correct value at the beginning
of the next round. After the completion of 96 rounds, the value 0x00 is stored in the ctr counter and
remains unchanged thereafter.

2.3.2. Update Function ρ of the 8-Bit Architecture

The update function ρ consists of two parts, the S8-box part, implemented according to [9], and
the Linear Transformation (Liner) part. The output of the S8-box for each input byte is produced in the
same clock cycle. The input byte is split into two 4-bit parts. Each part is fed into a S4-box. Each of the
two outputs is used in two ways: it is multiplied by the coefficient e = 0x04 (which is defined over the
chosen finite field in GF(24)) and is also fed into an XOR gate. The gate’s second input is the result
of the other’s S4-box multiplication by e (the circuit for the multiplication by e is shown in Figure 2).
The results of the XOR gates are then fed into two new XOR gates along with the coefficients 0xA and
0x5, respectively. The two outputs are fed into two S4-boxes. Finally, the two results are concatenated,
and the new byte is rotated by one bit to the left and then driven to the output. The output of the
S8-box is then XORed with the appropriate state byte (a0 or a1) and is fed to the Liner. This procedure
continues for the next bytes, according to the algorithm’s specifications.

The Liner has a latency of one clock cycle and its operation lasts for three clocks cycles. In the first
clock cycle, the first byte (B1) is fed into the Liner and is stored in register L1. In the second clock cycle,
the second byte (B2) is fed into the Liner. Through the left multiplexer, B1 is driven to the XOR gate,
while through the right multiplexer B2 is also driven to the XOR gate. The two bytes are XORed and
the result is driven to the output. In the same clock cycle, B1 is also moved from L1 and is stored in

Electronics 2020, 9, 1505 7 of 14

register L2. B2 is also multiplied by 0x02 (which is defined over the chosen finite field in GF(28)) and
the result is stored in register R1. The circuit for the multiplication is shown in Figure 2. Finally, in the
third clock cycle, the contents of the registers L2 and R1 are driven to the XOR gate by the left and right
multiplexer, respectively. The operation’s result is driven to the output. At the appropriate clock cycles,
the Liner’s output is then XORed with the corresponding S8-box output according to the algorithm’s
specifications. The results which correspond to the new a0 and a1 are driven to the respective registers
in the state a subpart. The byte a1, as already noted, is also the output of the algorithm.

2.4. Proposed 4-Bit Architecture of Enocoro-128v2 Stream Cipher

The proposed 4-bit architecture, for the Enocoro-128v2 stream cipher, is shown in Figure 3.
The 4-bit architecture for the Enocoro-128 v2 stream cipher can be split in the same subparts as the
8-bit architecture. These subparts, however, differ greatly in their internal architecture. Again, the
same initialization step is required before the first round of computations. The only difference is that in
the 4-bit architecture each byte of data is fed into the buffer in 4-bit groups, beginning with the four
least significant bits, and following the same procedure as in the 8-bit architecture, all the necessary
bytes are present in buffer b after 48 clock cycles. The storage buffer is based on the same principles as
the one in the 8-bit architecture. In order to achieve the necessary byte-wise right rotation of the buffer,
each 4-bit group is rotated by 50 places (25 bytes) to the right at each clock cycle (each round requires 9
clock cycles).

Electronics 2020, 9, x FOR PEER REVIEW 7 of 13

significant bits, and following the same procedure as in the 8-bit architecture, all the necessary bytes
are present in buffer b after 48 clock cycles. The storage buffer is based on the same principles as the
one in the 8-bit architecture. In order to achieve the necessary byte-wise right rotation of the buffer,
each 4-bit group is rotated by 50 places (25 bytes) to the right at each clock cycle (each round requires
9 clock cycles).

2.4.1. Function λ of the 4-Bit Architecture

The λ function in the 4-bit architecture works in the same way as the one in the 8-bit architecture.
The only difference is that now the XORings are computed by 4-bit parts instead of complete bytes.
Each XORing begins with the 4 LSBs of the specified byte. The ctr counter consists of two 4-bit
registers, ctr_L and ctr_H, with initial values 0x0 and 0x1, respectively. One after the other, the values
of those registers are driven to the multiplication subunit in order for the overall counter’s value to
be multiplied by 0x02. The result of this multiplication is stored in the corresponding registers in the
final clock cycles of the current round, in order to the ctr counter’s registers has the correct values at
the beginning of the next round. After the completion of 96 initialization rounds, the value 0×0 is
stored in both the ctr counter’s registers, which then remain unchanged.

The multiplication by 0x02 subunit has a latency of one clock cycle and its operation lasts for
three clock cycles for every complete multiplication. In the first clock cycle the 4 LSBs of the byte that
is to be multiplied enter the circuit and are stored in registers M0, M3, M2, and M1. In the second
clock cycle the 4 MSBs of the byte also enter the circuit. The MSB of the four is separately XORed with
the contents of M3 and M2. The results along with the MSB and the contents of register M1 are driven
to the output and represent the four LSBs of the multiplication’s result. In parallel, the MSB is stored
in register M0 and the previous contents of M0 are moved to M5. The rest of the incoming bits are
stored in registers M3, M2, and M1. In the third round, the contents of M0 and M5 are XORed. The
result along with the contents of M3, M2, and M1 are driven to the output, as they represent the four
MSBs of the multiplication’s result.

Figure 3. The proposed 4-bit architecture of Enocoro-128v2 stream cipher.

Figure 3. The proposed 4-bit architecture of Enocoro-128v2 stream cipher.

2.4.1. Function λ of the 4-Bit Architecture

The λ function in the 4-bit architecture works in the same way as the one in the 8-bit architecture.
The only difference is that now the XORings are computed by 4-bit parts instead of complete bytes.
Each XORing begins with the 4 LSBs of the specified byte. The ctr counter consists of two 4-bit
registers, ctr_L and ctr_H, with initial values 0x0 and 0x1, respectively. One after the other, the values
of those registers are driven to the multiplication subunit in order for the overall counter’s value to be
multiplied by 0x02. The result of this multiplication is stored in the corresponding registers in the final
clock cycles of the current round, in order to the ctr counter’s registers has the correct values at the

Electronics 2020, 9, 1505 8 of 14

beginning of the next round. After the completion of 96 initialization rounds, the value 0×0 is stored in
both the ctr counter’s registers, which then remain unchanged.

The multiplication by 0x02 subunit has a latency of one clock cycle and its operation lasts for three
clock cycles for every complete multiplication. In the first clock cycle the 4 LSBs of the byte that is to
be multiplied enter the circuit and are stored in registers M0, M3, M2, and M1. In the second clock
cycle the 4 MSBs of the byte also enter the circuit. The MSB of the four is separately XORed with the
contents of M3 and M2. The results along with the MSB and the contents of register M1 are driven to
the output and represent the four LSBs of the multiplication’s result. In parallel, the MSB is stored in
register M0 and the previous contents of M0 are moved to M5. The rest of the incoming bits are stored
in registers M3, M2, and M1. In the third round, the contents of M0 and M5 are XORed. The result
along with the contents of M3, M2, and M1 are driven to the output, as they represent the four MSBs of
the multiplication’s result.

2.4.2. Update Function ρ of the 4-Bit Architecture

The update function ρ of the 4-bit architecture consists of the same two parts as the one in the
8-bit architecture, the S8-box part, and the Linear Transformation (Liner) part. For both these parts,
novel internal 4-bit architectures were designed and implemented.

The S8-box has a latency of two clock cycles and its operation, for each byte, lasts for four clocks
cycles. In the first clock cycle, the 4 LSBs of the specified byte enter the S8-box and are driven to the
S4-box subpart. The output is used in two distinct ways: it is stored in register S1 and is multiplied
by the coefficient e = 0x04 (which is defined over the chosen finite field in GF(24)). The result of the
multiplication is stored in register E1. In the second clock cycle, the remaining 4 MSBs of the specifying
byte enter the S8-box and are treated in the same way. The previous output that was stored in S1, along
with the new multiplication result are driven to the first XOR gate. The result is driven to the second
XOR gate along with coefficient 0×5. The gate’s output is fed into the second S4-box and the four
output bits are stored in registers R1, R2, R3, and R4. Additionally, the contents of E1 are moved to E2.
In the third clock cycle, the contents of S1 are driven to the first XOR gate along with the contents of E2.
The gate’s output is then driven to the second XOR gate along with the coefficient 0×A. The result
is driven to the second S4-box. The MSB of the output along with contents of R2, R3, and R4 are
concatenated (as shown in Figure 3) and are driven to the output. The three reaming bits of the S4-box
output are stored in R2, R3, and R4 while the contents of R1 are moved to register D. In the fourth
and final round, the contents of registers D, R2, R3, and R4 are concatenated and driven to the output.
The output of the S8-box is XORed with the appropriate four state bits (a0_L, a0_H, a1_L, or a1_H) and
is fed to the Liner. This procedure continues for all the incoming bytes, in 4-bit parts, according to the
algorithm’s specifications.

The Liner has a latency of two clock cycles and its operation lasts for six clocks cycles. In the first
clock cycle, the 4 LSBs of the first byte (Byte1 [3:0]) are fed into the Liner and are stored in register L1.
In the second clock cycle, Byte1 [3:0] is moved to register L2 and the remaining 4 MSBs of the first
byte (Byte1 [7:4]) are fed into the Liner and stored in L1. In the third clock cycle, the 4 LSBs of the
second byte (Byte2 [3:0]) enter the Liner and are fed into the multiplication circuit (this multiplication
by 0x02 circuit has already been described in the previous part of this paper). Additionally, through
the right multiplexer, Byte2 [3:0] is driven to the XOR gate, while through the left multiplexer Byte1
[3:0] is also driven to the XOR gate. The result is then driven to the output. In the same clock cycle,
Byte1 [3:0] is also moved to register L3 and Byte1 [7:4] is moved to L2. In the fourth clock cycle, the 4
MSBs of the second byte (Byte2 [7:4]) enter the Liner and are fed into the multiplication circuit. Again,
through the right multiplexer, Byte2 [7:4] is driven to the XOR gate, while through the left multiplexer
Byte1 [7:4] is also driven to the XOR gate. The result is driven to the output. Following the previous
procedure, Byte1 [3:0] is moved to register L4 and Byte1 [7:4] is moved to L3. Additionally, the output
of the multiplication circuit is stored in register R1. In the fifth clock cycle, the contents of L4 and
R1 are XORed and the result is outputted. The Byte1 [7:4] is moved to L4 and the new output of the

Electronics 2020, 9, 1505 9 of 14

multiplication circuit is stored in register R1. In the sixth and final clock cycle, the contents of L4 and
R1 are XORed and the result is driven to the output. At the appropriate clock cycles, the Liner’s output
is XORed with the corresponding output of the S8-box, according to the algorithm’s specifications.
The results which correspond to the new a0_L, a0_H, a1_L, and a1_H are driven to the respective
registers that form the internal state a. The bits that correspond to a1_L and a1_H are also the output of
the algorithm.

3. Results

The design suite that was selected for the synthesis and the implementation of the proposed 8-bit
and 4-bit architectures of the Enocoro-128v2 stream cipher was Xilinx’s Vivado 2019.2 through the
use of the VERILOG hardware description language. The implementation was evaluated (routed
and placed) in the Basys 3 Artix-7 (XC7A35T) FPGA Board. The implementation results of both the
proposed architectures are shown in Table 2.

Table 2. Implementation Results.

FPGA Device XC7A35T (BASYS3 ARTIX-7)

Architecture’s Datapath 8-bit 4-bit
Registers (FFs) 330 343

Look-up tables (LUTs) 254 249
Frequency (MHz) 189 204

Throughput (Mbps) 302 181
Slices 78 83

Throughput /#Slices 3.8 2.2
Round’s latency 5 9

On-chip dynamic Power (mW) 41 40

The 8-bit implementation utilizes 254 LUTs (1.22% of the available LUTs) and 330 FFs (0.79% of
the available FFs) in a total of 78 slices. Each round of the algorithm requires 5 clock cycles for its
completion, while the maximum reached frequency is 189 MHz, leading to a throughput equal to
302 Mbps. The achieved throughput per number of slices for the 8-bit implementation is 3.8. On the
other hand, the 4-bit architecture achieves a clock frequency of 204 MHz, a throughput equal to
181 Mbps with a latency per round equal to 9 clock cycles, while it utilizes only 343 FFs (0.82% of
the available FFs) and 249 LUTs (1.19% of the available LUTs) in a total of 83 slices. The throughput
per number of slices for the 4-bit implementation is 2.2. In addition, we estimated the on-chip power
using the Vivado Report Power feature. For accurate and reliable estimation, the Switching Activity
Interchange format (SAIF) file, which is generated from Post Implementation Timing Simulation, was
used. The SAIF file mainly contains the signals’ toggle counts (number of changes). In order to achieve
a good toggle coverage in the design’s internal signals (which leads to more accurate estimation), a very
long simulation time was necessary e.g., 100.000 ns (with the clock period being 5 ns). Additionally, the
inputs for the implementations were generated by a random number generator. We estimated that the
8-bit implementation has a dynamic power dissipation of 41 mW while the dynamic power dissipation
of the 4-bit architecture is 40 mW. As it is well known, the static power consumption mainly depends
on the total resources of the FPGA rather than the number of the resources that are utilized by an
implementation. So, the static power dissipation of the device is estimated to be equal to 70 mw for
both architectures.

4. Discussion

In Table 3, some comparison metrics regarding area and performance with previously published
compact FPGA implementations for lightweight stream ciphers are given. These implementations are
the closest ones that can be used for comparisons with the proposed implementations, due to the fact
that implementations for the Enocoro-128v2 stream cipher are very few. The comparisons are focused

Electronics 2020, 9, 1505 10 of 14

on Frequency (Freq.), the Throughput (Mbps), the Area (#Slices) and, finally, the Throughput per area
(T/#Slices) that measures the hardware resource cost associated with the implementation’s throughput
(the higher value is the better). Due to the fact that the stream ciphers that were used for comparisons
were implemented in different FPGAs, and this can lead to a potentially different maximum frequency
and hardware resource utilization, we believe that the best metric for comparison is the Throughput
per area (T/#Slices) because it can mitigate the previously mentioned potential differences. We have
denoted the proposed 8-bit architecture as Enocoro8 and the proposed 4-bit architecture as Enocoro4
for simplicity.

Table 3. Comparisons of the proposed Enocoro-128v2 architectures with implementations of other
cryptographic algorithms.

Cipher Freq. (MHz) Throughput (Mbps) # Slices T/#Slices FPGA Board

DECIM v2 [13] 185 46 80 0.58 Spartan-3
DECIM-128 [13] 174 43 89 0.49 Spartan-3

E0 [14] 187 187 140 1.33 Spartan-3
Grain v1 [13] 196 196 44 4.45 Spartan-3
Grain v1 [14] 177 177 318 0.55 Spartan-3
Grain v1 [15] 193 193 122 1.58 Spartan-3
Grain v1 [16] - 105 48 2.19 Spartan-II

Grain-128 [13] 196 196 50 3.92 Spartan-3
Grain-128 [17] 181 181 48 3.77 Virtex-II

MICKEY 2.0 [13] 233 233 115 2.03 Spartan-3
MICKEY 2.0 [14] 250 250 98 2.55 Spartan-3

MICKEY-128 2.0 [13] 223 223 176 1.27 Spartan-3
MICKEY-128 2.0 [15] 156 156 261 0.60 Spartan-3
MICKEY-128 2.0 [17] 200 200 190 1.05 Virtex-II
MICKEY-128 2.0 [18] 170 170 167 1.02 Virtex

Moustique [13] 225 225 278 0.81 Spartan-3
Moustique [19] - 369 252 1.46 Virtex-II
Mosquito [16] - 137 298 0.46 Spartan-II
Trivium [13] 240 240 50 4.80 Spartan-3
Trivium [14] 326 326 149 2.18 Spartan-3
Trivium [15] 201 201 188 1.07 Spartan-3
Trivium [16] - 102 40 2.55 Spartan-II
Trivium [17] 207 207 41 5.05 Virtex-II

Enocoro-128v2 [20] 118 - 292 0.40 Spartan-3
Enocoro-128v2 [20] 149 - 442 0.33 Spartan-3

Enocoro8 189 302 78 3.87 ARTIX 7
Enocoro4 204 181 83 2.18 ARTIX 7

As already discussed, in [13] an implementation of DECIM v2 and an implementation of
DECIM-128 are proposed. Both our enocoro implementations achieve higher maximum frequencies,
higher throughputs and have higher T/#Slices factors than both the DECIM ones. Our 8-bit Enocoro
implementation utilizes less slices than both the DECIM ones while our 4-bit Enocoro implementation
utilizes 6 slices less than the DECIM-128 implementation and only 3 more than the one of the DECIM
v2. Compared to the implementation of E0 that is presented in [14], our 8-bit Enocoro implementation
achieves a higher frequency, a higher throughput, it utilizes less slices and has a better T/#Slices factor.
Our 4-bit Enocoro implementation achieves a higher frequency, it utilizes less slices and has a better
T/#Slices factor, but it reaches a slightly lower maximum frequency (6 MHz less).

Regarding the four implementations of Grain v1 that are presented in [13–16], our 8-bit Enocoro
implementation achieves a higher operating frequency compared to [14] but lower than [13,15].
The throughput of our implementation is higher than all Grain v1 implementations. Regarding the
slice usage, our 8-bit implementation utilizes fewer slices than [14] and [15] but more than [13,16].
The T/#Slices factor of our implementation is better than [14–16] but worse than [13]. Our 4-bit Enocoro
implementation achieves a higher operating frequency compared to all Grain v1 implementations.
The throughput of our implementation is higher than [14,16] but lower than [13,15]. As for the slice

Electronics 2020, 9, 1505 11 of 14

usage, our 4-bit implementation utilizes fewer slices than [14,15] but more than [13,16]. The T/#Slices
factor of our implementation is better than [14,15] but worse than [13,16].

As for the two implementations of Grain-128 that are presented in [13,17], our 8-bit Enocoro
implementation achieves a higher frequency than the one in [17] but lower than [13], while it achieves
higher throughput than both the Grain-128 implementations. However, it utilizes more slices than
both the Grain-128 ones. This leads to a better T/#Slices factor than [17] but worse than [13]. On the
other hand, our 4-bit implementation has a frequency higher than both [13,17], a throughput equal
to [17] but lower than [13], it utilizes more slices than both the Grain-128 implementations and its
T/#Slices factor is lower than both [13,17].

In comparison to the two MICKEY 2.0 implementations in [13,14], our 8-bit Enocoro
implementation reaches a lower frequency than both of them, but it has a higher throughput than
both. Additionally, it utilizes fewer slices and has a better T/#Slices factor than both the MICKEY
2.0 implementations. Our 4-bit Enocoro implementation reaches a lower frequency and a lower
throughput than both of the MICKEY 2.0 implementations. However, at the same time, it utilizes fewer
slices than both of them and it has a T/#Slices factor that is higher than [13] but lower than [14].

Moreover, compared to the four implementations of MICKEY-128 2.0 that are proposed
in [13,15,17,18], our 8-bit Enocoro implementation achieves a higher operating frequency compared
to [15,18] but lower than [13,17]. The throughput of our implementation is higher than all MICKEY-128
2.0 implementations. Additionally, our 8-bit Enocoro implementation utilizes fewer slices and has
a better T/#Slices factor than all MICKEY-128 2.0 implementations. On the other hand, our 4-bit
implementation has a higher operating frequency compared to [15,17,18] but lower than [13]. Regarding
the throughput, our implementation achieves a higher throughput compared to [15,18] but lower
than [13,17]. Again, our 4-bit Enocoro implementation utilizes fewer slices and has a better T/#Slices
factor than all MICKEY-128 2.0 implementations.

As already presented, two implementations of Moustique are proposed in [13,19]. The Moustique
in [13] achieves a frequency higher than both our Enocoro implementations, it has lower throughput
than our 8-bit implementation but higher than our 4-bit one. However, both our implementations
utilize significantly less slices and have much better T/#Slices factors. The Moustique in [19] achieves
a throughput higher than both our Enocoro implementations but, at the same time, it utilizes
significantly more slices and has a much worst T/#Slices factor than both our implementations. Against
the Mosquito implementation in [16], both our enocoro implementations perform better on all the
corresponding metrics.

Regarding the five implementations of Trivium that are presented in [13–17], our 8-bit Enocoro
implementation achieves a frequency that is lower than all Trivium implementations. However,
it achieves a maximum throughput that is higher than [13,15–17] but lower than [14]. Regarding
the slice usage, our 8-bit implementation utilizes fewer slices than [14,15] but more than [13,16,17].
The T/#Slices factor of our implementation is better than [14–16] but worse than [13,17]. Our 4-bit
Enocoro implementation achieves a higher operating frequency compared to [15] but lower compared
to the rest of the Trivium implementations. It achieves a maximum throughput that is higher than [16]
but lower than the rest. Additionally, it utilizes fewer slices than [14,15] but more than [13,16,17].
The T/#Slices factor of our 4-bit Enocoro implementation is the same as [14], better than [15] but worse
than [13,16,17].

Finally, compared to the two implementations of the Enocoro-128v2 that are presented in [20],
both our Enocoro-128v2 implementations achieve higher max frequencies, utilize less slices, and have
higher T/#Slices factors.

From the previous comparisons of our 8-bit and 4-bit Enocoro implementations with a large
variety of stream ciphers, it can be seen that our implementations compared very well against them.
Even against implementations that have a different design philosophy like the compact Grain and
Trivium, our implementations exhibit very good results. The lightweight stream ciphers are designed
for area constraint embedded devices. That is why they generally consume fewer hardware resources

Electronics 2020, 9, 1505 12 of 14

and achieve better performance compared to conventional block ciphers such as the AES, the Triple
Data Encryption Algorithm (3DES), etc. In addition, the constrained embedded devices have limited
information processing resources in their CPU or in their memory and more importantly they have
restricted low power requirements.

Therefore, efficiency in hardware means a balance between the previous mentioned factors. We
strongly believe that the proposed architectures achieve a very good level of efficiency in terms of the
previous factors because they does not utilize any memory, they require a low number of hardware
resources and, therefore, do not consume a lot of power while simultaneously achieving a very good
level of time efficiency.

5. Conclusions and Future Works

Two very compact architectures of the lightweight stream cipher Enocoro-128v2, along with their
implementations, are proposed in this paper. The Enocoro-128v2 stream cipher is part of the ISO/IEC
29192-3 standard. The 8-bit architecture achieves a throughput equal to 302 Mbps @ 189 MHz while the
4-bit architecture achieves a throughput equal to 181 Mbps @ 204 MHz. Both architectures utilize a very
low number of hardware resources that leads them to also have very low dynamic power consumption,
specifically, up to 41 mW for the 8-bit one and 40 mW for the 4-bit one. Comparisons in terms of
operating frequency, area, and most importantly in throughput per area, with the most well-known
lightweight stream ciphers, prove that the proposed architectures are a very good candidate for the
security aspect of area embedded devices.

Future works will aim to improve the proposed architectures in the architectural design level and
also explore different options of implementation. Regarding the part of the implementation, our goal is
to implement the proposed architectures in silicon and in miniature FPGAs in order to further reduce
the power consumption to µW and enable the efficient integration to even more compact IoT nodes and
constrained embedded systems in general. At architectural level, we will aim to further explore FPGA
low power techniques (such as glitch reduction or signal gating) in order to, again, further reduce the
power consumption. In this regard, a very important technique for power reduction is the Guarded
Evaluation [21] because it can stop the input switching activity from propagating when the outputs are
not used. This feature is common in feedback logic designs like our proposed architectures. In addition,
because embedded applications now tend to use parallel computing architectures of algorithms like
Enocoro 128v2 that already have a high degree of parallelism, they are a primary option for the devices’
security module. Finally, additional features against side channel analysis attacks will be designed and
included in the proposed architectures, such as countermeasures based on secure logic styles, hiding
countermeasures, and masking countermeasures.

Author Contributions: Conceptualization, L.P. and P.K.; methodology, L.P. and P.K.; software, L.P.; validation,
L.P. and P.K.; formal analysis, P.K.; investigation, L.P. and P.K.; resources, P.K.; data curation, L.P. and P.K.;
writing—original draft preparation, L.P.; writing—review and editing, L.P. and P.K.; visualization, L.P. and P.K.;
supervision, P.K.; project administration, P.K.; funding acquisition, P.K. All authors have read and agreed to the
published version of the manuscript.

Funding: We acknowledge support of this work by the project “I3T—Innovative Application of Industrial
Internet of Things (IIoT) in Smart Environments” (MIS 5002434) which is implemented under the “Action for
the Strategic Development on the Research and Technological Sector”, funded by the Operational Programme
“Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the
European Union (European Regional Development Fund).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2020, 9, 1505 13 of 14

References

1. Alguliyev, R.; Imamverdiyev, Y.; Sukhostat, L. Cyber-physical systems and their security issues. Comput. Ind.
2018, 100, 212–223. [CrossRef]

2. Walker-Roberts, S.; Hammoudeh, M.; Aldabbas, O.; Aydin, M.; Dehghantanha, A. Threats on the horizon:
Understanding security threats in the era of cyber-physical systems. J. Supercomput. 2020, 76, 2643–2664.
[CrossRef]

3. Nazarenko, A.A.; Safdar, G.A. Survey on security and privacy issues in cyber physical systems. AIMS
Electron. Electr. Eng. 2019, 3, 111–143. [CrossRef]

4. Eisenbarth, T.; Kumar, S.S.; Paar, C.; Poschmann, A.; Uhsadel, L. A Survey of Lightweight-Cryptography
Implementations. IEEE Des. Test. Comput. 2007, 24, 522–533. [CrossRef]

5. Abed, S.; Jaffal, R.; Mohd, B.J.; Alshayeji, M. FPGA Modeling and Optimization of a SIMON Lightweight
Block Cipher. Sensors 2019, 19, 913. [CrossRef] [PubMed]

6. Medien, Z.; Machhout, M.; Bouallegue, B.; Khriji, L.; Baganne, A.; Tourki, R. Design and Hardware
Implementation of QoSS-AES Processor for Multimedia applications. Trans. Data Priv. 2010, 3, 43–64.
[CrossRef]

7. Buchanan, W.J.; Li, S.; Asif, R. Lightweight cryptography methods. J. Cyber Secur. Technol. 2017, 1, 187–201.
[CrossRef]

8. Watanabe, D.; Okamoto, K.; Kaneko, T. A Hardware-Oriented Light Weight Pseudo-Random Number
Generator Enocoro-128v2. In Proceedings of the 2010 Symposium on Cryptography and Information Security,
SCIS 2010, Okayama, Japan, 8–12 December 2010. 3D1-3.

9. Watanabe, D.; Owada, T.; Okamoto, K.; Igarashi, Y.; Kaneko, T. Update on Enocoro Stream Cipher.
In Proceedings of the International Symposium on Information Theory and Its Applications (ISITA),
Taichung, Taiwan, 17–20 October 2010; pp. 778–783. [CrossRef]

10. ISO/IEC 29192-3:2012. Information Technology—Security Techniques—Lightweight Cryptography—Part
3: Stream Ciphers. 2012. Available online: https://www.iso.org/standard/56426.html (accessed on 20
August 2020).

11. International Electrotechnical Commission (IEC). News Release 2012: Number 19. Available online:
https://www.iec.ch/newslog/2012/nr1912.htm (accessed on 20 August 2020).

12. Daemen, J.; Clapp, C. Fast Hashing and Stream Encryption with Panama. In Fast Software Encryption (FSE’98);
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 1998; Volume 1372, pp. 60–74. [CrossRef]

13. Hwang, D.; Chaney, M.; Karanam, S.; Ton, N.; Gaj, K. Comparison of FPGA-targeted Hardware
Implementations of eSTREAM Stream Cipher Candidates. State Art Stream Ciphers Workshop SASC.
2008, pp. 151–162. Available online: http://www.ecrypt.eu.org/stream/ (accessed on 20 August 2020).

14. Kitsos, P.; Sklavos, N.; Provelengios, G.; Skodras, A.N. FPGA-based performance analysis of stream ciphers
ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0. Microprocess. Microsyst. 2013, 37, 235–245. [CrossRef]

15. Gaj, K.; Southern, G.; Bachimanchi, R. Comparison of Hardware Performance of Selected Phase II eSTREAM
Candidates. State of the Art of Stream Ciphers Workshop (SASC 2007). eSTREAM. ECRYPT Stream Cipher
Project. Report 2007/026. 2007. Available online: https://www.ecrypt.eu.org/stream/papersdir/2007/026.pdf
(accessed on 20 August 2020).

16. Good, T.; Chelton, W.; Benaissa, M. Review of Stream Cipher Candidates from a Low Resource Hardware
Perspective. eSTREAM. ECRYPT Stream Cipher Project. Report 2006/016. 2006. Available online:
https://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf (accessed on 20 August 2020).

17. Bulens, P.; Kalach, K.; Standaert, F.X.; Quisquater, J.J. FPGA Implementations of eSTREAM Phase-2 Focus
Candidates with Hardware Profile. State of the Art of Stream Ciphers Workshop (SASC 2007). eSTREAM.
ECRYPT Stream Cipher Project. Report 2007/026. 2007. Available online: https://www.ecrypt.eu.org/stream/

papersdir/2007/024.pdf (accessed on 20 August 2020).
18. Kitsos, P. On the Hardware Implementation of the MICKEY-128 Stream Cipher. eSTREAM. ECRYPT Stream

Cipher Project. Report 2006/059. 2006. Available online: https://www.ecrypt.eu.org/stream/papersdir/2006/

059.pdf (accessed on 20 August 2020).
19. Daemen, J.; Kitsos, P. The self-synchronizing stream cipher MOUSTIQUE. In New Stream Cipher Designs—The

eSTREAM Finalists; Springer: Berlin/Heidelberg, Germany, 2008; pp. 210–223. Available online: http:
//www.ecrypt.eu.org/stream/mosquitop3.html (accessed on 20 August 2020).

http://dx.doi.org/10.1016/j.compind.2018.04.017
http://dx.doi.org/10.1007/s11227-019-03028-9
http://dx.doi.org/10.3934/ElectrEng.2019.2.111
http://dx.doi.org/10.1109/MDT.2007.178
http://dx.doi.org/10.3390/s19040913
http://www.ncbi.nlm.nih.gov/pubmed/30795605
http://dx.doi.org/10.5555/1747335.1747338
http://dx.doi.org/10.1080/23742917.2017.1384917
http://dx.doi.org/10.1109/ISITA.2010.5649627
https://www.iso.org/standard/56426.html
https://www.iec.ch/newslog/2012/nr1912.htm
http://dx.doi.org/10.1007/3-540-69710-1_5
http://www.ecrypt.eu.org/stream/
http://dx.doi.org/10.1016/j.micpro.2012.09.007
https://www.ecrypt.eu.org/stream/papersdir/2007/026.pdf
https://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
https://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
https://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
https://www.ecrypt.eu.org/stream/papersdir/2006/059.pdf
https://www.ecrypt.eu.org/stream/papersdir/2006/059.pdf
http://www.ecrypt.eu.org/stream/mosquitop3.html
http://www.ecrypt.eu.org/stream/mosquitop3.html

Electronics 2020, 9, 1505 14 of 14

20. Manifavas, C.; Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, Y. A survey of lightweight stream ciphers for
embedded systems. Secur. Comm. Netw. 2016, 9, 1226–1246. [CrossRef]

21. Ravishankar, C.; Anderson, J.; Kennings, A. FPGA power reduction by Guarded Evaluation considering
logic architecture. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 1305–1318. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/sec.1399
http://dx.doi.org/10.1109/TCAD.2012.2192478
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Specifications of Enocoro-128v2 Stream Cipher
	Related Work
	Proposed 8-Bit Architecture of Enocoro-128v2 Stream Cipher
	Function of the 8-Bit Architecture
	Update Function of the 8-Bit Architecture

	Proposed 4-Bit Architecture of Enocoro-128v2 Stream Cipher
	Function of the 4-Bit Architecture
	Update Function of the 4-Bit Architecture

	Results
	Discussion
	Conclusions and Future Works
	References

