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Abstract: The field oriented control (FOC) strategy of the permanent magnet synchronous motor
(PMSM) includes all the advantages deriving from the simplicity of using PI-type controllers,
but inherently the control performances are limited due to the nonlinear model of the PMSM,
the need for wide-range and high-dynamics speed and load torque control, but also due to the
parametric uncertainties which occur especially as a result of the variation of the combined rotor-load
moment of inertia, and of the load resistance. Based on the fractional calculus for the integration and
differentiation operators, this article presents a number of fractional order (FO) controllers for the
PMSM rotor speed control loops, and id and iq current control loops in the FOC-type control strategy.
The main contribution consists of proposing a PMSM control structure, where the controller of the
outer rotor speed control loop is of FO-sliding mode control (FO-SMC) type, and the controllers for the
inner control loops of id and iq currents are of FO-synergetic type. Superior performances are obtained
by using the control system proposed, even in the case of parametric variations. The performances
of the proposed control system are validated both by numerical simulations and experimentally,
through the real-time implementation in embedded systems.

Keywords: permanent magnet synchronous motor; fractional order control; synergetic control;
sliding mode control

1. Introduction

The permanent magnet synchronous motor (PMSM) is widely used in industrial applications,
the aerospace industry, electric vehicles, robotics, electric drives and computer peripherals.
The popularity of using the PMSM for a very wide range of applications is due to a set of advantages
such as efficiency, small size, high power and high torque density. Naturally, for the control of the
PMSM, a number of algorithms and control strategies have been developed, both in the range of the
classic type of control, and also as through modern and unconventional approaches. The field oriented
control (FOC) and direct torque control (DTC) [1–7] can be distinguished among the control strategies
of the PMSM. The DTC strategy is characterized by a simpler structure in terms of controllers which are
generally ON-OFF, but inherently the performance of the control system is affected by the occurrence
of oscillations. The FOC strategy contains a cascade control structure, where the outer loop controls
the PMSM rotor speed, and the inner control loops control currents id and iq. In the classical approach,
the FOC strategy controllers are PI type. This approach includes all the advantages provided by the
simplicity of using such controllers, but inherently the control performances are limited due to the
nonlinear model of the PMSM, the need for wide-range and high-dynamics speed and load torque
control, but also due to the parametric uncertainties which occur especially as a result of the variation
of the combined rotor-load moment of inertia, and of the load resistance.
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Among the more complex control systems used to obtain superior performances we can mention
the adaptive control [8–10], the predictive control [11–13], the robust control [14,15], the backstepping
control [16], the sliding mode control (SMC) [17,18] and the synergetic control [19,20]. These types of
control systems provide superior performance in terms of the response time, the overshoot and the
parametric robustness, and the real-time implementation in embedded systems can be achieved with
digital signal processors (DSP) with common performance, with a very good performance/price ratio.

Among these control systems, due to their robustness to parametric variations, the SMC-type
control systems have a special role, as well as the development of low-order controllers, with obvious
advantages in the real-time implementation in embedded systems. To counter SMC’s main disadvantage
due to the occurrence of the chattering phenomenon, a series of techniques have been developed,
among which we mention the use of a proportional-integral type of sliding surface plus integrator or a
second-order SMC. Further, we recall that the synergetic control can be considered as a generalization
of the SMC-type control, retaining the decoupling and model order reduction properties of this type of
control and the advantages provided by this approach for the synthesis of the controller.

We can mention the following intelligent control systems: fuzzy [21], neuro-fuzzy [22],
artificial neural network (ANN) [23–25], particle swarm optimization (PSO) or genetic algorithms [26].
These types of control also provide superior performance, but in the real-time implementation in
embedded systems it is necessary to use very fast DSPs, with relatively high costs, in addition to a
number of specific software libraries of the control application development environments. Thus,
the performance/price ratio does not recommend the widespread use of these types of controllers.

Regarding the elimination of the speed sensors, in order to increase the reliability of the system,
Luenberger [27], model reference adaptive system (MRAS) [28], and sliding mode observer (SMO) speed
observers [29,30] are used for the deterministically described systems, and Kalman type observers [31]
are used for the stochastic description of the system. Evidently, according to the performance-cost
criterion, the deterministic observers are the most commonly used. Furthermore, a range of observers
have been developed for the detection of faults, one of the most useful observers being used for the
detection of faults in current sensors on the supply phases of the PMSM.

One of the special applications of using the fractional calculus for integration and differentiation
operators consists of obtaining the fractional order (FO) controllers [32–35], in order to obtain superior
control performance. In this sense, the first approaches were obviously aimed at obtaining FO-PI-type
controllers. Although the development of the FO-type controllers is very attractive due to the possibility
for finer tuning of certain tuning parameters, which are traditionally integer and fixed parameters
(for example the power of operator s in the structure of the PI or PID-type controller), the study of these
controllers was greatly accelerated with the development of specialized toolboxes such as the fractional
order modeling and control (FOMCON) integrated into the MATLAB/Simulink environment.

Among the usual applications of the PMSM control systems we mention: maintaining the speed
according to a profile set by a speed reference generator, but also master/slave type multi-motor
applications where the coupling is rigid or flexible and it is necessary to maintain the same speed
or maintain the torque developed by each engine in the narrowest range possible [36]. Furthermore,
the electric vehicles drive control applications raise the problem of multi-motor speed control [37].
Applications such as the automatic control of the hydropower dam spillway require that the error
accumulated in each drive chain corresponding to each engine be less than the set value [38].
These applications are generally achieved using the controllers described above, but of the integer order
type. In this article we will focus on the fractional order controllers which provide superior control
performance, but also on the increased difficulties regarding the implementation in embedded systems.

This article compares the performances obtained using FO-PI, tilt integral derivatives (TID),
FO-lead lag controller, and SMC speed controllers against the classic PI-type speed controller in an
FOC-type control structure of the PMSM, under the conditions where the controller of the current
loops is of PI type. It also presents the performances obtained by using the synergetic control for the
control of currents id and iq, within an FOC-type control structure of the PMSM with PI speed controller.



Electronics 2020, 9, 1494 3 of 44

The main contribution consists of proposing a PMSM control structure, where the controller of the
outer rotor speed control loop is of FO-SMC type, and the controllers for the inner control loops of id
and iq currents are of FO-synergetic type. Superior performances are obtained by using the control
system proposed, even in the case of parametric variations. The FO-SMC controller outputs the current
reference iqref, while idref = 0 according to the FOC control strategy. The FO-synergetic-type controllers
directly provide the control inputs ud and uq, and the control of the inverter is performed through
the inverse Park and Clarke transformations from d-q reference frame system to abc reference frame
system. The validation of the results presented is achieved by numerical simulations, but also by
real-time implementation in embedded systems.

The rest of the paper is organized as follows: the basic concepts of the fractional calculus for
integration and differentiation operators are presented in Section 2, the FOC-type control strategy and
the transfer function of the PMSM are presented in Section 3. The fractional order speed controllers
for the PMSM are presented in Section 4, Section 5 presents the fractional order synergetic current
controllers for the PMSM and Section 6 presents the observers for rotor speed estimation and fault
detection. Sections 7 and 8 present the numerical simulations and the experimental results, respectively.
Some conclusions are presented in the last section.

2. Fractional Order Calculus

Let us note that the non-integer order operator for integration and differentiation as aDα
t , where

α represents the fractional order, a and t represent the limits of the interval at which the operator is
applied [27,28].

aDα
t =


dα
dtα Re(α) > 0
1 Re(α) = 0∫ t

a (dt)−α Re(α) < 0
(1)

Although there are several ways to define this operator, not all have a generally accepted meaning.
The most widely used definition is the Riemann–Liouville differintegral [32,33]:

aDα
t f (t) =

1
Γ(m− α)

(
d
dt

)m t∫
α

f (τ)

(t− τ)α−m+1
dτ (2)

where m− 1 < α < m, m ∈ N, and Γ(·) represents Euler’s gamma function. Another useful definition
in practical applications is given by Grünwald–Letnikov [32,33]:

aDα
t f (t) = lim

h→0

1
hα

( t−α
h )∑

j=0

(−1) j
(
α
j

)
f (t− jh) (3)

where (·) represents the integer part.
Similarly to the case of the integer order of the operator defined in (1), the Laplace transform is

applied and the transfer function for signals and with fractional derivative is defined. For example,
if the orders of the fractional operator s are integer multiples in relation to the commensurate order
q, (q ∈ R+, 0 < q < 1, αk = kq), the transfer function H(λ) can be expressed as follows:

H(λ) =

m∑
k=0

bkλ
k

n∑
k=0

akλk
(4)

where λ = sq.
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However, in the case of linear and time-invariant systems, in the fractional case, the state space
representation becomes:

Dqx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(5)

Furthermore, the stability of the system (5) can be verified by fulfilling the following relationship:

|arg(eig(A))| > q
π
2

(6)

where 0 < q < 1 represents the commensurate order, and eig(A) is the eigenvalue of the associated
matrix A.

To obtain a good approximation of a transfer function with fractional order in a specified frequency
range (ωb,ωh) and of order N, Oustaloup’s recursive filter for sγ and 0 < γ < 1 can be used as
follows [32,33]:

G f (s) = K
N∏

k=−N

s +ω′k
s +ωk

(7)

where ω′k, ωk and K are given by:

ω′k = ωb

(
ωh
ωb

) k+N+ 1
2 (1−γ)

2N+1

; ωk = ωb

(
ωh
ωb

) k+N+ 1
2 (1+γ)

2N+1

; k = ω
γ
h (8)

Furthermore, a refined Oustaloup filter is given by [32]:

sα ≈
(

dωh
b

)α( ds2 + bωhs
d(1− α)s2 + bωhs + dα

)
Gp (9)

Gp = K
N∏

k=−N

s +ω′k
s +ωk

; ωk =

(
bωh

d

) α+2k
2N+1

; ω′k =
(

dωb
b

) α−2k
2N+1

(10)

In Equations (9) and (10), usually b = 10 and d = 9.

3. Mathematical Model of PMSM. Transfer Function Representation. FOC Strategy of PMSM

The mathematical model of the PMSM in the rotor reference frame (d-q frame) by applying the
Park transform and according to [1,2] is obtained in the following form:[

uq

ud

]
=

[
Rq + ρLq ωeLd
−ωeLq Rd + ρLd

][
iq
id

]
+

[
ωeλ0

ρλ0

]
(11)

where ud, uq and id, iq are the stator voltages and currents in the d-q reference frame of the PMSM, Lq,
Ld and Rq, Rd are the stator inductances and resistances in the d-q reference frame, ωe is the electrical
angular velocity of the rotor, λ0 is the flux linkage, and ρ is the differential operator.

The flux on the d-q axes is expressed as:

λq = Lqiq
λd = Ldid + λ0

(12)

By indicating the electromagnetic torque developed by the PMSM as Te, the following relations
on the PMSM dynamics can be expressed:

Te =
3
2 np

(
λdiq − λqid

)
; Te = Ktiq

Te = TL + Bω+ J dω
dt

(13)
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where Kt = 3
2 npλ0 represents the torque constant, B represents the viscous friction coefficient,

J represents the rotor inertia, np represents the number of pole pairs, and TL represents the load torque.
By assuming the following simplifications Ld = Lq = L, Rd = Rq = Rs, and ωe = np·ω, where ω is the

angular velocity of the rotor, the following PMSM model can be obtained:
.
id.
iq
.
ω

 =

−

Rs
L npω 0

−npω −
Rs
L −

npλ0
L

0 Kt
J −

B
J




id
iq
ω

+


ud
L
uq
L

−
TL
J

 (14)

Using the Equations (11)–(14) describing the PMSM, Figure 1 shows the block diagram by reduced
transfer functions of the PMSM rotor speed control system. In addition to the notations presented
above, we denote the transfer functions of current and speed sensors as Hc(s) and Hω(s) in Figure 1.
Usually these are 1st order transfer functions where the time constant is in the order of milliseconds,
thus allowing a simplified approach to the reduction of these transfer functions to constants.
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Figure 1. The block diagram of the speed loop of the permanent magnet synchronous motor
(PMSM) drive.

The transfer function of the inverter is as follows:

Hin =
Kin

1 + sTin
(15)

where: Kin = 0.65·(Vdc/Vcm) and Tin = 1/(2·fc), Vdc represents the dc link voltage (input of the inverter),
Vcm represents the maximum control voltage, and fc represents the switching frequency of the inverter.

In Figure 1 by shifting the point of intersection of the back-electromotive force (back-EMF) loop
with the speed loop to the point of intersection with the current loop, an equivalent form of defining
the fixed part (the current control loop of iq) as transfer functions is shown in Figure 2 [39].Electronics 2020, 9, x FOR PEER REVIEW 6 of 45 
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Figure 2. The block diagram of the current control loop of the PMSM drive.

In Figure 2, using the following notations:{
Ka =

1
R ; Ta =

L
R ; Km = 1

B ; Tm = J
B ; Kb = KtKmλ0;

Ti = 0.1Tm; Kin = 20; Ki = (TmKin)/(T2Kb)
(16)

is the transfer function of the inner current loop which represents the fixed part of the speed control
system (outer control loop) which becomes as follows:
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H f =
KtKi

(as3 + bs2 + cs + d)
(17)

where {
a = TiLJ; b = LJ + Ti(LB + Rs J)

c = LB + Rs J + Ti(RsB + λ0Kt); d = RsB + λ0Kt
(18)

Figure 3 shows the proposed general block diagram of the enhanced FOC control type strategy
for PMSM. In this paper, the speed controller of the outer control loop is a classic PI-type controller,
but, as shown in Section 4, it can be replaced with FO-PI, TID, FO-lead-lag, and FO-SMC controllers.
Furthermore, compared to the classic approach, the PI-type current controllers in the inner control loop
can be replaced with synergetic and FO-synergetic controllers, as presented in Section 5. The output of
these controllers provides the reference iqref for the inner current control loop, where idref = 0. Section 6
presents improvements that can be made to the classic FOC-type scheme by using an SMO-type
observer to estimate the rotor position and speed, but also an FDO observer to detect the faults on the
PMSM supply phases.
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4. Fractional Order Speed Controllers for PMSM

By using the fractional-type control, whose basic elements were described in Section 2, this section
presents the equations of certain fractional-type controllers that will replace the PI-type speed controller
in the FOC-type control strategy of PMSM.

4.1. FO-PI Speed Controller

Furthermore, in terms of the fractional controllers, the most commonly used are the PIλDµ

controllers, which can be expressed as follows [33]:

u(t) = Kpe(t) + KiD−λe(t) + KdDµe(t) (19)

where e(t) represents the error signal.
After applying the Laplace transform to Equation (19), by assuming zero initial conditions,

the following equation is obtained:

Gc(s) = Kp +
Ki

sλ
+ Kdsµ (20)
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where Kp represents the proportional gain, Ki represents the integrator gain, λ represents the integrator
order (positive), Kd represents the differentiator gain, and µ represents the differentiator order.
For λ = µ = 1, the result is the usual integer-order PID controller.

4.2. TID Speed Controller

Another fractional controller used in applications is the TID controller, which can be described by
the next transfer function [33]:

Gc(s) =
Kt

s1/n
+

Ki
s
+ Kds (21)

where Kt represents the tilt gain, n represents the tilt integrator order, Ki represents the integrator gain,
and Kd represents the differentiator gain.

4.3. Lead-Lag Speed Controller

The general form of the transfer function of an FO-lead-lag controller is given by [33]:

Gc(s) = Kc

 s + 1
λ

s + 1
xλ

α = Kcxα
(
λs + 1
xλs + 1

)α
, 0 < x < 1 (22)

where λ represents the fractional order of the FO-lead-lag controller.
It is noted that, for α > 0, a lead effect of the FO-lead-lag controller is obtained, while for α < 0,

a lag effect of the FO-lead-lag controller is obtained.
For k′ = Kcxα, the common form of the FO-lead-lag controller is obtained:

Gc(s) = k′
(
λs + 1

xλs + 1

)α
(23)

For k′ = α = 1, λ =
Kp
Ki

, and x has a very high value (for example x > 10,000), the transfer function
of the FO-lead-lag controller becomes the transfer function of the FO-PI controller. It can therefore be
concluded that there is an increased flexibility in the use of the FO-lead-lag controller in a control loop.

4.4. FO-SMC Speed Controller

To achieve an SMC-type controller for the control of a PMSM motor described by Equation (14),
the state variables x1 and x2 described below are selected [1]:

x1 = ωre f −ω (24)

where x1 represents the tracking error of the speed.

x2 =
.
x1 =

ωre f −ω

dt
= −

.
ω (25)

Equation (26) defines the sliding surface S of the zero-error manifold. Through differentiation,
the following equation is obtained (27):

S = cx1 + x2 (26)
.
S = cx2 +

.
x2 = cx2 −D

.
iq (27)

where c represents the positive adjustable parameter and D =
3npλ0

2J is obtained from Equation (13).
In order to control the response time of the PMSM control system, the condition of time evolution

of the surface S is imposed like in Equation (28):

.
S = −εsgn(S) − qS, ε, q > 0 (28)
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where ε and q represent the positive adjustable parameters; sgn() represents the signum function.
To reduce the chattering effect (characteristic of the SMC design), the sgn function is replaced with

the sigmoid function defined as follows:

H(x) =
2

1 + e−a(x−c)
− 1 (29)

For a = 4 and c = 0, H ∈ [−1 1], the transition of the function H from −1 to 1 is smoothed and
ensures the reduction of the chattering effect. Based on these, after some calculations, the SMC-type
controller output value is obtained in the following form:

iqre f (t) =
1
D

∫ t

0
[cx2 + εH(S) + qS]dt (30)

It can be specified that iqref represents the current reference for the control loop on q axis, while idref
is set to zero according to the FOC-type control strategy [23]. To demonstrate the stability of the PMSM
control system under the action of the control law given by Equation (30), the Lyapunov function
candidate is selected in the following form V = 1

2 S2 [1].

.
V = S

.
S = S[−εH(S) − qS] = −εH(S) − qS2 (31)

After some calculations,
.

V ≤ 0 is obtained, where
.

V is given by the relation (31). To achieve the
FO-SMC controllers, the sliding surface S is selected as follows:

S = kpx1 + kdDµx1 = kpx1 + kdDµ−1x2 (32)

After differentiation, the following relation is obtained:

.
S = kp

.
x1 + kdDµ+1x1 = kpx2 + kdDµ−1 .

x2 (33)

Based on the mathematical model of the PMSM described in Section 3, the following relation
is obtained:

.
x2 =

..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω (34)

By inserting Equation (34) into Equation (33), the following relation is obtained:

.
S = kpx2 + kdDµ−1

(
..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω

)
(35)

For
.
S = 0, the following relation is obtained:

− εH(S) − qS− kpx2 = kdDµ−1
(

..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω

)
(36)

By applying operator D1−µ (described in Section 2) to both members of Equation (36), the following
relation is obtained:

D1−µ
(
−εH(S) − qS− kpx2

)
= kd

(
..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω

)
(37)

This results in the following relation:

1
kd

D1−µ
(
−εH(S) − qS− kpx2

)
=

..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω (38)
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Equation (38) can be rewritten as follows:

1
J

3
2

npλ0
.
iq =

..
ωre f +

1
J

.
TL +

B
J

.
ω−

1
kd

D1−µ
(
−εH(S) − qS− kpx2

)
(39)

The current reference iqref is obtained from Equation (39) as follows:

iqre f (t) =
1

1
J

3
2 npλ0

t∫
0

[
..
ωre f +

1
J

.
TL +

B
J

.
ω−

1
kd

D1−µ
(
−εH(S) − qS− kpx2

)]
dt (40)

5. Fractional Order Synergetic Current Controllers for PMSM

The synergetic control can be considered as a generalization of the sliding mode control (SMC),
retaining the decoupling design procedure and model order reduction properties of this type of control
and the advantages provided by this approach for the synthesis of the control. Thus, in this section,
the PI-type current controllers will be replaced for the inner current control loops in the FOC-type
control strategy, with synergetic and FO-synergetic type controllers to obtain superior performances.

For the synergetic control, a macro-variable is defined as a function of the states of the system,
as follows [19]:

Ψ = Ψ(x, t) (41)

The synthesized control inputs will force the system to operate on the manifold Ψ = 0, in a similar
manner to the SMC. A number of macro-variables equal to the number of control inputs are defined.
The dynamic evolution of each macro-variable is defined according to the following equation:

T
.

Ψ + Ψ = 0, T > 0 (42)

where T is selected so as to achieve the rate of convergence of the system evolution towards the
desired manifold.

By differentiating the macro-variable Ψ:

.
Ψ =

dΨ
dx

.
x, (43)

and by inserting Equation (43) into (42) using the explicit description of the states
.
x from the

mathematical model, in the case of the PMSM expressed by Equation (14), the control law is obtained
as follows:

u = u(x, Ψ(x, t), T, t) (44)

In case of applying the FOC type strategy for the PMSM control (see Figure 4), the outer speed
control loop supplies the reference iqref at the PI-type speed controller output for the inner control loop
whose controller proposed in this paper is synergetic. According to Equations (42)–(44), the synergetic
controller provides the controls ud and uq. Furthermore, according to the FOC control strategy of the
PMSM idref = 0.

According to [20], in order to achieve superior control performance under static and dynamic
regime, ωacc and ωdec are defined as the angular velocity of the rotor by selecting the current limit mode
of operation for accelerating and decelerating transients, respectively, of the following form:

ωacc = ωre f − kq
(∣∣∣iqmax

∣∣∣− iqre f
)

ωdec = ωre f − kq
(
−

∣∣∣iqmax
∣∣∣− iqre f

) (45)
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For ω > ωacc and ω < ωdec the macro-variable on q axis Ψq can be represented as in the following
equation:

Ψq =
(
ω(t) −ωre f

)
+ kq

(
iq(t) − iqre f

)
(46)

and for ω ≤ ωacc the macro-variable on q axis Ψq is represented in Equation (47), and for ω ≥ ωdec the
macro-variable on q axis Ψq is represented in Equation (48).

Ψq = iq(t) −
∣∣∣iqmax

∣∣∣+ kiq

t∫
0

(
iq(t) −

∣∣∣iqmax
∣∣∣)dt (47)

Ψq = iq(t) +
∣∣∣iqmax

∣∣∣+ kiq

t∫
0

(
iq(t) +

∣∣∣iqmax
∣∣∣)dt (48)

where iqmax is the maximum admissible current on q-axis, and kq is a value which is dynamically
adjusted as a function of the angular velocity of the rotor error. The control law for q axis can be
expressed as follows: for ωacc < ω < ωdec, uq is given by Equation (49), for ω ≤ ωacc, uq is given by
Equation (50), and for ω ≥ ωdec, uq is given by Equation (51):

uq(t) = Rsiq + npω(Lid + λ0) +
L
Tq

(
iqre f − iq

)
+

L
Tqkq

(
ωre f −ω

)
+

L
Jkq

(
−Ktiq + Bω+ TL

)
(49)

uq(t) = Rsiq + npω(Lid + λ0) +
L
Tq

(∣∣∣iqmax
∣∣∣− iq

)
+ kiqL

(∣∣∣iqmax
∣∣∣− iq

)
−

kiqL
Tq

t∫
0

(
iq −

∣∣∣iqmax
∣∣∣)dt (50)

uq(t) = Rsiq + npω(Lid + λ0) +
L
Tq

(
−

∣∣∣iqmax
∣∣∣− iq

)
+ kiqL

(
−

∣∣∣iqmax
∣∣∣− iq

)
−

kiqL
Tq

t∫
0

(
iq +

∣∣∣iqmax
∣∣∣)dt (51)

The macro-variable on d axis Ψd can be represented as in the following equation:

Ψd =
(
id(t) − idre f

)
+ kid

t∫
0

(
id(t) − idre f

)
dt (52)
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After some calculus, the control law for d axis can be expressed as follows [20]:

ud(t) = Rsid − npωLiq −
L
Td

(
id − idre f

)
− kidL

(
id − idre f

)
−

kidL
Td

t∫
0

(
id − idre f

)
dt (53)

Following the calculations made for the synergetic control of the PMSM, using definitions (1) and
(2) of the fractional calculus for integration and differentiation operators, in this section we will obtain
the values of the controls ud(t) and uq(t).

We define the macro-variable on q axis Ψq similarly to (46) for ω > ωacc and ω < ωdec, as follows:

Ψq(x) = Dµx3 + kqx1 (54)

where: x1 = iq − iqre f , x3 = ω−ωre f , and µ > 0. Next,
.

Ψq is calculated, and the following relation is
obtained:

.
Ψq(x) = Dµ .

x3 + kq
.
x1 = Dµ .

ω+ kq
.
iq (55)

By inserting (55) into the Equation (42) of dynamic evolution of macro-variable Ψq, for T = Tq,
the following relation is obtained:

Tq

[
Dµ

(
Ktiq

J −
Bω

J −
TL
J

)
+ kq

(
−

Rsiq
L − npωid −

npλ0ω
L +

uq
L

)]
+

+Dµ
(
ω−ωre f

)
+ kq

(
iq − iqre f

)
= 0

(56)

By rearranging the terms in Equation (56) the following relation is obtained:

TqDµ
(

Ktiq
J −

Bω
J −

TL
J

)
+ Tqkq

(
−

Rsiq
L − npωid −

npλ0ω
L

)
+

+
Tqkquq

L + Dµ
(
ω−ωre f

)
+ kq

(
iq − iqre f

)
= 0

(57)

After some calculations, Equation (56) becomes:

Tqkquq
L = TqDµ

(
−

Ktiq
J + Bω

J + TL
J

)
+

TqkqRsiq
L +

+npω(Lid + λ0)
Tqkq

L + Dµ
(
ω−ωre f

)
+ kq

(
iq − iqre f

)
= 0

(58)

Based on this, the control uq of the PMSM is obtained:

uq(t)= L
Jkq

Dµ
(
−Ktiq + Bω+ TL

)
+ Rsiq + npω(Lid + λ0)

+ L
Tqkq

Dµ
(
ω−ωre f

)
+ L

Tq

(
iq − iqre f

) (59)

Similarly to relations (47) and (48), control uq is obtained for ω ≤ ωacc and ω ≥ ωdec, respectively.
Next, the macro-variable on d axis Ψd is defined:

Ψd(x, t) = Dµx2 + kd

t∫
0

x2(t)dt (60)

where x2 = id − idre f and µ > 0.

Next,
.

Ψd is calculated, and the following relation is obtained:

.
Ψd(x) = Dµ .

x2 + kdx2 = Dµ
.
id + kd

(
id − idre f

)
(61)
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By inserting (61) into the Equation (42) of dynamic evolution of macro-variable Ψd, for T = Td,
the following relation is obtained:

Td

{[
Dµ

(
npωiq −

Rsid
L

+
ud
L

)]
+ kd

(
id − idre f

)}
+ Dµ

(
id − idre f

)
+ kd

t∫
0

(
id − idre f

)
dt = 0 (62)

By applying the operator defined in (1), D−µ (which becomes Iµ) to both members of Equation (62)
the following relation is obtained:

Td

(
npωiq −

Rsid
L

+
ud
L

)
+ TdkdIµ

(
id − idre f

)
+ id − idre f + kdIµ+1

(
id − idre f

)
= 0 (63)

After some calculations, Equation (63) becomes:

Tdud
L

=
RsidTd

L
− npωiqTd − TdkdIµ

(
id − idre f

)
−

(
id − idre f

)
− kdIµ+1

(
id − idre f

)
= 0 (64)

Based on this, the control ud of the PMSM is obtained:

ud(t) = Rsid − npωiqL− LkdIµ
(
id − idre f

)
−

L
Td

(
id − idre f

)
−

Lkd
Td

Iµ+1
(
id − idre f

)
(65)

6. Rotor Speed Estimation and Fault Detection

This section presents two observers, which complete the classic FOC-type control structure. Thus,
the sensorless characteristic of the control is ensured by an SMO-type observer which estimates the
PMSM speed. Furthermore, the use of an FDO-type observer enables the fault detection of the current
sensors on the PMSM supply lines.

6.1. Rotor Speed and Position Estimations Based on SMO-Type Observer

By using the PMSM operating equations given by the relations (11)–(14), and by applying the
inverse Park transform, the equations of the currents iα and iβ and the back-EMF eα and eβ are obtained
in α-β frame [2]:

iα = id cos(θe) − iq sin(θe)

iβ = id sin(θe) + iq cos(θe)
(66)

eα = dλα
dt = −λ0ωe sin(θe)

eβ =
dλβ
dt = −λ0ωe cos(θe)

(67)

Based on these, the PMSM operating equations can be rewritten as:

diα
dt = −Rs

L iα − 1
L eα + 1

L uα
diβ
dt = −Rs

L iβ − 1
L eβ + 1

L uβ
(68)

The equations of the SMO-type observer according to which the rotor speed and position can be
estimated are given by the equations [23,25]:

dîα
dt = −Rs

L îα + 1
L uα − 1

L kH(îα − iα)
dîβ
dt = −Rs

L îβ + 1
L uβ − 1

L kH(îβ − iβ)
(69)

where: k represents the observer gain, and H is a sigmoid type function described in Equation (29).
The sliding vector is selected as follows:

Sn = [Sα Sβ]
T = [îα − iα îβ − iβ]

T
= [iα iβ]

T
(70)
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To demonstrate the stability of the proposed observer, a Lyapunov function is selected of the
form [25]:

V =
1
2

ST
n Sn =

1
2

(
S2
α + S2

β

)
(71)

The current error system is defined in the form:

.

iα =
.
îα −

.
iα = −Rs

L iα + 1
L eα − 1

L kH(iα).

iβ =
.
îβ −

.
iβ = −

Rs
L iβ + 1

L eβ − 1
L kH(iβ)

(72)

According to these,
.

V is calculated, and the following relation is obtained:

.
V = −

Rs

L

(
i
2
α + i

2
β

)
+

1
L

[
(eα − k)iαH(iα) +

(
eβ − k

)
iβH(iβ)

]
< 0 (73)

By selecting the observer gain as k ≥ max
(
|eα|,

∣∣∣eβ∣∣∣), the stability condition of the observer is

obtained:
.

V < 0.
Based on this, on the sliding surface, the following relation is obtained:

[
.
Sα

.
Sβ]

T
= [Sα Sβ]

T
≈ [0 0] (74)

Based on relations (73) and (74), are obtained the estimations for eα and eβ:

êα = kH(iα) = −λ0ω̂e sinθe

êβ = kH(iβ) = λ0ω̂e cosθe
(75)

Finally, the estimates for the speed and position of the PMSM rotor can be obtained as below:
ω̂e =

√
ê2
α+ê2

β

λ0

θ̂e(t) =
t∫

t0

ω̂e(t)dt + θ0

(76)

where: θ0 represents the initial electrical position of the rotor.
Figure 5 shows the implementation in the MATLAB/Simulink environment in order to perform

the numerical simulations of the SMO-type observer for the estimation of the position and rotor speed
of the PMSM.Electronics 2020, 9, x FOR PEER REVIEW 14 of 45 

 

 

Figure 5. Sliding mode observer (SMO)-type observer—MATLAB/Simulink implementation block 

diagram. 

6.2. Fault Detection Based on FDO-Type Observer 

To detect the faults of the current sensors on the PMSM supply phases, an FDO-type observer 

will be used. In the α-β frame, the equations analogous to those described in Equation (11) for a 

PMSM are as follows: 













































e

e

es i

i
L

i

i
R

u

u






















cos

sin

0

0

0

0
 (77) 

According to Equation (77), the following relation can be written: 













































e

ees

Lu

u

Li

i

L

R

i

i






















cos

sin

0

01

0

0
 (78) 

Considering the flux linkage 
0 ext
 in α-β frame is obtained the following relation: 














































sin

cos

0

0

0

0

,

,

,

ext

ext

ext  (79) 

Let us note:  Tiix  ,  Tuuu  , 






















L

R
L

R

A
s

s

0

0
, 



















L

LB
1

0

0
1

, 











10

01
C , 








 



















01

10
,

0

0
JJ

L

L

LF e

e

e







. 

According to Equation (78), the equation of the PMSM which has an embedded FDO-type 

observer can be written as [40]: 









s

ext

GftCxty

EdFtButAxtx

)()(

)()()( ,
 (80) 

where  Tsss fff   is the stator current sensor fault vector,  Tddd 21  is the unknown but 

bounded disturbance vector, x is the state vector, u and y represents the input and output vector, 

respectively, 










10

01
G , and 











10

01
E . 

Figure 5. Sliding mode observer (SMO)-type observer—MATLAB/Simulink implementation
block diagram.
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6.2. Fault Detection Based on FDO-Type Observer

To detect the faults of the current sensors on the PMSM supply phases, an FDO-type observer will
be used. In the α-β frame, the equations analogous to those described in Equation (11) for a PMSM are
as follows: [

uα
uβ

]
= Rs

[
iα
iβ

]
+ ρL

[
iα
iβ

]
+ωe

[
λ0 0
0 λ0

][
− sinθe

cosθe

]
(77)

According to Equation (77), the following relation can be written:

ρ

[
iα
iβ

]
=

Rs

L

[
iα
iβ

]
+

1
L

[
uα
uβ

]
+
ωe

L

[
λ0 0
0 λ0

][
− sinθe

cosθe

]
(78)

Considering the flux linkage λext = λ0 in α-β frame is obtained the following relation:

λext,αβ =

[
λext,α

λext,β

]
=

[
λ0 0
0 λ0

][
cosθ
sinθ

]
(79)

Let us note: x =
[

iα iβ
]T

, u =
[

uα uβ
]T

, A =

[
−

Rs
L 0

0 −
Rs
L

]
, B =

[ 1
L 0
0 1

L

]
, C =

[
1 0
0 1

]
,

F =

[
0 ωe

L
ωe
L 0

]
= −ωe

L J, J =
[

0 −1
1 0

]
.

According to Equation (78), the equation of the PMSM which has an embedded FDO-type observer
can be written as [40]: { .

x(t) = Ax(t) + Bu(t) + Fλext,αβ + Ed
y(t) = Cx(t) + G fs

(80)

where fs =
[

fsα fsβ
]T

is the stator current sensor fault vector, d =
[

d1 d2
]T

is the unknown
but bounded disturbance vector, x is the state vector, u and y represents the input and output vector,

respectively, G =

[
1 0
0 1

]
, and E =

[
1 0
0 1

]
.

Consider a new state variable z, which is just variable y, but filtered, with a, b constants:

.
z = −az + by (81)

By selecting a = 0, b = 1, Equation (81) becomes:

.
z = y = Cx(t) + G fs (82)

Based on relations (80)–(82), the system of equations of the PMSM with embedded FDO observer
becomes: 

.
x(t) = Ax(t) + Bu(t) + Fλext,αβ + Ed

.
z(t) = Cx(t) + G fs

w = z
(83)

Consider fs the actuator fault of the system described by (83). The FDO-type observer has the
following form [40]: 

.
x̂(t) = Ax̂(t) + Bu(t) + Fλext,αβ + Eν1.

ẑ(t) = Cx̂(t) + G f̂s + ν2
(84)

ν1 and ν2 are selected, as control signals for the correction of the sliding mode, as follows:{
ν1 = L1H(ex)

ν2 = L2H(ez)
(85)
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where ex = x− x̂ and ez = z− ẑ, and L1 and L2 are positive design constants. Let us note es = fs − f̂s.
Based on this, the equations of the errors can be written as follows:

.
ex =

.
x−

.
x̂ = Aex + E(d− ν1)

.
ez =

.
z−

.
ẑ = Cex + Ges − ν2

(86)

To demonstrate the stability of FDO-type observers, the Lyapunov function is selected as follows:

.
V = eT

x ex + eT
z ez + eT

s Qes (87)

where Q > 0 is a constant matrix with appropriate dimensions.
By calculating

.
V, the following relation is obtained:

.
V ≤ 2‖ex‖ ‖E‖(‖d‖ − L1) + 2‖ez‖(‖C‖ ‖ex‖ − L2) + 2eT

s

(
Gez −Q

.
f̂ s

)
(88)

To ensure stability, by selecting L1 > ‖d‖ and L2 > C‖ex‖, the law of adaptation for faults vector fs
is obtained: .

f̂ s = Q−1Gez (89)

Since iα and iβ can be derived from ia,b,c in the form: iα = ia
iβ =

ib−ic
√

3
=

2ib+ia
√

3

, (90)

Then, the effect of the occurrence of faults fsα and fsβ, propagate in the form of faults fa and fb
in phases a and b of the PMSM power windings in the form of equations and laws of adaptation
described by Equations (91)–(93):  fsα = fa

fsβ =
2 fb+ fa
√

3

(91)

.
f̂ a =

.
f̂ sα = Q−1ez1 (92)

.
f̂ b =

√
3

.
f̂ sβ −

.
f̂ sα

2
= Q−1

√
3ez2 − ez1

2
(93)

In order to achieve the implementation of the FDO-type observer in the MATLAB/Simulink
environment, it is necessary to define the equations presented in this section explicitly, by components.
For implementation, Q = G = I2. Thus, Equation (83) is defined explicitly in the form of
Equations (94)–(96). 

.
iα = −Rs

L iα +
uα
L + ωeλ0

L + d1.
iβ = −

Rs
L iβ +

uβ
L −

ωeλ0
L + d2

(94)

{ .
zα = yα = iα + fα
.
zβ = yβ = iβ + fβ

(95) zα = 1
s (iα + fα)

zβ = 1
s

(
iβ + fβ

) (96)

Equations (84) and (85) are defined explicitly by components in the form of Equations (97)–(99).
.
îα = −Rs

L îα +
uα
L + ωeλ0

L + L1H
(
iα − îα

)
.
îβ = −

Rs
L îβ +

uβ
L −

ωeλ0
L + L1H

(
iβ − îβ

) (97)
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
.
ẑα = îα + f̂α + L2H(zα − ẑα).
ẑβ = îβ + f̂β + L2H

(
zβ − ẑβ

) (98)

{
ezα = zα − ẑα
ezβ = zβ − ẑβ

(99)

Equation (89) is implemented as follows:[
f̂α
f̂β

]
=

[
zα − ẑα
zβ − ẑβ

]
;

 f̂α = 1
s (zα − ẑα)

f̂β = 1
s

(
zβ − ẑβ

) (100)

We specify that s represents the complex variable in Equations (70)–(73). Figure 6 shows the
implementation in MATLAB/Simulink of the FDO-type observer using the equations defined explicitly
by components (94)–(100).Electronics 2020, 9, x FOR PEER REVIEW 17 of 45 
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7. Numerical Simulations

For the numerical simulations performed in MATLAB/Simulink and presented in this section, the
PMSM parameters are shown in Table 1.

Table 1. Nominal parameters of PMSM.

Motor Parameter Symbol Value Unit

Stator resistance Rs 2.875 Ω
d axes inductance Ld 0.0085 H
q axes inductance Lq 0.0085 H

Combined inertia of rotor and load J 0.0008 kg·m2

Combined viscous friction of rotor and load B 0.005 N·m·s/rad
Flux induced by permanent magnets of rotor in stator phases λ0 0.175 Wb

Pole pairs number np 4 -
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7.1. Numerical Simulations—Fractional Order Speed Controllers for PMSM

The block diagram for the implementation in MATLAB/Simulink of the PMSM control system
based on the FOC strategy proposed in this article is presented in Figure 7. The results of the behavior of
the PMSM control system are presented comparatively, using the classic PI controller, FO-PI controller,
TID controller, FO-lead-lag controller and FO-SMC controller for the control of the outer PMSM rotor
speed control loop. The other blocks in Figure 7 implement the speed reference generator, the load
torque generator, the time evolution I/O signals and the model of the PMSM drive. The sensorless
function of the control system of the rotor speed is provided by the use of an SMO-type observer
described in Section 6. Additionally, to detect the faults of the current sensors on the supply phases
of the PMSM, an FDO-type observer as described in Section 6 is embedded in the general control
structure in Figure 7.
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Starting from Equations (17) and (18), which represent the transfer function of the fixed part of the
PMSM rotor speed control system, for the nominal parameters presented in Table 1, the theoretical
transfer function of the fixed part is obtained:

H f (s) =
2.857

5.44 · 10−4s3 + 2.588 · 10−5s2 + 0.03761 s + 0.7637
(101)

The discrete form obtained for the transfer function based on Equation (101) according to the
Tustin method for a sampling period of 0.1 ms is:

H f (z) =
0.004648z3 + 0.01394z2 + 0.01394z + 0.004648

z3 − 2.166z2 + 1.837z− 0.6607
(102)
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The transfer function of the fixed part of the PMSM rotor speed control system is obtained by
using the MATLAB System Identification Toolbox, through identification in continuous and discrete
form in Equations (103) and (104), respectively:

H f _ident(s) =
0.002373

s3 + 0.0663s2 + 0.01484s + 8.163 · 10−6 (103)

H f _ident(z) =
2.96 · 10−3 z3 + 8.89 · 10−3 z2 + 8.89 · 10−3 z + 2.96 · 10−3

z3 − 3z2 + 3z− 0.99
(104)

The tuning of PI controllers by using Ziegler–Nichols methods is a well-known technique. In the
fractional case, the FOMCON toolbox for the MATLAB utility program is used for the tuning of FO-PI
controllers. In order to obtain the optimal tuning parameters in the fractional case, a number of
optimization methods are incorporated in the FOMCON toolbox, both in the frequency range and in the
time domain. In the frequency range, the goal of optimizing the parameters is achieved by obtaining
optimal performance in terms of the sensitivity function S(jω) for disturbance rejection for the low
and middle frequency range and the rejection of the high frequency noise using the complementary
sensitivity function T(jω). In the time domain, the tuning of fractional controllers is carried out by
minimizing optimal criteria, such as the integral absolute error (IAE) [41].

Using the FOMCON toolbox for MATLAB, an FO-PI controller described by Equation (20) can be
tuned for the control of the PMSM rotor speed. For Kp = 1.2, Ki = 12, λ = 1.1, and Kd = µ = 0, the transfer
function of the FO-PI controller is obtained:

HPI =
1.2s1.1 + 12

s1.1
(105)

The closed loop transfer function of the PMSM rotor speed control, where the controller is given
by Equation (20) and the fixed part is given by Equation (103), is expressed in the following form:

HCL_PI =
4.3272 · 108s1.1 + 4.3272 · 109

s3.2 + 73730s2.2 + 4.3746 · 108s1.1 + 4.3272 · 109
(106)

Using the FOMCON toolbox for MATLAB, the stability of the closed loop system of the PMSM
rotor speed control, in other words, the fulfillment of the condition given by the relation (6) is graphically
presented in Figure 8, where it is noted that the system is stable.

The step response for the FO-PI controller given by the relation (105), considering the fixed part is
represented by both the theoretical transfer function and by the transfer function obtained through
identification, in other words, the relations (101) and (103), respectively, is presented in Figure 9.

A similar response is noted in the two cases, with a good behavior under both the dynamic and
stationary regimes and which additionally proves the similarity between the transfer function of the
fixed part obtained theoretically and by identification.

Figure 10 shows the closed loop system consisting of the FO-PI controller given by relation (105)
and theoretical transfer function given by relation (101), Bode diagram, Nyquist diagram and Nichols
diagram. The stability of the system can be inferred from the specific interpretation of these diagrams
and, in addition (to the conclusions in Figure 8), an amplitude stability margin of 12 dB can be noted.

For the implementation in DSP, it is necessary to obtain the transfer function of the FO-PI controller
given in Equation (105) in an equivalent form as discrete variable z, but of integer order. For this,
according to those presented in Section 2, an approximation of the fractional order transfer function
can be obtained with an integer-order continuous transfer function, by using the Oustaloup filter.



Electronics 2020, 9, 1494 19 of 44

Electronics 2020, 9, x FOR PEER REVIEW 19 of 45 

 

the low and middle frequency range and the rejection of the high frequency noise using the 

complementary sensitivity function T(jω). In the time domain, the tuning of fractional controllers is 

carried out by minimizing optimal criteria, such as the integral absolute error (IAE) [41]. 

Using the FOMCON toolbox for MATLAB, an FO-PI controller described by Equation (20) can 

be tuned for the control of the PMSM rotor speed. For Kp = 1.2, Ki = 12, λ = 1.1, and Kd = μ = 0, the 

transfer function of the FO-PI controller is obtained: 

1.1

1.1 122.1

s

s
HPI


  (105) 

The closed loop transfer function of the PMSM rotor speed control, where the controller is given 

by Equation (20) and the fixed part is given by Equation (103), is expressed in the following form: 

91.182.22.3

91.18

_
103272.4103746.473730

103272.4103272.4






sss

s
H PICL

 (106) 

Using the FOMCON toolbox for MATLAB, the stability of the closed loop system of the PMSM 

rotor speed control, in other words, the fulfillment of the condition given by the relation (6) is 

graphically presented in Figure 8, where it is noted that the system is stable. 

The step response for the FO-PI controller given by the relation (105), considering the fixed part 

is represented by both the theoretical transfer function and by the transfer function obtained through 

identification, in other words, the relations (101) and (103), respectively, is presented in Figure 9. 

A similar response is noted in the two cases, with a good behavior under both the dynamic and 

stationary regimes and which additionally proves the similarity between the transfer function of the 

fixed part obtained theoretically and by identification. 

 

Figure 8. Graphical representation for the stability of the PMSM rotor speed control system—closed 

loop. 

Figure 8. Graphical representation for the stability of the PMSM rotor speed control system—closed loop.
Electronics 2020, 9, x FOR PEER REVIEW 20 of 45 

 

 

Figure 9. Unit step response of the PMSM rotor speed control system with FO-PI controller and fixed 

part with: (a) theoretical transfer function; (b) transfer function obtained through identification. 

Figure 10 shows the closed loop system consisting of the FO-PI controller given by relation (105) 

and theoretical transfer function given by relation (101), Bode diagram, Nyquist diagram and 

Nichols diagram. The stability of the system can be inferred from the specific interpretation of these 

diagrams and, in addition (to the conclusions in Figure 8), an amplitude stability margin of 12 dB can 

be noted. 

Figure 9. Unit step response of the PMSM rotor speed control system with FO-PI controller and fixed
part with: (a) theoretical transfer function; (b) transfer function obtained through identification.



Electronics 2020, 9, 1494 20 of 44
Electronics 2020, 9, x FOR PEER REVIEW 21 of 45 

 

 

Figure 10. Bode, Nyquist and Nichols diagram representations for closed-loop system composed 

from FO-PI controller and theoretical transfer function of PMSM given by Equations (101) and (105). 

For the implementation in DSP, it is necessary to obtain the transfer function of the FO-PI 

controller given in Equation (105) in an equivalent form as discrete variable z, but of integer order. For 

this, according to those presented in Section 2, an approximation of the fractional order transfer 

function can be obtained with an integer-order continuous transfer function, by using the Oustaloup 

filter. 

Figure 10. Bode, Nyquist and Nichols diagram representations for closed-loop system composed from
FO-PI controller and theoretical transfer function of PMSM given by Equations (101) and (105).

In the usual frequency range for the presented application ω = (10−2; 103) rad/s, in Equation (107)
is expressed and the equivalent transfer function obtained. In order to obtain the discrete form of this
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equivalent transfer function, the Tustin substitution is used, and the obtained discrete transfer function
is expressed in Equation (108).

HPI_INT(s)=
1.2(s + 280.6)(s + 354.8)(s + 35.48)(s + 25.88)(s + 6.918)(s + 4.422)

s(s + 354.8)(s + 218.8)(s + 35.48)(s + 28.18)(s + 3.548)
·

·
(s + 3.548)(s + 0.3575)(s + 0.3548)(s + 0.0355)(s + 0.03548)

(s + 0.3548)(s + 0.2818)(s + 0.03548)(s + 0.02818)

(107)

HPI_INT(z)=
1.2031(z− 0.7554)(z− 0.7013)(z− 0.9651)(z− 0.9745)

(z− 1)5(z− 0.9972)(z− 0.9965)(z− 0.9722)
·

·
1.2031(z− 0.7554)(z− 0.7013)(z− 0.9651)(z− 0.9745)

(z− 1)5(z− 0.9972)(z− 0.9965)(z− 0.9722)

(108)

Another fractional order controller is presented in Equation (21) and for Kt = 1.2, Ki = 12, n = 10,
and Kd = 0, the following transfer function of the fractional order TID controller is obtained:

HTID =
1.2 + 12s0.1

s1.1
(109)

The closed loop transfer function for the fixed part presented above in Equation (103) and the TID
controller given by Equation (109) is the following:

HCL_TID =
4.3272 · 108s0.91 + 4.3272 · 109

s3.1 + 7373s2.1 + 4.3746 · 108s0.91 + 4.3272 · 109
(110)

The response to the unit step of the PMSM rotor speed control loop with fractional TID controller
is shown in Figure 11. A good performance is noted in dynamic and stationary regime.
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Figure 11. Unit step response of the PMSM rotor speed control system with transfer function obtained
through identification for the fixed part and fractional TID controller.

Proceeding as above in the case of the FO-PI controller, using the Oustaloup filter zpk, in the TID
controller case the results for integer-order will be as follows:

HTID_INT(s) =
656.44(s + 114.1)(s + 17.33)(s + 6.938)(s + 0.8839)(s + 0.08997)

s(s + 901.6)(s + 90.16)(s + 9.016)(s + 0.9016)(s + 0.09016)
(111)

HTID_INT(z) =
0.25176(z + 0.7516)(z− 0.8922)(z− 9828)(z− 0.9931)(z− 1)

(z− 1)3(z− 0.991)(z− 0.9138)(z− 0.4059)
(112)
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In case of another fractional order controller which is presented in Equation (23), and for k’ = 300,
x = 50, λ = 1.4 and α = 0.11, the following transfer function of the FO-lead-lag controller is obtained:

HLL =
3.606 · 108

s2.1 + 7.373 · 104s1.1 + 4.74 · 106
(113)

The closed loop transfer function for the fixed part presented above in Equation (103) and the
FO-lead-lag controller given by Equation (113) is the following:

HCL_LL =
abs

(
1.0561 · 1011

− 6.942 · 109
· i
)

s2.1 + 73730s1.1 + abs(1.0561 · 1011 − 6.942 · 109 · i)
(114)

The response to the unit step of the PMSM rotor speed control loop with the FO-lead-lag controller
is shown in Figure 12. Furthermore, for this type of fractional order controller a good performance is
noted in the dynamic and stationary regimes.
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Figure 12. Unit step response of the PMSM rotor speed control system with transfer function obtained
through identification for the fixed part and FO-lead-lag controller.

By using the Oustaloup filter zpk in the FO-lead-lag controller case the results for integer-order
will be as follows:

HLL_INT(s) =
1.8073 · 108(s + 354.8)2(s + 35.48)2

(s + 7.37 · 104)(s + 354.8)(s + 272.4)(s + 35.48)(s + 3.603)(s + 3.548)
·

·
(s + 3.548)2(s + 0.3548)2(s + 0.03548)2

(s + 0.3552)(s + 0.3548)(s + 0.03548)(s + 0.03548)(s2 + 68.99s + 1465)

(115)

HLL_INT(z) =
1.2103(z + 1.071)(z− 1)4(z− 0.9965)2

z(z− 1)4(z− 0.9965)(z− 0.9964)(z− 0.9651)
·

·
(z− 0.9651)2(z− 0.7013)2(z + 0.0003655)

(z− 0.7616)(z− 0.7013)(z2 − 1.932z + 0.9333)

(116)

Figure 13 presents the results of the simulation of the PMSM rotor speed control, where the
speed controller is FO-PI-type and PI-type, respectively. For a speed reference of 2000 rpm, with no
load torque, good dynamic and static results are obtained, but with an obvious advantage of the
FO-PI controller. The variations of the stator currents ia,b,c, and of currents id and iq are presented,
and compliance with reference idref = 0 is noted according to the FOC strategy.
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Figure 13. Comparative simulation of the PMSM time evolution with FO-PI speed controller and PI
speed controller—ωref = 2000 rpm, TL = 0 Nm, Kp = 1.2, Ki = 12, λ = 1.1 and Kd = µ = 0.

In Figure 14, the FO-PI controller is compared to the PI controller for the PMSM rotor speed
control system, for a speed reference of 2000 rpm and a load torque of 5 Nm. The overshooting by
the speed PI-type controller and the good static and dynamic performance provided by the speed
FO-PI-type controller can be noted in the detail in the said figure.
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Figure 14. Comparative simulation of the PMSM time evolution with FO-PI speed controller and PI
speed controller—ωref = 2000 rpm, TL = 5 Nm, Kp = 1.2, Ki = 12, λ = 1.1 and Kd = µ = 0.

The parametric robustness provided by the FO-PI controller for the PMSM rotor speed control loop
is presented in Figure 15, where, for the speed and load torque references presented in Figure 14 plus a
50% increase of the J parameter (combined inertia of rotor and load), it is presented by maintaining a
response with good dynamic and stationary performance.
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Figure 15. Comparative simulation of the PMSM time evolution with FO-PI speed controller and PI
speed controller—ωref = 2000 rpm, TL = 5 Nm, Kp = 1.2, Ki = 12, λ = 1.1, Kd = µ = 0 and 100% increase
of J parameter.

Figure 16 shows the response of the control system in the case of ωref = 300 rpm and double the
nominal load torque, TL = 10 Nm. Figure 16 also shows the time evolution of the electromagnetic
torque, of the stator currents, as well as currents id and iq. A very good response time (12 ms) is noted,
given the lack of overshooting and the evolution of the id current around zero. For the implementation
of the FO-SMC-type control described in Section 4, the parameters ε = 300, q = 200, c = 100 and µ = 0.55
were selected.
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Figure 16. Simulation of the PMSM time evolution with FO-SMC speed controller for ωref = 300 rpm,
TL = 10 Nm, ε = 300, q = 200, c = 100 and µ = 0.55.

Figure 17 also shows the good performance of the PMSM control system using the FO-SMC-type
controller for the outer rotor speed control loop if the speed reference ωref = 2200 rpm and the load
torque TL = 2 Nm.
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Figure 17. Simulation of the PMSM time evolution with FO-SMC speed controller for ωref = 2200 rpm,
TL = 2 Nm, ε = 300, q = 200, c = 100 and µ = 0.55.

The parametric robustness of the PMSM control system is noted in Figure 18, where, for the same
speed and load torque references in Figure 17, however, with a 100% increase of J parameter and an
added uniformly distributed noise, good static and dynamic performances are noted, while there is an
override of less than 2%.
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Figure 18. Simulation of the PMSM time evolution with FO-SMC speed controller for ωref = 2200 rpm,
TL = 2 Nm and uniformly distributed noise, ε = 300, q = 200, c = 100, µ = 0.55 and 100% increase of
J parameter.

For a comparison between the performance obtained for the PMSM rotor speed control by using the
speed PI controller, the FO-PI speed controller, the TID speed controller, the FO-lead-lag speed controller
and the FO-SMC speed controller, Figure 19 shows the system response in closed loop for a reference
of 300 rpm and a load torque of 10 Nm. The superiority of the speed FO-PI-type speed controller,
TID-type speed controller, FO-lead-lag speed controller and FO-SMC speed controller over the speed
PI-type controller is noted. This can be intuited by the fact that the first two controllers mentioned
have a higher number of tuning parameters than the PI-type controller, and their mathematical
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model can be considered more accurate due to the use of the fractional calculus for integration and
differentiation operators. Of the four speed controllers compared, the superiority is apparent for the
speed FO-SMC-type controller which does not feed any overshooting, and the response time is below
15 ms for the nominal load torque.
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Figure 19. Comparative simulation of the PMSM time evolution with FO-SMC speed controller,
FO-lead-lag speed controller, TID speed controller, FO-PI speed controller and PI speed controller—ωref

= 300 rpm, TL = 10 Nm: (a) speed comparison; (b) torques, stator currents and id and iq currents
for PI speed controller; (c) torques, stator currents and id and iq currents for FO-PI speed controller;
(d) torques, stator currents and id and iq currents for TID speed controller; (e) torques, stator currents
and id and iq currents for FO-lead-lag speed controller; and (f) torques, stator currents and id and iq
currents for FO-SMC speed controller.



Electronics 2020, 9, 1494 28 of 44

The value of the speed/torque ripple is defined as follows:

xrip =

√√√
1
N

N∑
i=1

(
x(i) − xre f (i)

)2
(117)

where N represents the number of samples, x and xref represent the rotor speed/torque and the
prescribed reference of speed/torque, respectively.

Table 2 compares a number of performance indices obtained by using fractional speed controllers
for a reference speed ωref = 300 rpm and a load torque reference TL = 10 Nm. The performances of
these types of controllers are presented both in the case of nominal parameters, and in the case of J
parameter doubling. It can be noted that the fractional controllers and especially the FO-SMC speed
controller have superior performance.

Table 2. Comparison of performance indices of the fractional order proposed speed controllers.

Performance Indices PI Speed
Controller

FO-PI Speed
Controller

TID Speed
Controller

FO-Lead-Lag
Speed Controller

FO-SMC
Speed Controller

Overshoot (%)
nominal J 0 0 0 0 0

Overshoot (%)
double J 0 0 0 0 0

Settling time (ms)
nominal J 300 240 220 180 16

Settling time (ms)
double J 450 300 280 220 40

Steady state error (%)
nominal J 0.11 0.11 0.1 0.1 0.09

Steady state error (%)
double J 0.12 0.12 0.11 0.1 0.09

Speed ripple (rpm)
nominal J 121.78 81.14 142.24 112.94 102.81

Speed ripple (rpm)
double J 289.28 192.35 216.14 204.91 131.15

Torque ripple (Nm)
nominal J 13.68 17.16 10.08 9.23 18.91

Torque ripple (Nm)
double J 11.8 15.45 12.91 12.1 16.01

7.2. Numerical Simulations for Rotor Speed Estimation and Fault Detection

Figure 20 shows the evolution of the SMO-type observer for the estimation of the PMSM rotor
speed. Very good stationary results are noted, except for the first 100 ms, when, normally, at the start
of PMSM, it is controlled in the open loop, according to a predefined sequence.

The numerical simulation parameters L1 = 150,000 and L2 = 50 (amplification factors of the
FDO-type observer) are selected to test the efficiency of the FDO-type observer described in Section 6.
Thus, Figure 21 shows the efficiency of this type of observer due to the fact that it very precisely
reconstructed the currents iα and iβ together with the outputs zα and zβ provided by Equation (84),
which describes the implementation of the FDO-type observer under the conditions where faults of the
current sensors may occur.

Based on Equations (91)–(93), which express the relationships between the fault flags on phases α
and β in the α-β reference frame and the real supply phases a, b, c of the PMSM, Figure 22 shows that,
for the occurrence of a fault on phase a, it is detected, and a specific fault flag is set to logic 1, during
the occurrence of such a fault of the current sensor. The detection threshold used is 4 A, and a fast
response of the FDO-type observer of 60 ms is noted.
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The response time of the FDO-type observer is the time between the moment of occurrence of a
fault of the sensor and the setting of the fault flag, under the conditions where the occurrence of false
fault detections is eliminated by setting of the 4 A threshold, and the disturbance on the system (d1 and
d2, described in Equation (80) used the in this numerical simulation is a uniform random variable with
amplitude in the range −10 to 10 A.

7.3. Numerical Simulations—Fractional Order Synergetic Current Controllers and PI Speed
Controller for PMSM

Figure 23 presents the block diagram of the MATLAB/Simulink implementation of the PMSM
sensorless control system based on the synergetic current control or the FO-synergetic current control
for the inner current loops control.
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Figure 23. Simulink block diagram for the PMSM sensorless control based on PI speed controller,
FO-synergetic current controllers, SMO speed observer and FDO.

The main functional blocks represented in the block diagram of the control system are: the PI
speed controller which supplies current iqref (idref = 0 according to the FOC control strategy), the speed
reference generator, the synergetic controller or the FO-synergetic controller, the load torque generator,
the PMSM motor drive, the SMO-type observer, the acceleration and deceleration of the rotor angular
velocity and the Clarke and Park transformation.

The synergetic current controllers or the FO-synergetic current controller block provides the
controls ud and uq by implementing Equations (49)–(51) and (53) for the synergetic current control,
and Equations (59) and (65) for the FO-synergetic current control, respectively.

For a speed reference of 500 rpm and a torque load of 1 Nm when using a synergetic controller,
Figure 24 presents the qualitatively superior response of the system with an override below 8%,
but with a notable performance response time of 2 ms.

For the numerical simulations in which the FO-synergetic type controller is used, the parameters
described in Section 5 are: kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and µ = 0.5
(for Equations (54) and (60)).

In Figure 25, by replacing the synergetic controller with the FO-synergetic controller, for the same
conditions presented in Figure 24, the reduction of the override to 4% and an excellent performance
determined by the 1 ms response time are noted.
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Figure 24. Simulation of the PMSM time evolution with synergetic controller and FOC strategy—
ωref = 500 rpm, TL = 1 Nm, kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3 and kid = 10,000.
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Figure 25. Simulation of the PMSM time evolution with FO-synergetic controller, and FOC strategy—
ωref = 500 rpm, TL = 1 Nm, kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and µ = 0.5.

Figures 24 and 25 additionally present the evolution of the electromagnetic torques, load torques
and stator currents ia, ib, ic and currents id and iq.

Figure 26 presents the comparative time evolution of the numerical simulation for the FOC
strategy with PI current controllers, synergetic current controllers and FO-synergetic current controllers
of the PMSM. Figure 26 shows that very good performance achieved by using the synergetic control
for the inner current loops id and iq. Obviously, due to the additional control parameters, between
the two types of synergetic control, the best performance is obtained by using the FO-synergetic
current controllers.
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Figure 26. Comparative time evolution of the numerical simulation for FOC strategy with PI controller,
synergetic controller and FO-synergetic controller of the PMSM—ωref = 500 rpm and TL = 1 Nm.

Table 3 compares a number of performance indices obtained by using fractional current controllers
for a reference speed ωref = 500 rpm and a load torque reference TL = 1 Nm. The performances of
these types of controllers are presented both in the case of nominal parameters, and in the case of J
parameter doubling. It can be noted that the synergetic controllers, and especially the FO-synergetic
current controller, have superior performance.

Table 3. Comparison of performance indices of the fractional order proposed current controller.

Performance Indices PI Current Controller Synergetic Current Controller FO-Synergetic Current Controller

Overshoot (%)
nominal J 0 8 2

Overshoot (%)
double J 0 14 3.5

Settling time (ms)
nominal J 6 1.2 1

Settling time (ms)
double J 11 1.8 1.6

Steady state error (%)
nominal J 0.1 0.08 0.07

Steady state error (%)
double J 0.1 0.08 0.07

Speed ripple (rpm)
nominal J 182.16 112.91 102.45

Speed ripple (rpm)
double J 214.91 129.54 107.63

Torque ripple (Nm)
nominal J 15.21 17.95 15.82

Torque ripple (Nm)
double J 19.44 21.02 18.73

7.4. Numerical Simulations—Fractional Order Speed Controllers and Fractional Order Synergetic Current
Controller for PMSM

This subsection presents the numerical simulations for the structure proposed in this article,
namely, an FOC control strategy of the PMSM where the speed controller is of the SMC or FO-SMC
types, and the controllers for the current control loops are of synergetic and FO-synergetic type.
Figure 27 shows the block diagram of the MATLAB/Simulink implementation.
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Figure 27. Simulink block diagram for the PMSM sensorless control based FO-SMC speed controller,
FO-synergetic current controller, SMO speed observer and FDO.

For the implementation of the FO-SMC-type control described in Section 4, the parameters ε = 300,
q = 200, c = 100 and µ = 0.55 were selected, and for the FO-synergetic type controller described in
Section 5, the parameters kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and µ = 0.5,
for Equations (54) and (60), were selected.

The evolution of the time response for the PMSM control system with FO-SMC speed controller
and FO-synergetic current controller for ωref = 500 rpm, TL = 1 Nm is presented in Figure 28. Very good
static and dynamic performances can be noted, of which we mention the response time of 0.92 ms and
an overshoot of less than 1.2%.Electronics 2020, 9, x FOR PEER REVIEW 35 of 45 
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Figure 28. Simulation of the PMSM time evolution with FO-SMC speed controller and FO-synergetic
current controller—ωref = 500 rpm, TL = 1 Nm, (ε = 300, q = 200, c = 100 and µ = 0.55 for FO-SMC speed
controller), (kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and µ = 0.5 for FO-synergetic
current controllers).

In Figure 29, under the same conditions, but for a load torque of 10 Nm, very good performances of
the PMSM control system with a response time of 1.2 ms are also obtained. The parametric robustness
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of the proposed control system is demonstrated in Figure 30 by obtaining a response time of 1.6 ms
under the conditions where a uniformly distributed noise with 0.2 Nm magnitude additionally acts
on the load torque, J parameter has a 100% increase, and also the stator resistance Rs has double the
nominal value.
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Figure 29. Simulation of the PMSM time evolution with FO-SMC speed controller and FO-synergetic
current controller—ωref = 500 rpm, TL = 10 Nm, (ε = 300, q = 200, c = 100 and µ = 0.55 for FO-SMC speed
controller), (kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and µ = 0.5 for FO-synergetic
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best knowledge, the settling time of 0.92 ms obtained when using the FO-SMC speed controller and 
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Figure 30. Simulation of the PMSM time evolution with FO-SMC speed controller and FO-synergetic
current controller—ωref = 500 rpm, TL = 10 Nm and uniformly distributed noise, (ε = 300, q = 200,
c = 100 and µ = 0.55 for FO-SMC speed controller), (kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3,
kid = 10,000 and µ = 0.5 for FO-synergetic current controllers), 100% increase of J parameter and 100%
increase of stator resistance Rs.

Figure 31 compares the response of four PMSM control systems obtained by combinations of SMC
and FO-SMC speed control systems, and the current controllers are of synergetic and FO-synergetic
type. Table 4 presents the comparative results of the performance of these control systems according
to: overshoot, settling time, steady state error and speed ripple defined in relation (117). It is obvious
that the control system proposed in this article based on FO-SMC speed controller and FO-synergetic
current controllers has the best performance.
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Figure 31. Simulation of the PMSM time evolution comparative fractional order controllers—ωref = 500
rpm and TL = 1 Nm.

Table 4. Comparison of performance indices of the fractional order proposed controllers.

Performance Indices
SMC Speed Controller

and Synergetic
Currents Controller

FO-SMC Speed Controller
and Synergetic

Currents Controller

SMC Speed Controller and
FO-Synergetic

Currents Controller

FO-SMC Speed Controller
and FO-Synergetic
Currents Controller

Overshoot (%)
nominal J 1.15 1.15 1.18 1.15

Overshoot (%)
double J 1.18 1.9 1.8 1.2

Settling time (ms)
nominal J 1.4 1.3 1 0.92

Settling time (ms)
double J 1.5 1.7 1.22 1.8

Steady state error (%)
nominal J 0.07 0.07 0.06 0.06

Steady state error (%)
double J 0.08 0.07 0.06 0.06

Speed ripple (rpm)
nominal J 123.03 118.73 104.50 95.34

Speed ripple (rpm)
double J 149.25 148.16 120.85 83.09

Torque ripple (Nm)
nominal J 14.92 14.74 126.29 14.71

Torque ripple (Nm)
double J 20.96 20.82 112.13 14.33

It is obviously noticeable that the values obtained for the settling time are 0.92 ms under nominal
parameters of the PMSM, along with the other performance indices which can be considered as very
good for the FO-SMC speed controller and the FO-synergetic current controller. The PMSM used
in these numerical simulations is implemented in Power Systems/Simscape Electrical toolbox from
Simulink, and in many scientific papers it is used as benchmark, and, to our best knowledge, the
settling time of 0.92 ms obtained when using the FO-SMC speed controller and the FO-synergetic
current controller is the best settling time obtained for a usual range of the speed reference and load
torque, and for any other proposed controllers.

In addition, under the same conditions as a classic FOC-type control system of a PMSM, Figure 32
also shows an improvement in the THD of the currents in the PMSM supply phases. Thus, THD is
reduced from 50% to 22%. Obviously, for further reduction of the THD, additional specialized systems
as those presented in [42] can also be added.
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Figure 32. THD current analysis: (a) PMSM control system with PI speed controller and PI
current controllers; (b) PMSM control system with FO-SMC speed controller and FO-synergetic
current controllers.

8. Experimental Results

For the experimental validation of the simulations of the proposed PMSM control algorithms,
which were presented and validated by numerical simulations in the previous section, this section
presents the development platform used for their real time implementation in embedded systems.

The developed algorithms are implemented in MATLAB/Simulink and use dedicated functions
from specialized libraries in the Model-Based Design Toolbox S32K1xx Series which contains the
Automotive Math and Motor Control Library Set for NXP S32K14x devices, a toolbox which is dedicated
to the PMSM control.

The hardware platform dedicated for the PMSM control for the experimental testing of the
proposed algorithms is an S32K144 development kit which contains an S32K144 evaluation board
(S32K144EVB-Q100), DEVKIT-MOTORGD board based on SMARTMOS GD3000 pre-driver and Linix
45ZWN24-40 PMSM type. The controller of the development platform is S32K144 MCU which is of
32bit Cortex M4F type, which has a time base of 112 MHz with 512 KB of flash memory and 54 KB
of RAM.

There are also a number of dedicated hardware peripherals (FTM, ADC, PDB, PWM, timers)
for the PMSM control, common analog and digital I/O processing blocks, but also a wide range of
communication blocks which are common for the industrial environment. Among the communication
interfaces we mention OpenSDA serial debug interface, CAN controller with CAN-FD protocol.

Figure 33 shows an image of the experimental platform.
The software application block diagram of the implementation in MATLAB/Simulink and

Model-Based Design Toolbox S32K1xx Series NXP for the embedded system of the PMSM control
system is presented in Figure 34. The main blocks presented are: data acquisition and commands,
which is supervised by the dispatcher software interrupters, current controllers from inner loop and
speed controller from outer loop.
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Figure 35 presents the block diagram of the software for the outer speed control loop
MATLAB/Simulink model utilizing the bit accurate models for the Automotive Math and Motor
Control Library Set for NXP S32K14x devices. The main blocks are: speed reference, initialization
speed loop, switching block output command, classical PI speed controller and FO-PI speed controller.
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The Discrete Zero-Pole function from Simulink [43] is used for the implementation of the FO-PI speed
controller described in Section 4. Equation (108), which represents the discrete form of the FO-PI speed
controller, is implemented through this function.
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The inner loop for the current control runs every 0.1 ms and the outer loop for the speed control
runs every 1 ms. By comparison, each program implemented for numerical simulations, presented in
Section 7, runs at each 0.001 ms.

Based on FreeMaster, which is a real-time debugging monitoring software interface for data
visualization, configuration and tuning of embedded software applications, the next figure presents
the real time evolution of the parameters of the PMSM control system. For reasons of communication
between the FreeMaster software interface from the host PC and the controller of the PMSM,
the sampling time for the evolution of parameters in Figures 36–44 is 10 ms. Figures 36–38 present the
real-time evolution of the PMSM rotor speed with classical PI speed controller.

Figures 39–41 present the real-time evolution of the PMSM rotor speed with FO-PI speed controller.
The superior performance of the FO-PI speed controller is clearly noticeable.

The following figures show the real-time evolution of the main PMSM control parameters of
interest using the FO-PI speed controller. The real-time evolution of the stator currents are presented
in Figure 42, the real-time evolution of id and iq currents are presented in Figures 43 and 44 presents
the real-time evolution of the electromagnetic torque.
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Figure 44. Real time evolution of the electromagnetic torque of PMSM with FO-PI speed controller.

It can be noted that there is a similarity between the results obtained by numerical simulation in
Figure 13 for the control of the PMSM using an FO-PI speed controller, ωref = 2000 rpm and no load
torque, and the experimental results presented in Figures 42–44 concerning the stator currents, the
electromagnetic torque and id and iq currents. Furthermore, Figures 36–41 show the superiority of
the FO-PI speed controller over the classic PI speed controller, in the case of implementation in an
embedded system.
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9. Conclusions

Based on fractional calculus, this article presents a number of fractional controllers for the
PMSM rotor speed control loops and id and iq current control loops in the FOC-type control strategy.
The proposed system for the PMSM control is based on an FO-SMC speed controller and FO-synergetic
current controllers. Due to the additional control parameters generated in the structure of the fractional
order controllers, superior performances are obtained for the PMSM rotor speed control. In addition,
the sensorless-type PMSM control structure detects the faults of the current sensors and performs
a significant reduction in the THD. The parametric robustness of the proposed control system is
demonstrated by very good control performances achieved even when the uniformly distributed noise
is present in the load torque TL, and under variations by 100% of the load torque TL, of the moment of
inertia of J rotor and of the stator resistance Rs. The performances of the proposed control system are
validated both by numerical simulations and experimentally, through real-time implementation in
embedded systems.
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