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Abstract: In modern surveillance systems, the use of unmanned aerial vehicles (UAVs) has been
actively discussed in order to extend target monitoring areas, even for an extreme circumstances.
This paper proposes an energy-efficient UAV-based surveillance system that operates from two
different sequential methods. First, the proposed algorithm pursues energy-efficient operations
by deactivating selected surveillance cameras on the UAVs located in overlapping areas. For this
objective, a message-passing based algorithm is used because the overlapping situations can
be formulated using a max-weight independent set. Next, the unscheduled UAVs based on the
message-passing fly to the charging towers to be charged. This algorithm computes the optimal
matching between the UAVs and charging towers and the amount of energy allocation for the
scheduled UAV-tower pairs. This joint optimization is initially formulated as non-convex, and it is
then reformulated to be convex, which can guarantee optimal solutions. The proposed framework
achieves the desired performance, as presented in the performance evaluation.

Keywords: UAVs; surveillance; energy efficiency; charging scheduling; optimization

1. Introduction

The deployment of mobile autonomous surveillance systems has received considerable attention
by academic and industrial societies for smart city security applications. In particular, the use of
unmanned aerial vehicles (UAVs) allows surveillance, even in extreme conditions [1,2].

However, the deployment of UAVs for surveillance applications is associated with serious research
challenges, and one of the major challenges is that UAV-based systems are extremely power hungry.
In modern UAV systems, the commercial UAV battery lifetime is extremely short, (e.g., dozens of
minutes), whereas the charging time is at least two times longer. Therefore, energy-efficient operations
are required for reliable UAV-based surveillance system operations by increasing the operating
hours of UAVs. In this paper, we characterize a charging infrastructure that is composed of wireless
ground-mounted charging towers. The charging towers can acquire unlimited power from ground
and wirelessly charge the UAVs through their charging panels. For the energy-efficient UAV-based
surveillance system operations, two sequential methods are proposed in this paper, i.e., (i) micro
in-device energy-efficient operation and (ii) macro system wide energy-efficient operation.

For micro in-device energy-efficient operation, a new method can reduce energy consumption in
UAV-based surveillance systems by turning off select closed-circuit television (CCTV) cameras on the
UAVs monitoring overlapping areas. To algorithmically formulate this, an overlapping model that is
based on a max-weight independent set (MWIS) is used in this paper. By solving this MWIS-based
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formula, a set of UAVs can be selected and scheduled, and their CCTV cameras can be activated for
surveillance. Here, we have to note that the MWIS problem is a well-known NP-hard problem [3].
Many approaches exist in order to solve the problem and, among them, a solution approach that
is based on message-passing is investigated in this paper, which was inspired by the literature on
wireless interference modeling [3].

For macro systemwide energy-efficient operation, we design a new charging mechanism for
energy-limited UAV systems. Based on wireless energy transfer technologies [4–8], the UAVs that
need to be charged can fly to charging towers for obtaining energy resources over a wireless
medium. Based on this setting, we propose a new optimal control mechanism for charging matching
between UAVs and charging towers. In addition, this mechanism determines the amount of energy
allocation for the matched UAV-tower pairs. This joint optimization of matching and resource/energy
allocation is a non-convex optimization framework, which cannot guarantee optimal solutions in
polynomial time. To resolve this problem, we reformulate the mathematical optimization program
into a convex programming framework that is equivalent to the original non-convex formulation.
Finally, the reformulated convex programming framework can compute the optimal solutions in
polynomial time.

Based on these two sequential methods, we confirm that our proposed UAV-based surveillance
system is able to conduct energy-efficient operations through (i) the minimization of overlapping
surveillance areas with message-passing to solve the MWIS formulation and then (ii) the convex
optimization of the matching decision between UAVs and charging towers and the associated energy
allocation decision for the matched UAV-tower pairs. Throughout the data-intensive performance
evaluation with various settings, we confirm that our proposed algorithm with these two sequential
methods outperform the others.

The main contributions of this paper can be summarized, as follows.

• This research is the first attempt to characterize the overlapping surveillance areas with MWIS
formulation that is feasible in practice. In the MWIS-based model, we design a novel solution
approach that is based on the concept of message-passing.

• We determine that the optimization problem for joint matching and energy allocation between
UAVs and charging towers is non-convex. We then present a novel method for transforming the
non-convex formulation into the convex programming, thus achieving optimal solutions.

• In addition to the theoretical novelties, we conduct data-intensive simulations with various
simulation settings. It is demonstrated that our joint matching and energy allocation method
remarkably outperforms several baseline schemes. Furthermore, our proposed matching and
energy allocation algorithm between UAVs and charging towers presents the desired performance
improvement.

The rest of this paper is organized as follows. Section 2 summarizes the related work for UAV
communications and networks research. Section 3 introduces our considered reference system model.
Section 4 explains the details of the proposed algorithm, (i.e., (i) MWIS-based UAV scheduling via
message-passing and (ii) joint optimization for charging matching and wireless energy transfer).
Section 5 verifies the novelty of the proposed framework via data-intensive performance evaluations.
Lastly, Section 6 concludes this paper and presents future research directions.

2. Related Work

In literature, there have been many studies on UAV in all aspects of communications and networks
research [9–11].

Radio Propagation and Channel Models. The radio-wave, propagation, and antenna-related research
results in UAV flying networks are well presented in [12]. The detailed summary of wireless
channel and radio propagation models in UAV communication networks is given in [13] and,
especially, air-to-ground UAV channel models are presented in [14]. For more details, non-stationary
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air-to-air UAV wireless channel models are introduced [15]. In addition, three-dimensional (3-D)
geometry-based stochastic models for UAV multi-input-multi-output wideband non-stationary are
discussed in [16]. Moreover, the usage and corresponding channel models for millimeter-wave wireless
technologies [17–20] in UAV wireless networks under the consideration of hovering fluctuations is
well-discussed in [21]. Lastly, the statistical channel modeling and radio-wave propagation of free-space
optical communication (FSO) fronthaul under the consideration of UAV communications is studied
in [22].

Communications. The use of UAV systems for 5G millimeter-wave wireless networks and
cellular networks is well-discussed in [23–26], respectively. For more details, major communication
research topics are in multi-antenna techniques [27,28], the use of millimeter-wave networks
for high-throughput UAV networks [21,23,29], interworking with satellite networks for coverage
extension [30], the use of UAV for device-to-device networks [31,32], and lastly, communication
security for multi-UAV networking systems [33,34].

Networking. Most of UAV-based networking research topics and their related representative
contributions are as follows. First of all, cell-edge user data offloading via UAV systems for non-uniform
heterogeneous cellular networks is discussed in [35]. In addition, routing algorithms under the
consideration of wireless charging nodes are designed in [36,37]. Moreover, connectivity-aware
robust routing and relay deployment algorithms in UAV networks are well-studied in [38]. Lastly,
carrier-sensing-multiple-access with collision-avoidance (CSMA/CA)-based enhanced medium access
control algorithms for UAV-relay networks are well-discussed in [39].

Mobility Management and Trajectory Optimization. One of the major research topics in UAV networks
is mobility management and trajectory optimization [40]. Under the consideration of high and
unpredictable mobility in UAV, theoretical performance analyses and discussions are presented
in [41,42]. In addition, the joint UAV trajectory and flight-time optimization are presented in [43],
and the paper also considered FSO communication, which is beneficial in terms of flexible network
management. Moreover, energy-aware trajectory optimization with wireless power transfer methods
is discussed in [44]. Furthermore, secure trajectory optimization for multi-UAV networks is discussed
in [45,46].

Energy-Efficiency. The implementation and energy-aware system operations are discussed in [47].
Furthermore, energy efficiency is one of the key research topics in UAV networks due to the extreme
UAV battery/energy limitations. To achieve this goal, an energy-efficient operation, especially for the
Internet-of-Things (IoT) applications, is discussed in [48]. In terms of the minimization of wireless
energy consumption, the proposed method in [49] pursues a sensor network lifetime extension.
Under the consideration of a more realistic energy consumption model in UAVs, the proposed method
in [50] minimizes the total flight time of the UAV while allowing sensors to successfully upload data.
Moreover, considering the energy consumption of both the user and the UAV, the trade-off between the
propulsion energy and wireless energy of the served IoT or user was discussed in [51]. Lastly, energy
harvesting technologies are also used for the UAV energy-efficient networking, as presented in [52].

Applications. Our considering UAV network is beneficial in many applications due to its scalability
in terms of mobile deployment. First of all, the use of UAV networks for 5G and beyond 5G network
applications is actively discussed nowadays in industry and academia [11,23,25]. In addition, the use
of UAV networks for surveillance, security, and rescue tasks, is also to actively under discussion,
as presented in [53–57]. Moreover, distributed deep learning and federated learning applications of
UAV networks is introduced in [58]. Furthermore, software-related research results in UAV networks
and systems are well summarized in [59,60]. Lastly, a mobile charger study in [61] can be related
to UAV charging algorithms, including the proposed algorithm in this paper. However, the mobile
charger research in sensor networks has several differences from our proposed UAV charging algorithm:
(i) mobile chargers are moving in order to charge power-hungry sensor network devices whereas
our proposed algorithm lets the UAVs move to be charged by ground-mounted charging towers;
and, (ii) mobile chargers are energy-limited, whereas charging towers in this paper are AC-powered
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(that is more realistic, because there is no specific description on how the mobile chargers can be
charged in [61]).

3. System Model

Suppose that a set of UAVs S monitors specific target areas (e.g., high-crime areas, festival venues,
and so forth) during specific time periods. Let si denote the surveillance UAVs where ∀i ∈ {1, · · · , |S|}.
Consider that the UAVs are flying at altitude hi and have corresponding circular surveillance
areas ai, defined as ai = r2

i π, where ri is the radius of the surveillance area, ∀i ∈ {1, · · · , |S|}.
The radius is calculated as ri = hi · tan(FoV/2), where FoV is the field of view of the built-in UAV
camera. In each unit period t, the surveillance UAV stays in a place or moves to the next position.
We assume that the moving UAV flies along a certain path that consists of a sequence of waypoints,
(i.e., pi = {pi[1], pi[2], · · · , pi[t]}, ∀i ∈ {1, · · · , |S|}). Each UAV has its own initial residual battery
status, and it can be charged and discharged by charging and discharging processes, respectively.
Furthermore, this process can be formulated with a queue, and its backlog evolves, as follows:

Qi(t + 1) , max
{

0, Qi(t)− µi(t)
}
+ λi(t), ∀i ∈ {1, · · · , |S|}, (1)

where Qi(t), µi(t), and λi(t) stand for battery energy status (i.e., queue backlog size) at UAV si,
the amount of discharging energy at UAV si, and the amount of charging energy at UAV si, respectively,
∀i ∈ {1, · · · , |S|}. The charging process is determined by the hardware and system specifications of
the charger at each UAV, and the discharging process depends on the operation of each UAV.

In this paper, each UAV has two operational modes in each unit period t: (i) hovering during
surveillance and (ii) round-trip traveling to a charging tower. Each mode has a different amount of energy
expenditure to execute the associated tasks during the period t. For the first action (hovering), the energy
expenditure at UAV si is the combination of hovering and communication-related energy, i.e.,

Ehc
i (t) , (Ph + Pc)t, (2)

where Ph and Pc are the power consumption for hovering and communications, respectively. The blade
profile is the power required just to turn the rotor blades. The induced power is the power that is
required to overcome the induced drag of lift creation, which is an aerodynamic drag force that occurs
whenever a moving object redirects the airflow coming toward it. The power consumption for hovering
can be as follows [62,63]:

Ph ,
δ

8
ρsAΩ3R3︸ ︷︷ ︸

Po

+ (1 + k)
W3/2√

2ρA︸ ︷︷ ︸
Pi

, (3)

where Po and Pi represent the blade profile power and induced power, respectively. The relevant
parameters are explained in Table 1. The communication-related energy is usually much lower than
the hovering or propulsion energy (e.g., a few watts [64] versus hundreds of watts [65]). In this paper,
we assume that the communication-related power is constant. For the second action (round-trip
traveling), the UAV moves from one waypoint to another, in a straight line connecting the two
waypoints. The total required expenditure of energy for round-trip traveling of a UAV si is as follows:

Etr
i (∆ttr, v(t)) ,

∫ ∆ttr

0
Pp(v(t))dt, (4)
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where the round-trip UAV traveling time is denoted by ∆ttr, and the instantaneous speed of traveling
along the paths is denoted by v(t). The propulsion power consumption with speed v(t) can be modeled,
as follows:

Pp(v(t)) , Po

(
1 +

3v(t)2

U2
tip

)
︸ ︷︷ ︸

blade profile

+ Pi

(√
1 +

v(t)4

4vo4 −
v(t)2

2v02

)1/2

︸ ︷︷ ︸
induced

+
1
2

d0ρsAv(t)3︸ ︷︷ ︸
parasite

, (5)

where Po and Pi are the constants defined in (3). The propulsion power consumption of the UAV
consists of three components, i.e., the blade profile, induced, and parasitic powers. The blade profile
and parasitic powers are quadratically and cubically increase with v(t), respectively. In contrast,
the induced power decreases as v(t) increases.

Table 1. Energy-related notation and setup parameters [66].

Notation Value

Aircraft weight including battery and propellers, W 1375 g
Rotor radius, R 0.4 m
Rotor disc area, A = πR2 0.503 m2

Number of blades, b 4
Rotor solidity, s = 0.0157b

πR 0.05
Blade angular velocity, Ω 300 radius/s
Tip speed of the rotor blade, Utip = ΩR2 120
Fuselage drag ratio, d0 = 0.0151

sA 0.6
Air density, ρ 1.225 kg/m3

Mean rotor-induced velocity in hovering, v0 =
√

W
sρA 4.03

Profile drag coefficient, δ 0.012
Incremental correction factor to induced power, k 0.1

4. Joint Message-Passing and Convex Optimization Framework for UAV Scheduling

This section includes main algorithm design concepts and contributions (refer to Section 4.1),
algorithm details (refer to Section 4.2), and lastly, the computational complexity of the proposed
algorithm (refer to Section 4.3).

4.1. Design Concepts and Contributions

The proposed energy-efficient UAV-based surveillance system is designed based on the
following concepts.

• First, MWIS-based scheduling is conducted to select UAVs whose cameras can be turned off when
the corresponding target areas are monitored by other UAVs (i.e., visually overlapping areas).
According to this scheduling, the operational energy consumption for the selected UAVs can
be reduced and their surveillance lifetime can be extended. In order to solve this MWIS-based
scheduling problem, message-passing is used in this paper because it is a well-known solution
for this type of combinatorial problem. More details are in Section 4.2.1.

• Furthermore, the unscheduled UAVs are moved to the charging towers to be charged with wireless
energy transfer technologies. Subsequently, our proposed optimization framework determines
the charging matching of UAVs to charging towers. In addition, each tower determines how much
energy should be delivered to the matched UAVs in order to conduct this matching decision
in each unit time. This formulation is a mathematically non-convex optimization; however, we
converted the corresponding non-convex terms into convex terms (i.e., the polynomial-time
operation can be realized for the given joint matching and charging optimization formulation).
More details are in Section 4.2.2.
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As discussed above, our first problem aims at the minimization of energy consumption by
selecting certain amounts of UAVs those cameras can be turned off when the observing target areas
are also monitored by other UAVs (visually overlapping areas). Therefore, the objective of this first
problem is about to extend surveillance lifetime by saving energies in UAVs. In addition, the second
problem is about to conduct joint optimization for charging matching and energy allocation decision
between charging towers and UAVs based on the results of the first problem. The objective of this
second problem is to maximize the energy charging amounts to the UAVs.

For the given first problem, the UAVs whose cameras are turned off can be charged for extending
surveillance lifetime. The charging should be conducted in an efficient way; thus, the second problem,
which works based on the result of the first problem, is required for the energy charging amount
maximization, which can be beneficial in terms of surveillance lifetime extension, eventually.

4.2. Algorithm Details

As summarized in Section 4.1, our proposed algorithm consists of two sub-algorithms: (1) UAV
scheduling with message-passing (refer to Sections 4.2.1 and 4.2.2) joint optimization for charging
matching of UAVs to charging towers and the wireless energy transfer between UAVs and charging
towers (refer to Section 4.2.2).

4.2.1. MWIS-Based UAV Scheduling via Message-Passing

Consider an undirected graph G = (V, E), where V and E are the sets of vertices and edges,
respectively. Our objective is to select (or schedule) UAVs that can turn off their own built-in
surveillance cameras when the corresponding monitoring areas overlap. Thus, we define a visual
interference model, where surveillance is considered successful if no neighbor is simultaneously
monitoring the same surveillance area. For scheduling, a conflict graph is organized where the set of
vertices is connected by an edge if the corresponding vertices cannot be scheduled simultaneously.
Based on this concept, the conflict graph can be formulated by an adjacency matrix, whose A(i,j)
between si ∈ S and sj ∈ S are defined, as follows:

A(i,j) ,

{
1, if si interferes with sj where si ∈ S , sj ∈ S , and i 6= j.
0, otherwise.

(6)

The set of neighbors of si is defined, as follows:

N (i) , {sj | A(i,j) = 1, where sj ∈ S}, ∀si ∈ S . (7)

We consider determining the set of vertices of the conflict graph where adjacent connected vertices
via the edges cannot be simultaneously selected. This is equivalent to the case that maximizes the
summation of weights of all possible independent sets in a given conflict graph. Thus, scheduling can
be formulated with MWIS, as follows [3]:

max : ∑
∀sk∈S

wkAk, (8)

s.t. Ii + Ij +A(i,j) ≤ 2, ∀si ∈ S , ∀sj ∈ S , (9)

Ii ∈ {0, 1}, ∀si ∈ S , (10)

where

Ii ,

{
1, if si is scheduled where si ∈ S ,
0, otherwise,

(11)
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where wk is a positive integer weight that is associated at each node, and it can be formulated, as
follows, in each unit period of time t:

wk , Qk(t), ∀sk ∈ S , (12)

where Qk(t) stands for the battery energy status of UAV sk, as defined in (1).
The above formulation ensures that conflicting UAVs are not scheduled simultaneously. IfA(i,j) = 0

(no edges between si and sj), then Ii + Ij ≤ 2 (i.e., both indicator functions can be 1). In contrast,
if A(i,j) = 1, then Ii + Ij ≤ 1 (i.e., at most one of the two indicators can be 1). In our considered
UAV-based surveillance systems, it can be assumed that the UAVs are vertices and the edges can
be established among the vertices (i.e., the UAVs) when the UAVs observe wider overlapping areas
because monitoring an area with multiple UAVs is inefficient.

The optimization problem (8)–(11) for solving MWIS is a well-known NP-hard problem. To solve
this MWIS problem in a computationally efficient manner, we resort to a message-passing approach,
which is a message inferential method performed on the conflict graph. Algorithm 1 presents the entire
procedure for solving the MWIS problem with message-passing. Note that the message-passing (also
called belief propagation, in the literature) can be used to solve our given MWIS problem for any
graph [67]. In the standard form, such an algorithm is required to iterate for a while before it converges
to (or, stops and estimates) a solution, as illustrated in Algorithm 1. In every single iteration, each
node in the graph sends the message to its adjacent neighbors. Each node compares its own weight
with the summation of weights in adjacent neighbor nodes during the update phase (line 6–11).
Subsequently, each node computes its beliefs and determines whether it should be scheduled or
not during the estimation phase (line 12–19). If the number of iterations increases, the comparison
propagates, i.e., observing more information in the graph is possible.

Algorithm 1 Message-passing for MWIS-based energy-efficient surveillance scheduling

1: Input: A(i,j) by (6), and wi by (12), where si ∈ S , sj ∈ S
2: Output: Ii

3: t← 0, wi ← Qi(0) for all si ∈ S
4: while Each unit time t ∈ {0, 1, · · · , T − 1} do . T is the maximum number of time iteration.
5: Initialize m1

i→j(t) = 0 and m1
j→i(t) = 0 for all si ∈ S , sj ∈ S

6: I Update Phase
7: while Each iteration time n ∈ {2, 3, · · · , K} do . K is the number of message-passing iteration.
8: Calculate the message mn+1

i→j (t)← max
{

0, wi −∑k∈{N (i)−j} mn
i→j(t)

}
, ∀sj ∈ N (i).

9: UAV si sends mn+1
i→j (t) to all sj ∈ N (i).

10: Update n← n + 1.
11: end while
12: I Estimation Phase
13: Calculate the belief bK

i→j(t)← ∑sk∈N (i) mK
k→j, ∀sj ∈ N (i). . Belief is the lastly received

message.
14: if bK

i→j(t) < wi then
15: Ii = 1, where si ∈ S , then si ∈ S∗ . UAV si is scheduled (i.e., its camera is turned on).
16: else
17: Ii = 0, where si ∈ S , then si ∈ U . UAV si is not scheduled (i.e., its camera is turned off).
18: end if
19: Update t← t + 1.
20: end while
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We use the Jaccard similarity index [68], one of the standard measures used to calculate
the similarity between two data points, in order to numerically determine the overlapping areas.
The Jaccard similarity index is the ratio of cardinality of co-rated items to that of all items rated by
both UAVs; thus, it can be calculated, as follows:

Sim(i, j) ,
|ai ∩ aj|
|ai ∪ aj|

=
|ai ∩ aj|

|ai|+ |aj| − |ai ∩ aj|
, (13)

where ai and aj are the monitoring areas that contain spots by si and sj, respectively. If the Jaccard
similarity index is high among two adjacent UAVs, the UAVs observe overlapping areas, spatially and
temporally at the same time. Therefore, the edge can be set to 1 in our considered conflict graph when
the UAVs are assumed to be vertices in the conflict graph.

4.2.2. Joint Optimization for Charging Matching and Wireless Energy Transfer

The unscheduled UAVs turn off their built-in cameras because they do not need to monitor
the corresponding target areas and require recharging their batteries, as described in Section 4.2.1.
Suppose that the set of unscheduled UAVs requires charging from the set of charging towers as
depicted in Figure 1. As illustrated in Figure 1, the charging towers are connected to a single controller,
which is a charging tower center that makes decisions for the joint optimization for charging matching
(i.e., decisions for charging matching of UAVs and charging towers in terms of maximizing charging
amounts) and wireless energy transfer (i.e., decisions for the amounts of wirelessly transferred energy
for the matched UAVs and their associated charging towers), in each unit period t.

Figure 1. System model for the unscheduled unmanned aerial vehicles (UAVs) in terms of charging
tower scheduling and wireless energy transfer decisions.

Let ci and uj denote charging towers and unscheduled UAVs, where ∀i ∈ {1, ..., |C|} and
∀j ∈ {1, ..., |U |}, respectively. We assume that each charging tower can charge multiple unscheduled
UAVs simultaneously. The set of unscheduled UAVs (i.e., U ) is determined as the set of uj, where
uj ∈ {sj | Ij = 0, where sj ∈ S}. Therefore, the set of unscheduled UAVs is the subset of total UAVs S ,
denoted as U ⊆ S . We assume that every unscheduled UAV is associated with only one charging tower.
In this joint optimization problem for charging matching and wireless energy transfer, the objective is
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to maximize the total amount of charging energy from the charging towers during time t. Our given
problem can be formulated, as follows:

max : ∑
∀ci∈C

, ∑
∀uj∈U

e(i,j)(t) · x(i,j)(t), (14)

s.t. ∑
∀uj∈U

e(i,j)(t) · x(i,j)(t) ≤ Cmax
i (t), ∀ci ∈ C, (15)

∑
∀uj∈U

x(i,j)(t) ≤ ni, ∀ci ∈ C, (16)

∑
∀cj∈C

x(i,j)(t) ≤ 1, ∀uj ∈ U , (17)

e(i,j)(t) ≤ min
{

Emax
j − ej(t + ∆t(j→i)), δj − Etr

j (∆ttr)
}

, ∀ci ∈ C, ∀uj ∈ U , (18)

e(i,j)(t) ≥ 0, ∀ci ∈ C, ∀uj ∈ U , (19)

x(i,j)(t) ∈ {0, 1}, ∀ci ∈ C, ∀uj ∈ U . (20)

In this mathematical program (14)–(20), if the charging matching of charging tower ci to UAV uj is
established, x(i,j)(t) = 1, otherwise x(i,j)(t) = 0 according to (20). In addition, the amounts of charged
energy from ci to uj are denoted as e(i,j)(t), according to (19). As indicated in (18), the amount of
charging from charging tower ci to its associated UAV uj during the period t should consider the travel
time of the UAVs to reach their associated towers. In (18), ej(t + ∆t(j→i)) stands for the current energy
status of UAV uj at time t + ∆t(j→i), where ∆t(j→i) represents the travel time, while UAV uj moves to
its associated charging tower ci. The δj indicates the amount of charging of uj within t, and Etr

j (∆ttr)

stands for the expenditure of energy during the round-trip travel time ∆ttr (i.e., the UAV uj travels
to its associated charging tower ci and returns to its original position or flies to a new waypoint),
as described in (4). Subsequently, charging tower ci can charge the battery for the UAV uj by as much
as min{Emax

j − ej(t + ∆t(j→i)), δj − Etr
j (∆ttr)}, as formulated in (18). Moreover, each UAV uj can be

associated with one charging tower ci, as formulated in (17). Moreover, each charging tower ci can
have ni multiple charging panels [69]; thus, they can be associated with multiple UAVs, as many
as ni, as shown in (16). Each charging tower ci has its own energy budget (i.e., capacity) Cmax

i (t),
as shown in (15). Finally, conducting the joint optimization to maximize the total energy transfer from
the charging towers to their associated UAVs is performed by computing the variables x(i,j)(t) and
e(i,j)(t), as shown in (14).

Theorem 1. The program in (14)–(20) is non-convex.

Proof. Here, we have to prove that (14) and (15) are not convex in this mathematical program
(14)–(20). Note that the proof considers the simplest case at first (i.e., |C| = |U | = 1). In this case,
(14) becomes a(i,j)(t) · x(i,j)(t). Let this equation be denoted by f . To show that this given equation
is non-convex, the eigenvalues of the second-order Hessian of this given real function should be
nonpositive definite [70]. The Hessian52 f is as follows, where the two variables in (14) are e(i,j)(t)

and x(i,j)(t):

[
0 1
1 0

]
and then the corresponding two eigenvalues are ±1. Not all of these values are

nonnegative, which indicates that the Hessian is not positive definite, thus finally proving that the
optimization function is non-convex. For (15), in a similar way, the corresponding two eigenvalues of
the given second-order Hessian matrix are ±1; thus, not all of the values are nonnegative (i.e., it also
proves that the optimization function is non-convex). Finally, (14) and (15) are not non-convex. Thus,
the program (14)–(20) is not convex.

Because the optimal solutions cannot be obtained in non-convex programming, this non-convex
programming must be converted to convex programming, if possible.
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Theorem 2. The use of

e(i,j)(t) ≤ min
{

Emax
j − ej(t + ∆t(j→i)), δj − Etr

j (∆ttr)
}
· x(i,j)(t), ∀ci ∈ C, ∀uj ∈ U , (21)

instead of (18) converts the given non-convex optimization program (14)–(20) into a convex one.

Proof. For the non-convex program (14)–(20), x(i,j)(t) = 0 indicates that the charging matching
between uj and ci does not happen. Thus, the corresponding wireless energy transfer does not exist
(i.e., e(i,j)(t) = 0), and (21) leads to the same result when x(i,j)(t) = 0:

e(i,j)(t) ≤ min
{

Emax
j − ej(t + ∆t(j→i)), δj − Etr

j (∆ttr)
}
· 0︸︷︷︸

x(i,j)(t)=0

= 0, ∀ci ∈ C, ∀uj ∈ U , (22)

However, (21) is equivalent to (18) when x(i,j)(t) = 1. Therefore, we can replace e(i,j)(t) · x(i,j)(t) with
e(i,j)(t). Thus, (14) can also be updated, as follows:

max : ∑
∀ci∈C

∑
∀uj∈U

e(i,j)(t), (23)

and then, (15) is also updated, as follows:

∑
∀uj∈U

e(i,j)(t) ≤ Cmax
i (t), ∀ci ∈ C, (24)

Subsequently, no non-convex terms do not exist in this proposed program (14)–(20), which means that
we can obtain optimal solutions for this mathematical program in polynomial time.

Eventually, the final form of the joint optimization of charging matching and wireless energy
transfer in each unit period t can be expressed, as follows:

max : ∑
∀ci∈C

, ∑
∀uj∈U

e(i,j)(t), (25)

s.t. ∑
∀uj∈U

e(i,j)(t) ≤ Cmax
i (t), ∀ci ∈ C, (26)

∑
∀uj∈U

x(i,j)(t) ≤ ni, ∀ci ∈ C, (27)

∑
∀ci∈C

x(i,j)(t) ≤ 1, ∀uj ∈ U , (28)

e(i,j)(t) ≤ min
{

Emax
j − ej(t + ∆t(j→i)), δj − Etr

j (∆ttr)
}
· x(i,j)(t), ∀ci ∈ C, ∀uj ∈ U , (29)

e(i,j)(t) ≥ 0, ∀ci ∈ C, ∀uj ∈ U , (30)

x(i,j)(t) ∈ {0, 1}, ∀ci ∈ C, ∀uj ∈ U . (31)

The equations (i.e., (25)–(31)) in this mathematical program are all linear combinations by
Theorems 1 and 2. The program determines the charging matching of uj to ci and the charging
energy transfer from ci to its associated uj in each t. At the end of each period, the remaining energy of
each UAV can be calculated, as follows: XXX

ej(t + 1) ,

{
ej(t)− Ehc

j (t), UAV uj for task (i): hovering for surveillance,

ej(t) + e(i,j)(t)− Etr
j (∆ttr), UAV uj for task (ii): round-trip traveling to charging tower,

(32)
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where the energy of hovering and communications (i.e., Ehc
j (t) in (2)) is considered on top of current

energy status ej(t), in the case of task (i). For the case of task (ii), the energy of traveling (i.e., Etr
j (∆ttr)

in (4)) is expended and, moreover, the amount of charging energy (i.e., e(i,j)(t), which is the optimal
solution of mathematical program (25)–(31)) is recharged.

For this convex programming problem (25)–(31), we use an off-the-shelf software package, called
CVX and MOSEK, for solving the mixed-integer convex optimization problem [71,72]. Consequently,
we propose a polynomial-time optimization framework for the joint optimization of the charging
matching of UAVs to charging towers and the wireless energy transfer between UAVs and charging
towers, as shown in our final mathematical program (25)–(31).

4.3. Computational Complexity

The computational complexity of the proposed algorithm can be separately discussed in the two
separable problems, i.e., (i) MWIS-based UAV scheduling via message-passing and (ii) joint charging
matching and wireless energy transfer. The first problem is originally NP-hard, because it is pure
MWIS. Message-passing is used, which works in polynomial-time, in order to relax the NP-hard
computational complexity. In addition, the second problem is originally formulated in the form of
non-convex, however, the problem is converted into convex based on Theorems 1 and 2. Therefore, this
problem also works in polynomial-time. Finally our proposed framework works in polynomial-time
because two separable and sequential problems are all with polynomial-time operations.

5. Performance Evaluation

The performance of our proposed energy-efficient UAV-based surveillance system is simulated
and evaluated in this section. This section presents the basic simulation setup (refer to Section 5.1) and
it discusses the simulation results (refer to Section 5.2).

5.1. Simulation Setup

Surveillance UAVs. We consider a DJI Phantom4 Pro v2.0 drone (DJI, Shenzhen, China) equipped
with a surveillance camera [73]. The built-in battery in the drone permits a maximum flight time
of 30 min in windless conditions. The altitude of the UAVs is set to 100 m; thus, the shapes and
areas of corresponding surveillance areas are identical. The initial energies of the UAV batteries are
uniform-randomly selected within [4000, 5870]mAh with the output voltage of 17.4 V.

Monitoring Map. We consider a well-known 3× 3 Manhattan grid map [74]. As shown in Figure 2,
we place four charging towers at the apexes of a virtual rectangle. We assume that each charging tower
has four charging panels. In the middle of the map, one ground station controls the flight of the UAVs
and has enough charging panels to charge all given UAVs. In order to easily calculate the overlapping
areas of UAVs, we define the grid-shaped 1479 reference points every 25 m in the Manhattan map as
shown in Figure 2. Therefore, we regard the overlapping area in this paper as the number of reference
points between UAVs by calculating Jaccard similarity index of (13) by counting the numbers, spatially
and temporally at the same.

Deployment Scenarios. For the simulation study, we consider both fixed UAVs (F-UAVs) and
moving UAVs (M-UAVs) that fly waypoints every unit period. We assume three different types of
deployments for the F-UAVs as follows.

1. Scenario 1 (sparse lattice grid): 28 F-UAVs monitor the entire map without overlapping areas.
2. Scenario 2 (dense lattice grid): 45 F-UAVs monitor the entire map with overlapping areas that are

fully covered without any blank space.
3. Scenario 3 (random): 20 F-UAVs are uniform-randomly distributed within the map.
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(a) (b) (c)

Figure 2. (a) 3 × 3 Manhattan grid map with four charging towers and one ground station, and 1479
reference points of 25 m intervals (b) Scenario 1 (sparse lattice grid): 28 fixed UAVs without overlapping
areas (c) Scenario 2 (dense lattice grid): 45 fixed UAVs with overlapping areas.

Scenarios 1 and 2 are both illustrated in Figure 2. Moreover, 10 M-UAVs fly along certain
trajectories that consist of the sequences of waypoints. For realistic trajectories, we adopt the scan,
oval, stay-at, eight, and waypoint movement based on the Paparazzi mobility model [75], as listed
in Table 2. In each scenario, 5 or 10 M-UAVs are deployed. With the given topology, we simulate the
surveillance systems for one or two hours while assuming each unit period repeats every 10 minutes.
Note that the environmental setup parameters are summarized in Table 3.

Table 2. Trajectory of moving unmanned aerial vehicles (M-UAVs) every 10 minutes.

Movement 10 min 20 min 30 min 40 min 50 min 60 min

M-UAV 1 Scan (125, 1075) (625, 1075) (625, 650) (125, 650) (125, 225) (625, 225)
M-UAV 2 Oval (375, 1175) (200, 1075) (125, 900) (125, 650) (125, 400) (200, 225)
M-UAV 3 Stay-at (275, 800) (175, 625) (275, 425) (475, 425) (575, 625) (475, 800)
M-UAV 4 Eight (625, 475) (575, 250) (375, 150) (175, 250) (150, 475) (375, 650)
M-UAV 5 Waypoint (100, 100) (150, 200) (200, 300) (250, 400) (300, 500) (350, 600)
M-UAV 6 Scan (625, 225) (125, 225) (125, 650) (625, 650) (625, 1075) (125, 1075)
M-UAV 7 Oval (550, 1075) (625, 900) (625, 650) (625, 400) (550, 225) (375, 150)
M-UAV 8 Stay-at (475, 800) (575, 625) (475, 425) (275, 425) (175, 625) (275, 800)
M-UAV 9 Eight (150, 825) (175, 1025) (375, 1100) (575, 1025) (625, 825) (375, 650)
M-UAV 10 Waypoint (650, 1200) (600, 1100) (550, 1000) (500, 900) (450, 800) (400, 700)

Movement 70 min 80 min 90 min 100 min 110 min 120 min

M-UAV 1 Scan (125, 225) (125, 650) (625, 650) (625, 1075) (125, 1075) (625, 1075)
M-UAV 2 Oval (375, 150) (550, 225) (625, 400) (625, 650) (625, 900) (550, 1075)
M-UAV 3 Stay-at (275, 800) (175, 625) (275, 425) (475, 425) (575, 625) (475, 800)
M-UAV 4 Eight (625, 825) (575, 1025) (375, 1100) (175, 1025) (150, 825) (625, 475)
M-UAV 5 Waypoint (400, 700) (450, 800) (500, 900) (550, 1000) (600, 1100) (650, 1200)
M-UAV 6 Scan (625, 1075) (625, 650) (125, 650) (125, 225) (625, 225) (125, 225)
M-UAV 7 Oval (200, 225) (125, 400) (125, 650) (125, 900) (200, 1075) (375, 1175)
M-UAV 8 Stay-at (475, 800) (575, 625) (475, 425) (275, 425) (175, 625) (275, 800)
M-UAV 9 Eight (150, 475) (175, 250) (375, 150) (575, 250) (625, 475) (625, 475)
M-UAV 10 Waypoint (350, 600) (300, 500) (250, 400) (200, 300) (150, 200) (100, 100)

Baseline of Comparison. To demonstrate the effectiveness of our proposed algorithm,
the performance is evaluated and compared to the performance of the battery-based algorithm as
the baseline, which is the most straightforward and advanced method [76,77]. The operation of the
battery-based algorithm is as follows:
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• First, all of the UAVs perform their own major tasks (i.e., monitoring at their locations to the
extent of their batteries). The charging tower controller checks the status of each battery of the
UAVs and suspends the surveillance functionality if the battery remains below 30%.

• Next, the UAVs with battery status values of less than 30% select the nearest charging tower from
their locations if the charging tower has available charging panels.

Table 3. Environmental setup parameters.

UAV Parameters Value

Aircraft size (L × W × H) 289.5 mm × 289.5 mm × 196 mm
Aircraft weight 1375 g
Flight speed (max) 20 m/s
Field of view 84 degree
Flight time (max) 30 min
Capacity of flight battery 5870 mAh
Charging power of flight battery (max) 160 W
Voltage of charger 17.4 V
Rated power of charger 100 W
Charging efficiency loss 1.1

System Parameters Value

Size of Manhattan map 1299 m × 750 m
Number of reference points 1479
Number of UAVs in Scenario 1 F-UAVs : 28, M-UAVs : 5 and 10
Number of UAVs in Scenario 2 F-UAVs : 45, M-UAVs : 5 and 10
Number of UAVs in Scenario 3 F-UAVs : 20, M-UAVs : 10
Altitude of surveillance UAVs 100 m
Number of charging towers 4
Number of charging panels in the charging tower 4
Number of charging panels in the ground station 50
Simulation time 60 and 120 min

5.2. Evaluation Results

Figure 3 presents the ratio of the UAV-covered area (i.e., surveillance enabled area), which is
compared to the ratio of the total area of the Manhattan map. The cumulative saved energy denotes the
hovering and communication-related energy for unscheduled UAVs. The connectivity of the conflict
graphs updates according to the overlapping threshold setting, associated with the number of reference
points in overlapping areas, calculated by Jaccard similarity index (JSI) in this paper, as presented
in (13). The lower JSI increases the number of edges in the corresponding conflict graph. Subsequently,
relatively small numbers of UAVs are scheduled. On the other hand, a high JSI decreases the number
of edges in the given corresponding conflict graph. Therefore, a relatively substantial number of UAVs
can be scheduled to suspend surveillance, which can reduce the overall hovering energy consumption.
Consequently, we consider various JSI settings to numerically estimate the corresponding effects.
Our proposed algorithm is named EE, which stands for energy-efficient UAV scheduling as compared
to the baseline algorithm is noted as BB for battery-based algorithm.

In Figure 3, the ratio of the covered area decreases in Scenarios 1 and 2. This is because the
residual batteries of UAVs become low, resulting in numerous UAVs needing to be charged as time
goes by. Nevertheless, the EE algorithm reduces the performance degradation of the monitoring area
through the efforts of the MWIS-based UAV scheduling compared to the BB algorithm. In Scenario
1, the deployment scenario has few overlapping areas, and each UAV plays a key role due to sparse
deployment. Thus, the results reveal that it has more drawbacks in Scenario 1 in terms of coverage
performance than the performance in Scenario 2. To compare the two algorithms, the EE algorithm
tends to gradually decrease the surveillance area, whereas the BB algorithm sharply decreases the
surveillance area in Scenarios 1 and 2. The cumulative saved energy is related to the number of
unscheduled UAVs. The proposed EE algorithm with JSI = 0.5 is superior to the BB algorithm in
the view of energy savings for the first 40 min. In addition to this energy efficiency, it also has better
performance in terms of surveillance coverage ratios. In the last 10 min., the BB algorithm has a poorly
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covered area of less than half of the total area; thus, the results of energy efficiency are meaningless.
Lastly, in each scenario, 10 M-UAVs improve the coverage and energy performance in comparison
with five UAVs. A larger number of UAVs create more edges in the given corresponding conflict graph;
thus, our EE algorithm provides better performance in every case.

(a) (b)

(c) (d)

Figure 3. Ratio of UAV-covered surveillance area and cumulative saved energy of unscheduled UAVs
for the proposed EE algorithm (JSI = 0.5 and JSI = 0.9), and BB algorithm where moving UAV (M-UAV)
= 5 and moving UAV (M-UAV) = 10 (Scenario 1: 28 fixed UAVs (F-UAVs) and Scenario 2: 45 fixed
UAVs (F-UAVs)). (a) Ratio of UAV-covered area (Scenario 1). (b) Ratio of UAV-covered area (Scenario
2). (c) Cumulative saved energy (Scenario 1). (d) Cumulative saved energy (Scenario 2).

Figure 4 and Table 4 display the number of unscheduled UAVs and their standard deviations
σ, a statistic that measures the dispersion of a dataset relative to its mean and is calculated as the
square root of the variance, in Scenario 3. In the early part of the simulation results, with JSI = 0.75
(higher JSI), fewer UAVs are unscheduled (in other words, most of the UAVs are scheduled), owing
to the few edges in its corresponding conflict graph. In contrast, for the simulation results with JSI
= 0.125 (a smaller JSI), its associated conflict graph is densely connected. Therefore, more UAVs are
unscheduled when compared to the case of a higher JSI. The number of unscheduled UAVs increases in
the later part of the simulation due to battery limitations. To maintain the number of scheduled UAVs
as uniformly as possible during the simulation, the results with lower JSI present better performance
than those with a higher JSI. A smaller standard deviation in Table 4 means the number of unscheduled
UAVs (i.e., the UAVs with deactivated CCTV cameras) that are not changing dramatically. Therefore,
the number of scheduled UAVs becomes stable; eventually reducing the chances of surveillance
performance degradation. Moreover, the stable results show that the proposed algorithm is superior in
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terms of energy-efficiency that is beneficial for extending surveillance lifetime and maximizing the
charging energy.

(a) (b)

(c) (d)

Figure 4. (a) EE algorithm, JSI = 0.25. (b) EE algorithm, JSI = 0.5. (c) EE algorithm, JSI = 0.75. (d) BB
algorithm. The number of unscheduled UAVs for the proposed EE algorithm (JSI = 0.25, JSI = 0.5,
and JSI = 0.75), and BB algorithm (Scenario 3: 20 F-UAVs, 10 M-UAVs).

Table 4. Standard deviation (σ) of the number of unscheduled UAVs for both proposed algorithms,
EE and BB (Scenario 3: 20 fixed UAVs (F-UAVs), 10 moving UAVs (M-UAVs)).

Proposed EE Algorithm BB Algorithm

JSI 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

σ 4.564 4.900 5.001 5.798 6.783 8.054 8.814 9.387 9.162

Figure 5 presents the trade-off between the ratio of UAV-covered surveillance area and the amount
of saved energy of the EE algorithm in Scenario 3. The ratio of the UAV-covered area is compared to
the ratio of the area at the initial states, where all of the UAVs are scheduled. In the corresponding
setting, the minimum and maximum JSI are 0.125 and 1, respectively. Here, the appropriate JSI setting
plays a key role in achieving better performance. In order to guarantee a wider surveillance area
coverage, a higher JSI is used to put more weight on the ratio of the UAV-covered surveillance area
and a lower weight on the queue stability (i.e., related to energy status). In contrast, the lower JSI leads
to the reduction of the ratio of the UAV-covered surveillance areas, whereas it is beneficial in efficient
aspects. The optimal JSI value depends on the real-world system parameter configurations (e.g., the
number of charging towers, the number of UAVs, and the amount of energy that can be charged in
each charging panel) and quality-of-service (QoS) requirements (e.g., target monitoring area and target
saving energy).
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(a) (b)

Figure 5. Trade-off between the ratio of the UAV-covered surveillance area and the amount of saved
energy of the proposed EE algorithm (Scenario 3). (a) For 40 min. (b) For 60 min.

6. Concluding Remarks

This paper is the first attempt to design a legitimate UAV-based surveillance system where a
charging infrastructure exists. We propose an energy-efficient UAV-based surveillance system that
operates from two different perspectives (i.e., micro in-device operation and macro systemwide
operation). The main objective of the micro in-device operation is to pursue energy-efficient operations
by deactivating the CCTV cameras of the set of UAVs located in overlapping surveillance areas.
For scheduling (i.e., obtaining the set of UAVs that are with activated CCTV surveillance cameras),
a message-passing based algorithm is used because the overlapping situations are formulated with
MWIS where the weight factors are defined as the residual battery values of individual UAVs because
the message-passing is a well-known solution approach for MWIS formulation. The unscheduled UAVs
(i.e., the UAVs that have deactivated CCTV cameras) fly to the charging towers to be charged. For the
consequential macro system-wide operation, we aim at the computation for the optimal matching
of UAVs to charging towers with a maximum amount of energy allocation. This joint optimization
program for scheduling and energy allocation was initially formulated as non-convex, and then
reformulated to convex, which can guarantee optimal solutions in polynomial time. Our proposed
framework achieves the desired performance improvement in terms of energy consumption of
unscheduled UAVs, the energy efficiency of each charging UAV, and efficient surveillance, as presented
in the performance evaluation. Our proposed model can also be applied to drone taxi services. As future
research directions, dynamic and adaptive control for JSI can be carefully considered because it is one
of key factors that can lead to performance improvements in real-world implementation.
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