
electronics

Article

Scalable Wildcarded Identity-Based Encryption with
Full Security

Jiwon Lee 1 , Seunghwa Lee 2 , Jihye Kim 2,* and Hyunok Oh 1,*
1 Department of Information System, Hanyang University, Seoul 04763, Korea; jiwonlee@hanyang.ac.kr
2 Department of Security Enhanced Smart Electric Vehicle, Kookmin University, Seoul 02707, Korea;

ttyhgo@kookmin.ac.kr
* Correspondence: jihyek@kookmin.ac.kr (J.K.); hoh@hanyang.ac.kr (H.O.)

Received: 20 July 2020; Accepted: 3 September 2020; Published: 6 September 2020
����������
�������

Abstract: Wildcarded identity-based encryption (WIBE) is an encryption system where one can
encrypt messages to multiple users by specifying a pattern, which is a set of identity strings
or wildcards. It is a useful primitive for practical applications where users are defined with
multiple attributes (or affiliations), such as organization networks or IoT firmware updates.
However, the ciphertext size in traditional WIBE schemes are linear to the number of wildcards in
the pattern; since the ciphertext size determines the payload in network systems, it degrades the
practicality when deployed in transmission-sensitive systems. In this paper, we represent scalable
wildcarded identity-based encryption (SWIBE), which achieves a constant-size ciphertext regardless
of the number of wildcards (or depth of patterns). the SWIBE scheme also allows the wildcard usage
key derivation as well as encryption: a user with wildcarded pattern can delegate keys for the fixed
pattern. Compared to the existing WIBE schemes, the SWIBE scheme is the first approach to yield
constant-size ciphertext. Moreover, SWIBE also improves encryption time and decryption time while
maintaining a key size of 2L, comparable to the key size of L in WIBE schemes (where L is a depth of
the pattern). The experimental results show that the decryption time is 3 to 10 times faster than the
existing WIBE schemes, and 650 times faster than the attribute-based encryption with constant-size
ciphertext. For the security, we first propose the selective-CPA-secure SWIBE scheme in a prime order
bilinear group and extend it to be selective-CCA-secure. Then we also propose a fully-secure SWIBE
scheme which can overcome the selective security.

Keywords: wildcard identity based encryption; constant ciphertext; key delegation; pattern

1. Introduction

In modern IoT infrastructure, it is often essential to encrypt data to multiple devices at once on
a group-basis, which let the data security require more advanced functionality of multi-encryption.
Specifically, IoT devices are often defined and categorized by their own features, such as device
types, manufacturers, affiliations, or locations; users (or devices) often need to send secure messages
to a group of devices by specifying particular features. Some well-known examples are described
as follows.

• In smart city networks, an occupant may need to encrypt command reservations to home devices
(e.g., turn-off devices of type: “lamp” and location: “living room”).

• In secure firmware updates, the firmware is encrypted to a group of devices which satisfies
specific conditions (e.g., update devices of manufacturer: “Tesla”).

• In military communications, tactical data are encrypted to classified groups based on specific
authorities (e.g., send strategy to devices of affiliation: “Air Force”).

Electronics 2020, 9, 1453; doi:10.3390/electronics9091453 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3387-3372
https://orcid.org/0000-0001-7336-1817
https://orcid.org/0000-0002-9044-7441
http://dx.doi.org/10.3390/electronics9091453
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/9/1453?type=check_update&version=2

Electronics 2020, 9, 1453 2 of 23

When we apply simple encryption technique such as RSA encryption to the IoT data security,
the result becomes inefficient: one should encrypt the message to each user one by one, which requires
encryption process and different ciphertext as many as the number of receivers. Moreover, the RSA
public key system needs to manage a public key infrastructure (PKI) to identify devices, which increases
the communication and storage costs. Therefore, in the IoT data security, it is recommended to consider
group-based encryption structure rather than a simple standard encryption.

Related works. Considering that the identities are often defined by attributes, attribute-based
encryption (ABE) can provide a suitable functionality for secure communications. Ciphertext-policy
attribute-based encryption (CP-ABE) [1–3] associates an access policy to each ciphertext, where the
access policy is defined by logical combinations (i.e., AND and OR gates) of attribute values. In this
setting, the secret key is issued for a set of attributes, and users can decrypt the message only when their
attributes satisfy the access policy of the ciphertext. Unfortunately, ABE focuses on more complicated
access policy based on variative attributes, while IoT devices are sufficient to handle with fixed
identities. To support general access policy, existing ABE schemes either suffer from large ciphertext
linearly with the number of attributes or suffer from exponential keys when the ciphertext is fixed
as constant.

Identity-based encryption (IBE) [4–6] is a useful primitive where the user’s identity
(e.g., alice@cs.univ.edu) can be utilized as a public key for encryption, which eliminates a requirement
of public key certification such as public key infrastructure (PKI). The IBE can provide an interface for
representing the groups or attributes, which is a building block for group-basis secure communications.
Later, it advanced to hierarchical identity-based encryption (HIBE) [7], where the identity is defined by
a hierarchical set of identity strings such that keys for the identity can be distributed in a hierarchical
delegation, i.e., a user at level i can delegate keys for the user at level i + 1. While traditional IBE
requires the certificate authority (CA) to issue keys for the entire users, the HIBE allows each user to
share the burden of key delegation to resolve the bottleneck problem. The intuition of key delegation
technique in the HIBE system has been advanced to other various cryptographic primitives, such as
broadcast encryption [8–10].

Considering the fact that many email addresses consist of affiliations, Abdalla et al. [11] extended
HIBE to an advanced primitive called wildcarded identity-based encryption (WIBE) by introducing
wildcard (∗), which can be superceded by any identity string in a set of identity strings. A pattern (or an
identity) is defined as a set of multiple identity strings and wildcards, and it efficiently determines a
group of identities or a single identity. WIBE utilizes a pattern as a public key for encryption; a single
ciphertext encrypted for a pattern (edu, univ, cs, ∗) (corresponding to ∗@cs.univ.edu) can be delivered
to multiple identities such as alice@cs.univ.edu and bob@cs.univ.edu.

Abdalla’s group proposed three different WIBE systems by extending the existing HIBE schemes.
However, all of them suffer from large ciphertext size which is at least O(L) where L is the maximum
depth of pattern (i.e., the number of identity strings). Birkett et al. [12] devised compilation techniques
called WIB-KEM, which can convert any CPA-secure WIBE into CCA-secure identity-based key
encapsulation mechanisms with wildcards. They achieved more efficient CCA-secure WIBE systems
by applying their techniques to the Abdalla’s CPA-secure WIBE schemes [11]. However, the ciphertext
size still remains as O(L), which is as large as the underlying WIBE schemes. Later, Abdalla’s group
introduced IBE with wildcarded key derivation (WKD-IBE) [13], which can include wildcarded pattern
in the key derivation of HIBE. They combined the WKD-IBE with their WIBE [11] construction,
where wildcarded pattern can be included both in encryption and key derivation, and upgraded the
notion of WIBE to WW-IBE [14]. Still, the ciphertext size in WW-IBE [14] is not improved from the
original WIBE [11], which is not scalable in IoT systems.

Ciphertext size. The ciphertext size is an important factor, since ciphertext is an actual payload which
is transmitted to the network in real applications. Unfortunately, ciphertext size in existing WIBE
schemes [11,14] are not constant; it increases linear to the maximum depth of pattern. The main reason

Electronics 2020, 9, 1453 3 of 23

is that the WIBE construction let the decryptor transform the ciphertext to his own matching pattern.
In brief, the ciphertext should include additional parameters for the wildcarded pattern so that the
wildcard can be transformed to the matching key element, based on the key delegation technique from
BBG-HIBE [7].

As an alternative approach, the authors of WIBE [11] describes a generic construction
of WIBE from HIBE, which can maintain the constant-size ciphertext of the HIBE ingredient.
However, this technique results in an excessive secret key size, exponential to the depth of pattern.
The main idea in this generic construction is to let the user store secret keys for every possible cases for
decryption, instead of transforming the ciphertext. For example, to decrypt the ciphertext encrypted
for pattern (ID1, ID2), a user stores keys for every possible matching patterns: (ID1, ID2), (∗, ID2),
(ID1, ∗), (∗, ∗). This leads to the secret key size exploded up to 2L which is not reasonable to be used,
e.g., in small IoT devices.

Solution. The main barrier of ciphertext size in WIBE is that the decryptor needs to delegate the
ciphertext to his own matching pattern. For instance, if a decryptor with an identity (ID1, ID2)
decrypts a ciphertext for (ID1, ∗), he transforms the ∗ to ID2 by the help of additional parameters in
order to match his own pattern (ID1, ID2). This lets the ciphertext include extra parameters related to
each wildcard, which cannot be compressed to a constant value.

The problem can be resolved by reversing the transformation method: instead of delegating the
wildcard to the matching pattern, the decryptor may prune his own pattern to match the wildcard.
Specifically, the wildcard is considered as a distinct pattern, and additional pruning keys corresponding
to the user’s patterns can be provided so that any pattern can be transformed to the wildcard pattern.
For example, if a decryptor with an identity (ID1, ID2) decrypts a ciphertext for (ID1, ∗), he transforms
his ID2 to ∗ by using his own pruning key, in order to match the ciphertext pattern (ID1, ∗). Note that
the pruning key is only required for the depth of pattern L, which just doubles the secret key. As a
result, the ciphertext does not require any additional parameters for delegation and the size can
remain constant.

Scalable WIBE. Based on the idea, Kim et al. [15] proposed scalable wildcarded identity-based
encryption (SWIBE), which achieves a constant-size ciphertext while maintaining the order of other
parameters. SWIBE can efficiently cover the multi-encryption requirements in the IoT examples: with
a single encryption and a constant ciphertext, one can encrypt to any group of multiple users by
specifying the attributes of receivers.

SWIBE scheme also allows wildcarded patterns both in encryption and key derivation as in
WW-IBE [14], i.e., one can encrypt a message to multiple users by using wildcarded patterns, or delegate
keys to other users if the identity includes wildcards. Compared to the WW-IBE, SWIBE also improves
decryption time, since a user in WW-IBE requires a delegation of the given ciphertext to his own
pattern while SWIBE allows a user to decrypt the ciphertext immediately. The practicality of SWIBE is
justified by implementing the protocol on a real IoT device, and comparing experimental results with
the existing works.

Table 1 shows an overall comparison between hierarchical IBE (HIBE) [7], wildcarded IBE
(WIBE) [11], wildcarded key derivation IBE (WKD-IBE) [13], WW-IBE [14], ciphertext policy ABE
(CP-ABE) [3], and our proposed scalable WIBE (SWIBE) scheme. The comparison focuses on the size
of public parameter (pp), secret key (SK), ciphertext (CT) and execution time of encryption (Enc),
decryption (Dec), while the identity (pattern) depth is fixed as L and each identity is a q-bit string.

For the wildcard use, HIBE does not support wildcard, WIBE and CP-ABE supports wildcard only
in encryption, WKD-IBE supports wildcard only in key derivation, while WW-IBE and SWIBE allow
wildcard both in encryption and key derivation. For the ciphertext policy in CP-ABE, we assumed each
bit in the ID as an attribute. Among the WIBE schemes which allow wildcards in encryption (WIBE,
WW-IBE, SWIBE), only SWIBE has a constant-size ciphertext of 4 group elements regardless of the

Electronics 2020, 9, 1453 4 of 23

depth L. While supporting wildcarded pattern both in key derivation and encryption, SWIBE improves
the decryption time compared to the WW-IBE.

Table 1. Comparison of parameters between related works. ref. e = scalar multiplication, p = pairing,
and L = hierarchy depth, q = ID bits, size indicates group elements, Enc = Encryption, and Der = Key
derivation.

HIBE [7] WIBE [11] WKD-IBE [13] WW-IBE [14] CP-ABE [3] SWIBE

pp size L + 4 L + 4 L + 2 2L + 2 2L2q + 1 L + 4
SK size L + 2 L + 2 L + 2 L + 1 3L2q + 1 2L + 3
CT size 3 L + 3 3 3L + 2 2 4

Enc time (L + 3)e + p (L + 3)e + p (L + 1)e + p (3L + 2)e 2L2qe + p (L + 3)e + p
Dec time 2p Le + 2p Le + 2p Le + (2L + 1)p 2L2qe + 4L2q p Le + 3p
Wildcard None Enc Der Enc&Der Enc Enc&Der

Selective security. Despite the novel advantages, one remaining challenge is that the security of SWIBE
relies on the selective security. In the selective security, the security model assumes that the target
devices (i.e., devices which adversary desires to attack) are fixed before the security game. However,
in real-life situation, we often cannot predict which devices are vulnerable, and which devices the
attackers are planning to exploit. Therefore, for more robust security, it is recommended to advance
the scheme to achieve full-security, i.e., IND-CPA secure without selective security.

Fully-secure SWIBE. In this paper, we extend selectively-secure SWIBE [15] to a fully-secure version,
by modifying the SWIBE construction based on the composite order group. The composite order
group sets the size of the cyclic group N as a composite number instead of a prime, to create different
subgroups and let them cancel each other when computed in the pairing operation. This technique
can disguise public elements while maintaining the correctness of the protocol, which can achieve the
full security instead of the selective security. Based on the idea, we propose a new version of SWIBE
protocol which satisfies full security, and formally prove the security under the standard assumptions.

We now summarize the main contributions of SWIBE, and SWIBE with full security.

- Scalable wildcarded identity-based encryption (SWIBE) achieves constant-size ciphertext among
the WIBE systems, without sacrificing the order of other parameters.

- SWIBE is formally proved to satisfy IND-sID-CPA security, and it is extended to satisfy
IND-sID-CCA security.

- We provide practical experimental results based on a small IoT device with 500 MHz
Atom processor.

- This paper additionally proposes a fully secure (IND-ID-CPA-secure) SWIBE construction to
overcome the selective security, and we formally prove the IND-ID-CPA security.

The rest of this paper is organized as follows. Section 2 introduces the basic definitions and
complexity assumptions. In Section 3, we formally define the wildcard identity-based encryption as
a universal primitive. Section 4 explains the main idea of the SWIBE scheme and how to construct
it in details, along with the security proof. Section 5 extends it to be CCA secure, and Section 6
proposes a new version of SWIBE in composite order to obtain full security instead of selective security.
In Section 7, we show the experimental results and in Section 8, we conclude.

2. Background

2.1. Identity-Based Encryption

Identity-based encryption (IBE) [16] is defined as a tuple of algorithm IBE =

(Setup,KeyDer,Enc,Dec) which provides the following functionality. The authority runs Setup to
generate a public parameter pp and a master secret key msk. It publishes pp and keeps msk in private.
When a user with an identity ID needs to join the system, the authority creates a decryption key

Electronics 2020, 9, 1453 5 of 23

dID
$← KeyDer(msk, ID), and sends the key to the user via secure channel. To encrypt a message m to

the user with an identity ID, the sender computes a ciphertext C $← Enc(pp, ID,m), which is decrypted
by the user as m← Dec(dID, C).

2.2. Hierarchical IBE

In hierarchical IBE (HIBE) [7], users are organized in an L-level binary tree, where the root
is considered as a master authority. The user’s identity at level 0 ≤ l ≤ L is given by a vector
ID = (P1, . . . , Pl) ∈ ({0, 1}q)l . HIBE is defined as a tuple of algorithms HIBE = (Setup, KeyDer,
Enc, Dec) providing same functionalities as in IBE, except that a user ID = (P1, . . . , Pl) at level l
can use his own secret key skID to generate a secret key for its children ID′ = (P1, . . . , Pl , . . . , PL)

via skID′
$← KeyDer(skID, ID′). By applying the KeyDer algorithm interactively, user ID can derive

secret keys for any of its descendants ID′ = (P1, . . . , Pl+δ), δ ≥ 0. We denote this process as skID′
$←

KeyDer(skID, (Pl+1, . . . , PL+1)). The secret key of the root at level 0 is skε = msk. Encryption and
decryption are the same as IBE, but the identity is a vector of strings instead of ordinary strings.

2.3. Bilinear Groups and Pairings

In references [16,17], the bilinear maps and bilinear map groups are defined as follows:

• G and G1 are two multiplicative cyclic groups of prime order p.
• g is a generator of G.
• e : G×G→ G1 is a bilinear map.

Let G and G1 be two groups as above. The bilinear map is defined as a map e : G×G → G1

which satisfies the following properties:

• The map is bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab

• The map is non-degenerate: e(g, g) 6= 1.

G is a bilinear group if the operation in G is efficient and there is a group G1 with an efficiently
computable bilinear map e : G×G→ G1.

2.4. Computational Complexity Assumptions

The security of our scheme is based on bilinear Diffie–Hellman Exponent (BDHE) assumption
used in [7], which is an extension of bilinear Diffie–Hellman Inversion (BDHI) assumption previously
used in [18]. Let G be a bilinear group of prime order p. The L-BDHE problem in G is defined as follows:

(h, g, gα, g(α
2), . . . , g(α

L), g(α
L+2), . . . , g(α

2L) ∈ G2L+1)

Given a vector of 2L + 1 elements above as input, output e(g, h)αL+1 ∈ G1.
Once we specify g and α, we use yi to represent yi = gαi ∈ G. The adversary A has an advantage

ε in solving L-BDHE in G if

Pr[A(h, g, y1, . . . , yL, yL+2, . . . , y2L) = e(yL+1, h)] ≥ ε

where the probability is over the random bits used by A, the random choice of generators g, h in G,
and the random choice of α in Zp. The decisional version of the L-BDHE problem in G is defined
analogously. Let ~yg,α,L = (y1, . . . , yL, yL+2, . . . , y2L). An algorithm B that outputs b ∈ {0, 1} has
advantage ε in solving decisional L-BDHE in G if

|Pr[B(g, h,~yg,α,L,e(yL+1, h)) = 0]− Pr[B(g, h,~yg,α,L, T) = 0]| ≥ ε

where the probability is over the random choice of generators g, h in G, α in Zp, and T ∈ G1, and the
bits consumed by B.

Electronics 2020, 9, 1453 6 of 23

Definition 1. The (decisional) (t, ε, L)-BDHE assumption holds in G if no t-time algorithm has at least ε

advantage to solve the (decisional) L-BDHE problem in G.

We may omit the t and ε, and refer to the (decisional) L-BDHE in G.

3. Model

SWIBE allows general key delegation and encryption to a group that is denoted by multiple
identity strings and wildcards. To make the further description simple and clear, we define the
following notations similarly to [11].

Definition 2. A pattern P is a vector (P1, . . . , PL) ∈ (Z∗p ∪ {∗})L , where ∗ is a special wildcard symbol, p is
a q-bit prime number, and L is the maximal depth of the SWIBE scheme. We denote pattern P as in (Z∗p ∪ {∗})L

instead of ({0, 1}q ∪ {∗})L, since {0, 1}q can be easily mapped to Z∗p with a hash function.

Definition 3. A pattern P′ = (P′1, . . . , P′L) belongs to P, denoted P′ ∈∗ P, if and only if
∀i ∈ {1, . . . , L}, (P′i = Pi) ∨ (Pi = ∗).

Definition 4. A pattern P′ = (P′1, . . . , P′L) matches P, denoted P′ ≈ P, if and only if ∀i ∈ {1, . . . , L},
(P′i = Pi) ∨ (Pi = ∗) ∨ (P′i = ∗).

Notice that a set of patterns matching P is includes patterns belonging to P. For a pattern
P = (P1, . . . , PL), we define W(P) as a set of all wildcard indices in P, i.e., the indices
1 ≤ i ≤ L such that Pi = ∗, and W(P) as a complementary set including all non-wildcard indices.
Clearly, W(P) ∩W(P) = ∅ and W(P) ∪W(P) = {1, . . . , L}.

Definition 5. W(P) denotes a set including all wildcard indices in a pattern P.

Definition 6. W(P) represents a complementary set containing all non-wildcard indices in a pattern P.

A scalable wildcarded identity-based encryption SWIBE consists of four algorithms:

Setup(L) takes as input the maximal hierarchy depth L. It outputs a public parameter pp and master
secret key msk.

KeyDer(skP, Pnew) takes as input a user secret key skP for a pattern P = (P1, . . . , PL) and can derive a
secret key for any pattern Pnew ∈∗ P. The secret key of the root identity is msk = sk(∗,...,∗).

Encrypt(pp, P, m) takes as input pattern P = (P1, . . . , PL), message m ∈ {0, 1}∗ and public parameter
pp. It outputs ciphertext C for pattern P.

Decrypt(skP, C, P′) takes as input user secret key skP for pattern P = (P1, . . . , PL) and ciphertext C for
pattern P′. Any user with the secret key for a pattern P which matches P′ can decrypt the
ciphertext using skP, and the algorithm outputs message m.

Correctness requires that for all key pairs (pp, msk) output by Setup, all messages m ∈ Z∗p, and all
patterns P, P′ ∈ (Z∗p ∪ {∗})L such that P ≈ P′, Decrypt(KeyDer (msk, P),Encrypt(pp, P′, m), P′) = m.

SECURITY. We define the security of SWIBE scheme similar to the original WIBE [11], except we also
consider the key delegation property. We allow an adversary to select an arbitrary pattern and query
secret keys for the corresponding pattern. The adversary is disallowed to ask a key derivation query
for any pattern matching the challenge pattern. The security of SWIBE is defined by an adversary
A and a challenger C via the following game. Both C and A are given the hierarchy depth L and the
identity bit-length q as inputs.

Setup: Challenger C runs Setup(L) to obtain public parameter pp and master secret key msk. C gives A
public parameter pp.

Electronics 2020, 9, 1453 7 of 23

Key derivation queries:1: Adversary A issues key derivation queries qK1 , . . . , qKm in which a key
derivation query consists of a pattern P′ ∈ (Z∗p ∪ {∗})L, and challenger C responds

with skP′
$← KeyDer(skP, P′).

Query phase1: AdversaryA issues decryption queries qD1 , . . . , qDn in which a decryption query consists
of a pattern P′ ∈ (Z∗p ∪ {∗})L and ciphertext C, next challenger C responds with a message

M $← Decrypt(C, P′).
Challenge: A outputs two equal-length challenge messages m∗0 , m∗1 ∈ Z∗p and a challenge

identity P∗ = (P∗1 , . . . , P∗L∗) s.t. P∗ 6≈ P′ for all queried P′. C runs algorithm C∗ ←
Encrypt(pp, P∗, m∗b) for random bit b and gives C∗ to A.

Key derivation queries:2: Attacker A continues to issue key derivation queries qKm+1 , . . . , qqK same as
Key derivation queries:1 where query pattern P′ 6≈ P∗. C responds as in key derivation
query 1.

Query phase2: Attacker A continues to issue decryption queries qDn+1 , . . . , qqD same as Query phase1.
It should be satisfied that queried ciphertext C 6= C∗. C responds as in query phase 1.

Guess: A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Definition 7. A SWIBE is (t, qK, qD, ε, L) IND-ID-CCA-secure if all t-time adversaries making at most qK
queries to the key derivation oracle and at most qD queries to the decryption oracle have at most advantage ε in
the IND-ID-CCA game described above.

We also define IND-ID-CPA-secure similar as IND-ID-CCA game except forbidden all
decryption queries.

Definition 8. A SWIBE is (t, qK, 0, ε, L) IND-ID-CPA-secure if all t-time adversaries making at most qK
queries to the key derivation oracle have at most advantage ε in the IND-ID-CPA game described above.

SELECTIVE-IDENTITY SECURITY. A weaker selective-identity (sID) security notion IND-sID-CPA is
defined analogously to the IND-ID-CPA one: every procedure is the same except that the adversary
must commit to the challenge identity at the beginning of the game, before the public parameter is
made available.

4. The Proposed Scheme

In this section, we describe the proposed scalable wildcarded identity based encryption scheme
(SWIBE). Before presenting the formal scheme, we first describe the BBG-HIBE construction [7],
which is a main building block for WIBE systems including SWIBE, along with our main idea to
achieve constant-size ciphertext in Section 4.1. Then we provide SWIBE construction in Section 4.2,
and show the formal security proof in Section 4.3.

4.1. Overview: BBG-HIBE and Our Idea

The BBG-HIBE scheme [7] is described as follows:

Setup(L): L indicates the maximum hierarchy depth. Select a random integer α ∈ Z∗p, and O(L) random
group elements g, g2, g3, h1, h2, . . . , hL ∈ G, and compute g1 = gα.

The public parameters and the master secret key are given by

pp = (g, g1, g2, g3, h1, h2, . . . , hL), msk = gα
2 .

Electronics 2020, 9, 1453 8 of 23

KeyDer(skP|l−1
, P): To compute the secret key skP for an identity P = (P1, . . . , Pl) ∈ (Z∗p)l where l ≤ L

from the master secret key, a random r $← Z∗p is chosen, then secret key skP = (a1, a2, bl+1, · · · , bL) for
P is constructed as

a1 = gα
2(g3 · ∏

i∈[1,··· ,l]
hPi

i)r, a2 = gr, {bi = hr
i }i∈[l+1,··· ,L]

The private key for P can be generated incrementally, given a private key for the parent
identity P|l−1 = (P1, . . . , Pl−1) ∈ (Z∗p)l−1. Let skP|l−1

= (a′1, a′2, b′l , · · · , b′L) be the private key for P|l−1.
To generate skP, pick a random t ∈ Z∗p and output

a1 = a′1 · (b′l)
Pl · (g3 · ∏

i∈[1,··· ,l]
hPi

i)t, a2 = a′2 · gt, {bi = b′i · ht
i}i∈[l+1,··· ,L]

Encrypt(pp, P, M): To encrypt a message m ∈ G1 to pattern P = (P1, . . . , Pl), choose s $← Z∗p,
and compute

C = (gs, (g3 · ∏
i∈[1,··· ,l]

hPi
i)s, M · e(g1, g2)

s)

Decrypt(skP, C): Consider an identity pattern P = (P1, · · · , Pl). To decrypt a given ciphertext
C = (C1, C2, C3) with private key skP = (a1, a2, bl+1, · · · , bL), output

C3 ·
e(a2, C2)

e(C1, a1)
= M

The BBG-HIBE scheme [7] has the advantage of constant-sized ciphertexts. The ciphertext
consists of only three elements: (gs, (g3 · hP1

1 · · · h
Pl
l)s, M(g, g2)

sα). When observing the secret key,
a1 and a2 are responsible for the decryption, while bi stands for further key delegations. The pattern
P = (P1, · · · , Pl) is combined as a single element a1, and we can delegate a1 to another extended
pattern P = (P1, · · · , Pl , Pl+1) by additionally combining the bl+1 into the a1. Since the united element
a1 directly involves the pattern and the element can be canceled by multiplying its inverse, we observe
that secret key for some pattern can be replaced to another secret key for a different pattern by

multiplication. For instance, it is possible to compute gα
2(g3hP′1

1 · · · h
Pl
l)r by multiplying h(P′1−P1)r

1 to
gα

2(g3 · hP1
1 · · · h

Pl
l)r.

The wildcard pattern can work in a similar way: when we consider the wildcard ∗ as a fixed
identity, i.e., a mapped element w ∈ Z∗p, we may change an identity to the wildcard by including

ci = (hw
i /hPi

i)r for every identity string Pi in a secret key and replacing (hPi
i)r with (hw

i)
r. However,

this approach has a security problem; the extra ci allows the adversary to compute hr
i = ci

1/(w−Pi)

by combining ci, w, Pi, which reveals the top level secret key gα
2 gr

3 by canceling (hP1
1 · · · h

Pl
l)r from

gα
2(g3hP1

1 · · · h
Pl
l)r. With the top level secret key, the adversary can generate any secret keys as he desires,

which is a significant problem.
We resolve this issue by randomizing the wildcard part, by using another random t ∈ Zp

independent from r. Specifically, we revise the extra key ci as ci = hwt
i /hPir

i , and also provide gt with gr,
to let the decryption work correctly. For instance, the key gα

2(g3 · hP1
1 hP2

2 hP3
3)r for (P1, P2, P3) is changed

to gα
2(g3 · hP2

2)r · (hw
1 hw

3)
t for (∗, P2, ∗) by multiplying c1c3.

The remaining issue is that the encryption requires some adjustments, to be compatible with the
modification of random t. For example, to encrypt for the pattern (∗, P2, ∗), the pattern is divided
into wildcard part and non-wildcard part. The non-wildcard identity part (·, P2, ·) is encrypted
as (gs, (g3 · hP2

2)s, M · e(g1, g2)
s), same as the BBG-HIBE. Then the wildcard identity part (∗, ·, ∗) is

encrypted as (hw
1 hw

3)
s, which can later be used in decryption to cancel out the wildcard part of user

secret key. In summary, the ciphertext can remain as constant with an additional single group element

Electronics 2020, 9, 1453 9 of 23

to the original BBG-HIBE ciphertext which is three group elements, and the key size also remains
efficient, linear to the number of patterns, within the same order compared with the BBG-HIBE.

The complete scheme is represented in the following Section 4.2 with assuming the value w = 1.
Then we formally prove the security of the scheme in Section 4.3.

4.2. SWIBE Construction

We now describe the SWIBE scheme which achieves constant size ciphertext and O(L) size keys.

Setup(L): Let L indicate the maximum depth of the pattern. The initial set of keys are generated as
follows. Sample α ∈ Z∗p, and O(L) group elements g, g2, g3, h1, h2, . . . , hL ∈ G randomly, and compute
g1 = gα.

The public parameter is given by

pp← (g, g1, g2, g3, h1, h2, . . . , hL).

A master secret key is set as msk = gα
2 .

KeyDer(pp, skP, P′): To derive the secret key skP′ for a pattern P′ = (P′1, . . . , P′L) ∈ (Z∗p ∪ {∗})L from

the msk, two randoms r, t $← Z∗p are chosen. Then, the secret key skP′ = (a′1, a′2, a′3, b′, c′, d′) for P′ is
computed as

a′1 = msk(g3 · ∏
i∈W(P′)

hP′i
i)r, a′2 = gr, a′3 = gt

b′ = {b′i = hr
i }i∈W(P′) c′ = {c′i = ht

i}i∈W(P′)

d′ = {d′i = ht
i /hP′i r

i }i∈W(P′)

In order to generate secret key skP′ for a pattern P′ from secret key skP = (a1, a2, a3, b, c)

for a pattern P such that P′ ∈∗ P, simply choose two randoms r′, t′ $← Z∗q and output
skP′ = (a′1, a′2, a′3, b′, c′, d′), where

a′1 = a1 · (∏
i∈W(P′)∩W(P)

bP′i
i) · (g3 ∏

i∈W(P′)

hP′i
i)r′ ,

a′2 = a2 · gr′ , a′3 = a3 · gt′

b′ = {b′i = bi · hr′
i }i∈W(P′), c′ = {c′i = ci · ht′

i }i∈W(P′)

d′ = {d′i = di ·
ht′

i

h
P′i r′

i

}i∈W(P′)∩W(P)

∪ {d′i =
ci

b
P′i
i

·
ht′

i

h
P′i r′

i

}i∈W(P′)∩W(P)

Encrypt(pp, P, m): To encrypt a message m ∈ G1 to pattern P = (P1, . . . , PL) under pp, choose s $← Z∗p,
and compute C = (C1, C2, C3, C4)

C1 = gs, C2 = (g3 · ∏
i∈W(P)

hPi
i)s

C3 = m · e(g1, g2)
s, C4 = (∏

i∈W(P)
hi)

s

Decrypt(skP, C, P′): Consider patterns P and P′ ∈ (Z∗p ∪ {∗})L, where P is a key pattern and
P′ is a ciphertext pattern. To decrypt a given ciphertext C = (C1, C2, C3, C4) with private key

Electronics 2020, 9, 1453 10 of 23

skP = (a1, a2, a3, b, c, d), compute a′1 = a1 · ∏i∈W(P′)∩W(P) bP′i
i · ∏i∈W(P′)∩W(P) ci · ∏i∈W(P′)∩W(P) di

and output

C3 ·
e(a2, C2) · e(a3, C4)

e(C1, a′1)
= m

The correctness of the decryption is described as follows. We denote WP′P = W(P′) ∩W(P),
WP′P = W(P′) ∩W(P), WP′P = W(P′) ∩W(P), and WP′P = W(P′) ∩W(P) to simplify notations.

Since a1 = gα
2(g3 ∏i∈W(P) hPi

i)r, bi = hr
i , ci = ht

i , and di =
ht

i

h
Pir
i

,

a′1 = a1 · ∏
i∈W

P′P

bP′i
i · ∏

i∈WP′P

ci · ∏
i∈WP′P

di

=gα
2(g3 · ∏

i∈W(P)

hPi
i)r · ∏

i∈W
P′P

hP′i r
i · ∏

i∈WP′P

ht
i · ∏

i∈WP′P

ht
i

hPir
i

=gα
2(g3 · ∏

i∈W(P)

hPi
i · ∏

i∈W
P′P

hP′i
i · ∏

i∈WP′P

h−Pi
i)r · ∏

i∈WP′P

ht
i · ∏

i∈WP′P

ht
i .

Since WP′P ∪WP′P = W(P) and WP′P ∩WP′P = ∅, ∏i∈W(P) hPi
i · ∏i∈WP′P

h−Pi
i = ∏i∈W

P′P
hPi

i .

Similarly, since WP′P ∪WP′P = W(P′) and WP′P ∩WP′P = ∅, ∏i∈WP′P
ht

i · ∏i∈WP′P
ht

i =

∏i∈W(P′) ht
i . Therefore,

a′1 = gα
2(g3 · ∏

i∈W
P′P

hPi
i · ∏

i∈W
P′P

hP′i
i)r · ∏

i∈W(P′)
ht

i .

Since P ≈ P′, Pi = P′i for i ∈ WP′P.

a′1 = gα
2(g3 · ∏

i∈W
P′P

hP′i
i · ∏

i∈W
P′P

hP′i
i)r · ∏

i∈W(P′)
ht

i .

Since WP′P ∪WP′P = W(P′) and WP′P ∩WP′P = ∅, ∏i∈W
P′P

hP′i
i ·∏i∈W

P′P
hP′i

i = ∏i∈W(P′) hP′i
i .

a′1 = gα
2(g3 · ∏

i∈W(P′)

hP′i
i)r · ∏

i∈W(P′)
ht

i .

e(a2, C2) · e(a3, C4)

e(C1, a′1)

=
e(gr, (g3 ·∏i∈W(P′) hP′i

i)s) · e(gt, (∏i∈W(P′) hi)
s)

e(gs, gα
2(g3 ·∏i∈W(P′) h

P′i
i)r ·∏i∈W(P′) ht

i)

=
1

e(g, g2)sα
=

1
e(g1, g2)s .

4.3. Security Proof

In this section, we show the formal proof for IND-sID-CPA-security of SWIBE scheme in the
standard model.

Theorem 1. Let G be a bilinear group of prime order p. Suppose the decisional (t, ε, L)-BDHE assumption
holds in G. Then our SWIBE is (t′, qK, 0, ε, L) sID-CPA secure for arbitrary L, and t′ < t−O(Le+ p), where e
and p denote the execution times of scalar multiplication and pairing in G, respectively.

Electronics 2020, 9, 1453 11 of 23

Proof. Suppose A has advantage ε in attacking the SWIBE scheme. Using A, we build an algorithm B
that solves the (decisional) L-BDHE problem in G.

For a generator g ∈ G and α ∈ Z∗p, let yi = gαi ∈ G. Algorithm B is given as input a random

tuple (g, h, y1, . . . , yL, yL+2, . . . , y2L, T) that is either chosen from PBDHE where T = e(g, h)(α
L+1) or

from RBDHE where T is uniformly distributed in G1. The goal of algorithm B is to output 1 when the
input is sampled from PBDHE and 0 otherwise. Algorithm B interacts with A in a selective subset game
as follows:

Init: The game begins with A first outputting an identity vector P∗ = (P∗1 , . . . , P∗L) ∈∗ (Z∗p ∪ {∗})L.

Setup: To generate the public parameter, algorithm B picks a random γ in Zp and sets g1 = y1 = gα and
g2 = yLgγ = gγ+(αL). Next, B picks random γi ∈ Z∗p for i = 1, . . . , L, and sets hi = gγi /yL−i+1

for i ∈W(P∗) and hi = gγi for i ∈W(P∗). Algorithm B also picks a random δ in Z∗p and sets

g3 = gδ ∏L
i∈W(P∗) yP∗i

L−i+1.

Key derivation queries: Suppose that adversary B queries a key derivation query for pattern
P = (P1, . . . , PL) ∈∗ (Z∗p ∪ {∗})L. The definition of the security experiment says that P∗ 6∈∗ P.
Therefore, there exists an index k ∈ W(P) such that Pk 6= P∗k . We define k to be the smallest one

among all possible indices. B picks two random r̃, t̃ ∈ Z∗p and (implicitly) sets r ← − αk

P∗k −Pk
+ r̃ and

t← r · P∗k + t̃. Secret key skP = (a1, a2, a3, b, c, d) for P is constructed as

a1 = gα
2 · (g3 ∏

i∈W(P)h
Pi
i

)r; a2 = gr; a3 = gt

b = {bi = hr
i }i∈W(P)

c = {ci = ht
i}i∈W(P)

d = (di = ht
i /hP∗i r

i)i∈W(P)

We have
(g3 ∏

i∈W(P)

hPi
i)r = (gδ ∏

i∈W(P)

yP∗i
L−i+1 ∏

i∈W(P)

gγi Pi y−Pi
L−i+1)

r

=(gδ+∑i∈W(P) Piγi · ∏
i∈W(P)\{k}

yP∗i −Pi
L−i+1 · y

P∗k −Pk
L−k+1 · ∏

i∈W(P)
yP∗i

L−i+1)
r

We split this term up into two factors A · Z, where A = (y
P∗k −Pk
L−k+1)

r is the third product only. We can
check that Z can be computed by A, i.e., the terms yi only appear with indices i ∈ {1, . . . , L}. Term A
can be expressed as

A = g
αL−k+1(P∗k −Pk)(− αk

P∗k −Pk
+r̃)

= y−1
L+1 · y

(P∗k −Pk)r̃
L−k+1

Hence,
a1 =gα

2 · A · Z = yL+1yγ
1 · y

−1
L+1y

(P∗k −Pk)r̃
L−k+1 · Z = yγ

1 · y
(P∗k −Pk)r̃
L−k+1 · Z

can be computed by A. Furthermore,

gr = g
− αk

P∗k −Pk
+r̃

= y
− 1

P∗k −Pk
k · gr̃

and for each i ∈W(P),

hr
i = (gγi /yL−i+1)

− αk
P∗k −Pk

+r̃
= y

− γi
P∗k −Pk

k y
1

P∗k −Pk
L+k−i+1 · g

γi r̃ · y−r̃
L−i+1

ht
i = (hi)

r·P∗k +t̃ = h
P∗k r
i · ht̃

i = y
−

γi P∗k
P∗k −Pk

k y

P∗k
P∗k −Pk
L+k−i+1 · g

γi(r̃P∗k +t̃) · y−(r̃P∗k +t̃)
L−i+1

Electronics 2020, 9, 1453 12 of 23

can be computed since k 6∈W(P).
And for each i ∈W(P),

ht
i /hP∗i r

i = h
rP∗k +t̃
i /hP∗i r

i = h
(P∗k −P∗i)r+t̃
i = (gγi /yL−i+1)

(P∗k −P∗i)(−
αk

P∗k −Pk
+r̃)+t̃

=(y
− γi

P∗k −Pk
k y

1
P∗k −Pk
L+k−i+1 · g

γi r̃ · y−r̃
L−i+1)

(P∗k −P∗i) · (gγi /yL−i+1)
t̃.

If i = k, P∗k − P∗i = 0. So A can compute it. Otherwise also A can compute it since i 6= k and yL+1

does not appear in the equation.

Challenge: For the challenge, B computes C1, C2, and C4 as h, hδ+∑i∈W(P∗)(γi P∗i), and h∑i∈W(P∗) γi .
Then, it selects a random bit b ∈ {0, 1} and sets C3 = mb · T · e(y1, h)γ. It returns C = (C1, C2, C3, C4)

as a challenge to A. We claim that if T = e(g, h)(α
L+1) (i.e., the input to B is an L-BDHE tuple) then

(C1, C2, C3, C4) is a valid challenge toA as in a real attack. To see this, write h = gc for some (unknown)
c ∈ Z∗p. Then

hδ+∑i∈W(P∗)(γi P∗i) = (gδ+∑i∈W(P∗)(γi P∗i))c

= (gδ · ∏
i∈W(P∗)

yP∗i
L−i+1 ∏

i∈W(P∗)

(
gγi

yL−i+1
)P∗i)c = (g3 ∏

i∈W(P∗)

hP∗i
i)c,

h∑i∈W(P∗) γi = (g∑i∈W(P∗) γi)c = (∏
i∈W(P∗)

gγi)c

and
e(g, h)(α

L+1) · e(y1, h)γ = e(y1, yL)
c · e(y1, g)γ·c = e(y1, yLgγ)c = e(g1, g2)

c.

Therefore, by definition, e(yL+1, g)c = e(g, h)(α
L+1) = T and hence C = (C1, C2, C3, C4) is a valid

challenge to A. On the other hand, when T is randomly chosen in G1 (i.e., the input to B is a random
tuple) then C3 is just a random independent element in G1 to A.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B terminates its own game by outputting a
guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

L+1). Otherwise, it outputs 0 denoting
that T is random in G1.

When the input tuple is chosen from PBDHE (where T = e(g, h)(α
L+1)) then A satisfies

|Pr[b = b′]− 1/2| ≥ ε. When the input tuple is selected from RBDHE (where T is uniform in G1)
then Pr[b = b′] = 1/2. Therefore, with g, h uniform in G, α uniform in Zp, and T uniform in G1 we
have that

|Pr[B(g, h,~yg,α,L, e(g, h)(α
L+1)) = 0]− Pr[B(g, h,~yg,α,L, T) = 0]| ≥ |(1/2 + ε)− 1/2| = ε

5. Extension to CCA Security

In this section, we show the extension of CPA-secure SWIBE to satisfy CCA-security,
by applying the similar technique from the extension in [19]. Given any one-time signature
scheme (SigKeygen, Sign, Veri f y) with a verification key as a q-bit string, we construct an L-level
SWIBE Π = (Setup, KeyDer, Encrypt, Decrypt) secure against chosen-ciphertext attacks using the
(L + 1)-level Π′ = (Setup′, KeyDer′ Encrypt′, Decrypt′) semantically secure SWIBE. The idea is that
P = (P1, · · · , PL) ∈ {Z∗p ∪ {∗}}L in Π is mapped to P′ = (P1, · · · , PL, ∗) ∈ {Z∗p ∪ {∗}}L+1 in Π′.
Thus, the secret key skP for P in Π is the secret key skP′ in Π′. Recall that sk′P′ can generate secret keys
for all descendants of node P′. When encrypting a message m to PC = (PC1 , · · · , PCL) in Π, the sender
generates a q-bit verification key Vsig ∈ Z∗p and encrypts m to P′C = (PC1 , · · · , PCL , Vsig) using Π′.

Electronics 2020, 9, 1453 13 of 23

The construction of L-level Π utilizing (L + 1)-level Π′ and a one-time signature scheme is
as follows:

Setup(L) runs Setup′(L + 1) to obtain (pp′, msk′). Given pp′ ← (g, g1, g2, g3, h1, · · · , hL+1) and msk′,
the public parameter is pp← (g, g1, g2, g3, h1, · · · , hL) and the master secret key is msk← msk′.

KeyDer(pp, skP, Pnew) is the same as the KeyDer′ algorithm.

Encrypt(pp, P, m) runs SigKeyGen(1L) algorithm to obtain a signature signing key Ksig and a
verification key Vsig. For a given pattern P = (P1, · · · , PL), encode P to P′ = (P1, · · · , PL, Vsig),
compute C ← Encrypt′(pp′, P′, m) and σ← Sign(Ksig, C), and output CT = (C, σ, Vsig)

Decrypt(skP, CT, PC): Let CT = (C, σ, Vsig).

1. Verify that σ is the valid signature of C under the key Vsig. If invalid, output ⊥.
2. Otherwise, check P ≈ PC, generate skP′ ← KeyDer′(skP, P′) for P′ = (P1, · · · , PL, Vsig), and run

Decrypt′ (skP′ , C, PC) to extract the message.

Theorem 2. Let G be a bilinear group of prime order p. The above SWIBE Π is (t, qK, qD, ε1 + ε2, L)
CCA-secure assuming the SWIBE Π′ is (t′, q′K, 0, ε1, L + 1) semantically secure in G and signature scheme is
(t′′, ε2) strongly existentially unforgeable with qK < q′K, t < t′ − (Le + 3p)qD − ts, where e is exponential
time, p is pairing time, and ts is sum of SigKeyGen, Sign and Veri f y computation time.

Proof. Assume there exists a t-time adversary, A, such that |AdvBrA,Π − 1/2| > ε1 + ε2. We build an
algorithm B, which has advantage |AdvBrB,Π′ − 1/2| > ε1 in G. Algorithm B proceeds as follows.

Setup: B gets the public parameter pp of Π′ and also gets secret keys sk′P′ for P′ 6≈ S∗∗ from challenger C.
Since Π′ generates secret keys in a compressed way using wildcard ∗, P′ can be categorized into

the following two cases:

1. P′ = (P1, · · · , PL, ∗) for P 6∈∗ P∗

2. P′ = (P1, · · · , PL, Vsig) for P ∈∗ P∗ and Vsig 6= V∗sig.

B responds with pp and secret keys sk′P′ of the first type of P′. (Recall that the secret key skP = sk′P′
where P′ = (P1, · · · , PL, ∗.) The secret keys sk′P′ of the second type of P′ are utilized to respond to the
decryption queries of A as described in the below.

Query phase1: AlgorithmA issues decryption queries. Let (P, CT) be a decryption query where P ∈∗ P∗

and P ≈ PC where PC is a pattern of ciphertext. Let CT = ((C1, C2, C3, C4), σ, Vsig). Algorithm B
responds as following:

1. Execute Veri f y to verify the signature σ on (C1, C2, C3, C4) using verification key Vsig. If the
signature is invalid, then B responds with ⊥.

2. If Vsig = V∗sig, a forge event occurs, algorithm B outputs a random bit b $← {0, 1} and aborts the
simulation.

3. Otherwise, B decrypts the ciphertext CT using the second type of secret keys. Since Vsig 6= V∗sig,
B can query the key generation query for P′ = (P1, · · · , PL, Vsig) which is second type pattern.
Using skP′ , B can decrypt m← Decrypt′(skP′ , (C1, C2, C3, C4), P′C) where P′C = (P1, · · · , PL, Vsig)

since P′ = P′C.

Challenge:A gives the challenge (m0, m1) to B. B gives the challenge (m0, m1) to C and gets the challenge
(CTb) from C. To generate challenge for A, algorithm B computes C∗ as follows:

σ∗ ← Sign(CTb, K∗sig)

C∗ ← (CTb, σ∗, V∗sig)

Electronics 2020, 9, 1453 14 of 23

B replies C∗ to A.

Query phase2: Same as in query phase1 except can not decrypt query for C*.

Guess: The A outputs a guess b ∈ {0, 1}. B outputs b.
We see that algorithm B can simulate all queries to run A. B’s success probability as follows:

|AdvBrB,Π′ −
1
2
| ≥ |AdvBrA,Π −

1
2
| − Pr[forge] > (ε1 + ε2)− Pr[forge]

To conclude the proof of Theorem 2, the remaining process is to bound the probability that B
aborts the simulation as a result of forge, which we claim as Pr[forge] < ε2. Otherwise, one can use A to
forge signatures with a probability of at least ε2. In brief, we can construct another simulator which
knows the private key, but receives K∗sig as a challenge in an existential forgery game.

In the experiment above, A aborts by submitting a query which includes an existential forgery
under K∗sig on some ciphertexts. Our simulator utilizes the forgery to win the existential forgery
game. Note that a single chosen message query is asked by adversary A to generate a signature
for the challenge ciphertext. Thus, Pr[forge] < ε2. It now follows that B’s advantage is at least ε1

as required.

6. Fully Secure Scheme

In this section, we present a new version of SWIBE based on composite order bilinear groups,
to obtain full security (IND-ID-CPA) instead of selective security (IND-sID-CPA). In the original SWIBE
scheme (Section 4), the security proof was limited to the selective security, since the scheme was bound
to a single group. In this case, if the challenge pattern is not committed before the game, the reduction
algorithm cannot simulate secret keys (without knowing the secret factor α) for key queries from
the adversary. To resolve this issue, we now construct the scheme with parameters from multiple
subgroups similar to [14], using the fact that it is difficult to determine from which group the element
came from. When using the subgroup assumptions, for each pattern, the reduction can both simulate
the secret key in one subgroup and embed the problem in another subgroup. Therefore, the full security
can be achieved. We first introduce the definition and features of composite order bilinear groups.
Then we show the decisional subgroup assumptions from Lewko and Waters (LW.1–LW.3), and present
our composite order (fully-secure) SWIBE which also has a constant-size ciphertext. Finally, we prove
the full security of our composite order SWIBE based on LW assumptions.

6.1. Composite Order Bilinear Groups

We describe the composite order bilinear groups as in [14]. We use groups where the order is a
product of three primes and a generator G which takes security parameter λ as input and generates
a description G = (N = p1 p2 p3,G,GT , e) where p1, p2, p3 are distinct primes of Θ(λ) bits, G and GT
are cyclic groups of order N. For a, b, c ∈ {1, p1, p2, p3}, we denote the subgroup of order abc as Gabc.
Considering the fact that the group is cyclic, it is easy to verify that if g and h are group elements of
different order (belonging to different subgroups), then e(g, h) = 1.

6.2. Complexity Assumptions

We first restate the complexity assumptions we use, which were originally introduced by Lewko
and Waters in [20] and used in [14].

Assumption LW.1: For a generator G of bilinear settings, first pick a bilinear setting G $← G(1λ) and

then pick g1, T1
$← Gp1 , g3

$← Gp3 , T2
$← Gp1 p2 and set D = (G, g1, g3). We define the advantage of an

algorithm A in breaking Assumption 1 to be: AdvALW.1(λ) = |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Electronics 2020, 9, 1453 15 of 23

Assumption LW.2: For a generator G of bilinear settings, first pick a bilinear setting G $← G(1λ)

and then pick g1, X1
$← Gp1 , X2, Y2

$← Gp2 , g3, X3
$← Gp3 , T1

$← Gp1 p3 , T2
$← Gp1 p2 p3 and set

D = (G, g1, g3, X1X2, Y2X3). We define the advantage of an algorithm A in breaking Assumption 2 to
be: AdvALW.2(λ) = |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Assumption LW.3: For a generator G of bilinear settings, first pick a bilinear setting G $← G(1λ) and

then pick α, δ, s $← ZN , g1
$← Gp1 , g2, X2, Y2

$← Gp2 , g3
$← Gp3 , T2

$← GT and set T1 = e(g1, gδ
1)

αs and
D = (G, g1, g2, g3, gα

1 X2, gδ
1, gs

1Y2). We define the advantage of an algorithmA in breaking Assumption 3
to be: AdvALW.1(λ) = |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

6.3. Fully-Secure SWIBE Construction

We present the fully-secure SWIBE with constant size ciphertexts and O(L) size keys, which is
based on the composite order bilinear group (N = p1 p2 p3). Note that W from subgroup Gp3 is only a
blinding factor, to be eliminated when computed in a pairing operation (due to the orthogonal property
of composite order bilinear groups).

Setup(L): L indicates the maximum hierarchy depth. Choose a description of a bilinear group

G $← G(1λ) with known factorization and g1, k1
$← Gp1 , g3

$← Gp3 . Choose α
$← ZN and

{hi
$← Gp1}i∈[L], and compute γ = gα

1 .
The public parameter is given by

pp← (N, g1, γ, k1, g3, h1, h2, . . . , hL).

A master secret key is defined as msk = kα
1 .

KeyDer(pp, skP, P′): To compute secret key skP′ according to pattern P′ = (P′1, . . . , P′L) ∈ (Z∗p ∪ {∗})L

from the master secret key, first two randoms r, t $← ZN are chosen. Then random blinding factors

from different subgroup W1, W2, W3
$← Gp3 , {Wa,i, Wd,i

$← Gp3}i∈W(P), and {Wb,i, Wc,i
$← Gp3}i∈W(P)

are chosen. Secret key skP′ = (a′1, a′2, a′3, b′, c′, d′) for P′ is constructed as

a′1 = msk · ∏
i∈W(P′)

(hP′i
i ·Wa,i)

r ·W1

a′2 = gr
1 ·W2

a′3 = gt
1 ·W3

b′ = {b′i = hr
i ·Wb,i}i∈W(P′)

c′ = {c′i = ht
i ·Wc,i}i∈W(P′)

d′ = {d′i = ht
i /hP′i r

i ·Wd,i}i∈W(P′)

In order to generate secret key skP′ for a pattern P′ from secret key skP = (a1, a2, a3, b, c) for a pattern

P such that P′ ∈∗ P, simply choose two randoms r′, t′ $← ZN, and blinding randoms W′1, W′2, W′3
$← Gp3 ,

{W′a,i, W′d,i}i∈W(P′), and {W′b,i, W′c,i}i∈W(P′) and output skP′ = (a′1, a′2, a′3, b′, c′, d′), where

Electronics 2020, 9, 1453 16 of 23

a′1 = a1 · (∏
i∈W(P′)∩W(P)

bP′i
i) · ∏

i∈W(P′)

(hP′i
i ·W

′
a,i)

r′ ,

a′2 = a2 · gr′
1

a′3 = a3 · gt′
1

b′ = {b′i = bi · hr′
i ·W ′b,i}i∈W(P′)

c′ = {c′i = ci · ht′
i ·W ′c,i}i∈W(P′)

d′ = {d′i = di ·
ht′

i

h
P′i r′

i

·W ′d,i}i∈W(P′)∩W(P)

∪ {d′i =
ci

b
P′i
i

·
ht′

i

h
P′i r′

i

·W ′d,i}i∈W(P′)∩W(P)

Encrypt(pp, P, m): To encrypt a message m ∈ G to pattern P = (P1, . . . , PL) under pp, choose s $← Z∗p,
and compute C = (C1, C2, C3, C4)

C1 = gs
1, C2 = (∏

i∈W(P)

hPi
i)s

C3 = m · e(γ, k1)
s, C4 = (∏

i∈W(P)
hi)

s

Decrypt(skP, C, P′): The decryption is similar to the decryption in Section 4.2, since the elements in Gp1

will work in an equivalent way compared to the original SWIBE construction. Consider patterns P and
P′ ∈ (Z∗p ∪ {∗})L, where P is a key pattern and P′ is a ciphertext pattern. To decrypt a given ciphertext

C = (C1, C2, C3, C4) with private key skP = (a1, a2, a3, b, c, d), compute a′1 = a1 ·∏i∈W(P′)∩W(P) bP′i
i ·

∏i∈W(P′)∩W(P) ci ·∏i∈W(P′)∩W(P) di and output

C3 ·
e(a2, C2) · e(a3, C4)

e(C1, a′1)
= m

The fact that decryption works is similar to the decryption of original SWIBE construction in
Section 4.2. Note that the blinding factors W from subgroup Gp3 make no difference, since they will be
eliminated in the pairing operations due to the orthogonal property in Section 6.1.

6.4. Security Proof

In this section, we prove that our fully-secure SWIBE scheme in Section 6.3 is IND-ID-CPA-secure
under the Lewko and Waters assumptions (LW.1–LW.3) in Section 6.2. The security proof is based on
the hybrid games.

Before presenting hybrid games, we introduce two additional structures used in the proofs of
security similar to [14,20]:

Semi-Functional (SF) Ciphertext. Let g2 denote a generator of Gp2 . An SF ciphertext is constructed as
follows: we use the encryption algorithm to form a normal ciphertext C′ ← [C′1, C′2, C′3, C′4]. We choose

random exponents x $← ZN and zc2, zc4
$← ZN . Then we set: C1 = C′1 · gx

2 , C2 = C′2 · g
x·zc2
2 , C3 = C′3,

C4 = C′4 · g
x·zc4
2 .

Semi-Functional (SF) Keys. To generate a SF key, a normal secret key (a′1, a′2, a′3, b′, c′, d′) is first
created, using the key derivation algorithm with pp, msk, and pattern P. Then randoms are chosen:

y, zk1, zk2, zk3
$← ZN , (zkb,i, zkc,i

$← ZN)i∈W(P), and (zkd,i
$← ZN)i∈W(P). Then the SF secret key is

constructed as follows.

Electronics 2020, 9, 1453 17 of 23

a1 = a′1 · g
y·zk1
2 , b = {bi = b′i · g

y·zkb,i
2 }i∈W(P)

a2 = a′2 · g
y·zk2
2 , c = {ci = c′i · g

y·zkc,i
2 }i∈W(P)

a3 = a′3 · g
y·zk3
2 , d = {di = d′i · g

y·zkd,i
2 }i∈W(P)

Note that SF ciphertexts can be decrypted by normal secret keys and SF secret keys can be used to
decrypt normal ciphertext. But an SF ciphertext, for pattern P′, cannot be decrypted by an SF secret
key. The decryption algorithm will compute the blinding factor multiplied by the additional term
e(g2, g2)

xy·(zk2·zc2+zk3·zc4−zk1). If zk2 · zc2 + zk3 · zc4 = zk1, decryption will still work. Such ciphertexts
and secret keys are defined as nominally SF.

Theorem 3. If Assumptions LW.1, LW.2, and LW.3 hold, then our fully-secure SWIBE scheme is IND-ID-CPA
(or IND-WWID-CPA [14]) secure.

Proof. We prove the security via sets of hybrid games, and by showing that two games are
computationally indistinguishable in each step. For the sketch of our proof, we first define the series of
games. Let us assume PPT adversary Awith q key queries. Then we define q + 5 games between A
and a challenger C as follows.

• Gamereal : It is the real IND-ID-CPA (or IND-WWID-CPA [14]) security game.
• Gamegen : This game is same as Gamereal , except the fact that all key queries from the adversary is

answered by fresh key generation algorithm. In the security proof, we use the term key generation
for the key delegation from msk, which is equivalent.

• Gamepre : It is a same game as Gamegen, except the fact that the adversary cannot query for keys
if the pattern is a prefix of the challenge pattern mod p2. We say that the pattern P is a prefix of P∗

mod p2 if there exists i s.t. Pi 6= P∗i mod N and Pi = P∗i mod p2.
• Game0 : It is a same game as Gamepre, except the fact that the challenge ciphertext C1 ∼ C4 is

given as a SF ciphertext.
• Game1∼q : For k from 1 to q, Gamek is same as Game0 except the fact that the first k keys are given

as SF keys. The other keys are given as normal keys from the key generation algorithm.
• Gamerand : This game is same as Gameq, but where C3 of challenge ciphertext has a random

element in GT . Since C3 is distorted with a random element, the ciphertext is now independent
from the message and the adversary can have no advantage.

With the games defined above, we now introduce the outline of our hybrid games as follows.

1. Gamereal = Gamegen. Since the key generation algorithm has an identical distribution, it is
exactly the same to call key delegation or fresh key generation from the adversary’s view.

2. Gamegen ≈ Gamepre. We require that the adversary cannot obtain the key for prefix pattern of
challenge ciphertext, to prevent the adversary to find the nominality in SF randoms. We prove the
hybrid game by showing that prefix query itself can break the Assumption LW.2.

3. Gamepre ≈ Game0. We construct algorithm B which breaks Assumption LW.1 with a help of
SWIBE CPA distinguisher A. The nature of the challenge ciphertext (normal or SF) is decided by
T given from the Assumption LW.1, which indicates that two games are indistinguishable from
the adversary’s view.

4. Gamek−1 ≈ Gamek. We construct algorithm B which breaks Assumption LW.2 with a help of
SWIBE CPA distinguisher A. The nature of the k-th key (normal or SF) is decided by T given
from the Assumption LW.2, which indicates that two games are indistinguishable from the
adversary’s view.

5. Gameq ≈ Gamerand. We construct algorithm B which breaks Assumption LW.3 with a help
of SWIBE CPA distinguisher A. The nature of the ciphertext (SF or random) is decided by T
given from the Assumption LW.3, which indicates that two games are indistinguishable from the
adversary’s view. This concludes the proof, since the adversary can have no advantage in the
final game.

Electronics 2020, 9, 1453 18 of 23

We now give formal proofs for each hybrid game stated above.

(1) Gamereal = Gamegen.
The delegated key from the key delegation algorithm has an identical distribution as the freshly
generated key from the key generation algorithm. Therefore, it is straightforward that it is exactly the
same whether to provide the key with delegating the previous key or to provide the key from a fresh
call to the key generation algorithm.

(2) Gamegen ≈ Gamepre.
We define that pattern P = (P1, · · · , Pk) is a prefix of pattern P∗ = (P∗1 , · · · , P∗j) modulo p2, if
there exists Pi and P∗i such that Pi 6= P∗i mod N and Pi = P∗i mod p2. In this case, p2 divides
Pi − P∗i , and therefore a = gcd(Pi − P∗i , N) is a nontrivial factor of N. Since p2 divides a, let us
set b = N/a. There are two cases: (1) b is in ord(g1), or (2) b is not in ord(g1) but in ord(g3).
Suppose that case 1 has probability of at least ε/2. We describe algorithm B that breaks Assumption

LW.2. B receives (G, g1, g3, X1X2, Y2X3) and T and constructs pp and msk by choosing α, δ
$← ZN and

ηi
$← ZNi∈[L], and setting pp ← (N, g1, γ = gα

1 , k1 = gδ
1, g3, {hi = gηi

1 }i∈[L]) and msk ← kα
1 . Then B

runs A on input pp and uses knowledge of msk to answer A’s queries. At the end of the game,
B computes a = gcd(Pi − P∗i , N), for all Ps which are patterns for the key queries that A has asked,
and for P∗ which is the challenge pattern. If e((X1X2)

a, Y2X3) is the identity element of GT , B tests if
e(Tb, X1x2) is also the identity element of GT . When the second test is successful, B declares T ∈ Gp1 p3 .
Otherwise, B declares T ∈ Gp1 p2 p3 . It is from the simple fact that p2 divides a and p1 = ord(g1) divides
b. For case 2, B can break Assumption LW.2 in the same way by exchanging the roles of Gp1 and Gp3 ,
i.e., p1 and p3.

(3) Gamepre ≈ Game0.
We construct algorithm B that breaks Assumption LW.1 with the help of SWIBE CPA distinguisher A.
B first receives (G, g1, g3) and T from LW.1. Then B starts the IND-ID-CPA game with A and simulates
Gamepre or Game0 depending on the nature of T.

Setup: B chooses α, δ
$← ZN , (ηi

$← ZN)i∈[L], then set pp ← (g1, γ = gα
1 , k1 = gδ

1, g3, {hi = gηi
1 }i∈[L])

and msk← kα
1 .

Key derivation queries: B can answer all key generation queries from A since B knows msk.

Challenge: A sends B challenge message m0, m1 ∈ {0, 1}∗ and a challenge pattern P = (P1, · · · , Pl)

where 0 ≤ l ≤ L. B flips a coin ζ ← {0, 1} and computes the challenge ciphertext C as follows:

C1 = T, C2 = ∏
i∈W(P)

Tηi ·Pi

C3 = m · e(γ, Tδ), C4 = ∏
i∈W(P)

Tηi

Notice that if T ∈ Gp1 , then T can be written as gs
1 and C is a normal ciphertext with

randomness s. Instead, if T ∈ Gp1 p2 , then T can be written as gs
1gx

2 and C is SF with randomness
s, x, zc2 = ηi · Pi, zc4 = ηi.

(4) Gamek−1 ≈ Gamek.
We construct algorithm B that breaks Assumption LW.2 with the help of SWIBE CPA distinguisher A.
B first receives (G, g1, g3, X1X2, Y2X3) and T from LW.2. Then B starts the IND-ID-CPA game with A
and simulates Gamek−1 or Gamek depending on the nature of T.

Setup: B chooses α, δ
$← ZN , (ηi

$← ZN)i∈[L], then set pp ← (g1, γ = gα
1 , k1 = gδ

1, g3, {hi = gηi
1 }i∈[L])

and msk← kα
1 .

Key derivation queries: There are three cases for the i-th key query with pattern P.

Electronics 2020, 9, 1453 19 of 23

(i) case 1: i < k. Choose SF randoms zk1, zk2, zk3
$← ZN , and (zkb,i, zkc,i

$← ZN)i∈W(P),

and (zkd,i
$← ZN)i∈W(P). Then choose random r, t $← ZN , W1, W2, W3

$← Gp3 , {Wa,i, Wd,i
$← Gp3}i∈W(P),

and {Wb,i, Wc,i
$← Gp3}i∈W(P). Then we set the skP as follows:

a1 = msk · ∏
i∈W(P′)

(hPi
i ·Wa,i)

r · (Y2X3)
zk1 ·W1

a2 = gr
1 · (Y2X3)

zk2 ·W2

a3 = gt
1 · (Y2X3)

zk3 ·W3

b = {bi = hr
i · (Y2X3)

zkb,i ·Wb,i}i∈W(P)

c = {ci = ht
i · (Y2X3)

zkc,i ·Wc,i}i∈W(P)

d = {di = ht
i /hP′i r

i · (Y2X3)
zkd,i ·Wd,i}i∈W(P)

By writing Y2 as gy
2 , we have that this is a properly distributed SF key with randomness y,

zk1∼3, zkb∼d.
(ii) case 2: i > k. B runs key generation algorithm using msk.

(iii) case 3: i = k. To answer the k-th key query, B chooses r′, t′ $← ZN , W1, W2, W3
$← Gp3 ,

{Wa,i, Wd,i
$← Gp3}i∈W(P), and {Wb,i, Wc,i

$← Gp3}i∈W(P). Then the skP is constructed as follows:

a1 = msk · ∏
i∈W(P′)

(Tηi ·Pi ·Wa,i)
r′ ·W1

a2 = Tr′ ·W2

a3 = Tt′ ·W3

b = {bi = Tηi ·r′ ·Wb,i}i∈W(P)

c = {ci = Tηi ·t′ ·Wc,i}i∈W(P)

d = {di = Tηi(t′−Pir′) ·Wd,i}i∈W(P)

Notice that, if T ∈ Gp1 p3 , T can be written as gr
1gw

3 and the k-th secret key is a normal key
with randomness rr′, rt′. Otherwise, if T ∈ Gp1 p2 p3 , T can be written as gr

1gy
2 gw

3 and the k-th secret
key is SF with randomness rr′, rt′, y, zk1 = ∑i∈W(P) ηiPi, zk2 = r′, zk3 = t′, zkb,i = ηir′, zkc,i = ηit′,
zkd,i = ηi(t′ − Pir′).

Challenge: A sends B challenge message m0, m1 ∈ {0, 1}∗ and a challenge pattern P = (P1, · · · , Pl)

where 0 ≤ l ≤ L. B flips a coin ζ ← {0, 1} and computes the challenge ciphertext C as follows:

C1 = X1X2, C2 = ∏
i∈W(P)

(X1X2)
ηi ·Pi

C3 = m · e(γ, (X1X2)
δ), C4 = ∏

i∈W(P)
(X1X2)

ηi

Notice that T can be written as gs
1, and therefore this is a proper SF ciphertext with randomness

s, x, zc2 = ∑i∈W(P) xηiPi, zc4 = ∑i∈W(P) xηi.
Since the k-th secret key pattern is not a prefix of the challenge pattern modulo p2, we have that zk

set and zc set are independent and randomly distributed. If B checks that the k-th key is SF by using the
above procedure (to create an SF ciphertext for k-th secret key pattern), then zk2 · zc2 + zk3 · zc4 = zk1,
which is nominally SF, and thus decryption always works (independently of T).

Electronics 2020, 9, 1453 20 of 23

(5) Gameq ≈ Gamerand.
We construct algorithm B that breaks Assumption LW.3 with the help of SWIBE CPA distinguisher
A. B first receives (G, g1, g2, g3, gα

1 X2, gδ
1, gs

1Y2) and T from LW.3. Then B starts the IND-ID-CPA game
with A and simulates Gameq or Gamerand depending on the nature of T.

Setup: B chooses (ηi
$← ZN)i∈[L], then set pp← (g1, γ = gα

1 X2, k1 = gδ
1, g3, {hi = gηi

1 }i∈[L]).

Key derivation queries: For pattern P = (P1, · · · , Pl) where 0 ≤ l ≤ L, B chooses zk′1, zk′2, zk′3
$← ZN ,

and (zk′b,i, zk′c,i
$← ZN)i∈W(P), and (zk′d,i

$← ZN)i∈W(P). Next it chooses r, t $← ZN , W1, W2, W3
$← Gp3 ,

{Wa,i, Wd,i
$← Gp3}i∈W(P), and {Wb,i, Wc,i

$← Gp3}i∈W(P). Then it creates a SF secret key by setting:

a1 = (gα
1 X2) · ∏

i∈W(P)

(hPi
i ·Wa,i)

r · gzk′1
2 ·W1

a2 = gr
1 · g

zk′2
2 ·W2

a3 = gt
1 · g

zk′3
2 ·W3

b = {bi = hr
i · g

zk′b,i
2 ·Wb,i}i∈W(P)

c = {ci = ht
i · g

zk′c,i
2 ·Wc,i}i∈W(P)

d = {di = ht
i /hP′i r

i · g
zk′d,i
2 ·Wd,i}i∈W(P)

Challenge: A sends B challenge message m0, m1 ∈ {0, 1}∗ and a challenge pattern P = (P1, · · · , Pl)

where 0 ≤ l ≤ L. B flips a coin ζ ← {0, 1} and computes the challenge ciphertext C as follows:

C1 = gs
1Y2, C2 = ∏

i∈W(P)

(gs
1Y2)

ηi ·Pi

C3 = m · T, C4 = ∏
i∈W(P)

(gs
1Y2)

ηi

This sets zc2 = ∑i∈W(P) ηiPi, zc4 = ∑i∈W(P) ηi. We note that gηi
1 are elements of Gp1 , so when ηi are

randomly chosen from ZN , their value mod p1 and mod p2 are random and independent. We observe
that, if T = e(g1, gδ

1)
αs, then the challenge ciphertext is a properly distributed SF with message mζ .

Otherwise, if T $← GT , then the ciphertext is an SF with a random message.
Since the adversary has no advantage in Gamerand (where ζ is information-theoretically hidden),

and by hybrid game Gamerand is indistinguishable from GameReal , we conclude that the adversary in
GameReal has a negligible advantage.

7. Experiment

In this section, we show the experimental results by implementing SWIBE on an Intel Edison
IoT machine with 32-bit 500 Mhz Atom processor and ublinux 3.10.17. We also implemented
WIBE [11], WKD-IBE [13], WW-IBE [14], and constant CP-ABE (CCP-ABE) [3] on the same environment,
and provide a comparison on encryption and decryption times.

Figure 1 shows the encryption and decryption times of SWIBE, WIBE, and CCP-ABE when
increasing the maximal pattern depth (L) from 5 to 20. Note that SWIBE has more advanced
functionality since SWIBE can support wildcards in both encryption and key generation, while WIBE
and CCP-ABE allow for wildcards only in encryption. In CCP-ABE, each ID bit is considered as an
attribute, and we assumed each pattern as 32-bit. The decryption time in CCP-ABE is slower, since the
decryption process of the CCP-ABE involves multiple pairing operations proportional to the number of
attributes. In the WIBE, when the user receives the ciphertext, the user needs to delegate the ciphertext

Electronics 2020, 9, 1453 21 of 23

to match his own specific ID pattern, which costs point multiplications. However, in SWIBE, the user
can simply adjust the secret key of his pattern to the ciphertext pattern, which costs only negligible
point additions. Therefore, the decryption time in SWIBE remains as constant; SWIBE improves the
decryption time by up to 3 times compared with the WIBE, and 650 times compared with the CCP-ABE.

5 10 15 20
10−1

100

101

102

The maximal depth (L) of a pattern

Ti
m

e
(s

)

SWIBE-enc
WIBE-enc

CCP-ABE-enc
SWIBE-dec
WIBE-dec

CCP-ABE-dec

Figure 1. Encryption and decryption time in SWIBE, WIBE, and CCP-ABE.

Figure 2 shows the encryption times and decryption times of SWIBE and WKD-IBE, when varying
the maximal pattern depth (L) from 5 to 20. Note that the WKD-IBE allows the wildcard only in the
key derivation, while SWIBE can include wildcards in both encryption and key derivation. Despite the
better functionality, the encryption time and decryption time of SWIBE is almost identical to the results
in WKD-IBE.

5 10 15 20

0.2

0.4

0.6

0.8

1

The maximal depth (L) of a pattern

Ti
m

e
(s

)

SWIBE-enc
WKD-IBE-enc

SWIBE-dec
WKD-IBE-dec

Figure 2. Encryption and decryption time in SWIBE and WKD-IBE.

Figure 3 shows the encryption times and decryption times of SWIBE and WW-IBE, when varying
the maximal pattern depth (L) from 5 to 20. Both encryption time and decryption time in SWIBE is
faster than that of the WW-IBE, since WW-IBE involves heavy composite order pairing groups for
encryption and requires 2L pairing operations in decryption; SWIBE improves the decryption time by
10 times compared with the WW-IBE.

Electronics 2020, 9, 1453 22 of 23

5 10 15 20

0

2

4

6

The maximal depth (L) of a pattern

Ti
m

e
(s

)

SWIBE-enc
WW-IBE-enc
SWIBE-dec

WW-IBE-dec

Figure 3. Encryption and decryption time in SWIBE and WW-IBE.

8. Conclusions

In this paper, we propose a scalable wildcarded identity-based encryption (SWIBE), which is a
new wildcarded identity-based encryption (WIBE) which first achieves the constant-size ciphertext.
SWIBE supports the wildcard to be included both in encryption and key derivation, where one
can encrypt messages to a group of users by using wildcards in the pattern, and one can delegate
the secret key from the wildcard pattern to another identity string. We propose a standard
IND-sID-CPA-secure SWIBE, and extend it to the IND-sID-CCA-secure SWIBE, both with formal
security proofs. Then we also propose the fully-secure version of SWIBE, which overcomes the
selective security. Our experimental results show that SWIBE improves the decryption time by 3, 10,
and 650 times compared with the WIBE, WW-IBE, and CCP-ABE.

Author Contributions: Conceptualization, J.K. and H.O.; methodology, J.K. and H.O.; software, J.L. and S.L.;
validation, J.L. and S.L.; writing—original draft preparation, J.L. and S.L.; writing—review and editing, J.K., J.L.,
S.L., and H.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Ministry of Science and ICT Korea (2017-0-00661, 2016-6-00599).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the
IEEE Computer Society, Berkeley, CA, USA, 20–23 May 2007; pp. 321–334.

2. Emura, K.; Miyaji, A.; Nomura, A.; Omote, K.; Soshi, M. A Ciphertext-Policy Attribute-Based Encryption
Scheme with Constant Ciphertext Length. In Proceedings of the Information Security Practice and Experience,
5th International Conference (ISPEC 2009), Xi’an, China, 13–15 April 2009; pp. 13–23.

3. Zhou, Z.; Huang, D. On efficient ciphertext-policy attribute based encryption and broadcast encryption:
Extended abstract. In Proceedings of the 17th ACM Conference on Computer and Communications Security
(CCS 2010), Chicago, IL, USA, 4–8 October 2010; pp. 753–755.

4. Shamir, A. Identity-based cryptosystems and signature schemes. In Proceedings of the Workshop on the
Theory and Application of Cryptographic Techniques, Paris, France, 9–11 April 1984; pp. 47–53.

5. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. In Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001; pp. 213–229.

6. Waters, B. Efficient identity-based encryption without random oracles. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
22–26 May 2005; pp. 114–127.

7. Boneh, D.; Boyen, X.; Goh, E.J. Hierarchical identity based encryption with constant size ciphertext.
In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, 22–26 May 2005; pp. 440–456.

Electronics 2020, 9, 1453 23 of 23

8. Boneh, D.; Gentry, C.; Waters, B. Collusion resistant broadcast encryption with short ciphertexts and
private keys. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA,
14–18 August 2005; pp. 258–275.

9. Liu, W.; Liu, J.; Wu, Q.; Qin, B. Hierarchical Identity-Based Broadcast Encryption. In Proceedings of
the Australasian Conference on Information Security and Privacy, Wollongong, Australia, 7–9 July 2014;
Volume 14, pp. 242–257.

10. Boneh, D.; Hamburg, M. Generalized identity based and broadcast encryption schemes. In Proceedings
of the International Conference on the Theory and Application of Cryptology and Information Security,
Melbourne, Australia, 7–11 December 2008; pp. 455–470.

11. Abdalla, M.; Catalano, D.; Dent, A.W.; Malone-Lee, J.; Neven, G.; Smart, N.P. Identity-based encryption
gone wild. In Proceedings of the International Colloquium on Automata, Languages, and Programming,
Venice, Italy, 10–14 July 2006; pp. 300–311.

12. Birkett, J.; Dent, A.W.; Neven, G.; Schuldt, J.C.N. Efficient chosen-ciphertext secure identity-based encryption
with wildcards. In Proceedings of the Australasian Conference on Information Security and Privacy,
Townsville, Australia, 2–4 July 2007; pp. 274–292.

13. Abdalla, M.; Kiltz, E.; Neven, G. Generalized key delegation for hierarchical identity-based encryption.
In Proceedings of the European Symposium on Research in Computer Security, Dresden, Germany,
24–26 September 2007; pp. 139–154.

14. Abdalla, M.; Caro, A.D.; Phan, D.H. Generalized Key Delegation for Wildcarded Identity-Based and
Inner-Product Encryption. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1695–1706. [CrossRef]

15. Kim, J.; Lee, S.; Lee, J.; Oh, H. Scalable wildcarded identity-based encryption. In Proceedings of the European
Symposium on Research in Computer Security, Barcelona, Spain, 3–7 September 2018; pp. 269–487.

16. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. SIAM J. Comput. 2003, 32, 586–615.
[CrossRef]

17. Joux, A. Multicollisions in iterated hash functions. Application to cascaded constructions. In Proceedings of
the Annual International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2004; pp. 306–316.

18. Boneh, D.; Boyen, X. Efficient Selective Identity-Based Encryption without Random Oracles. J. Cryptol. 2011,
24, 659–693. [CrossRef]

19. Canetti, R.; Halevi, S.; Katz, J. Chosen-ciphertext security from identity-based encryption. In Proceedings
of the International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, 2–6 May 2004; pp. 207–222.

20. Lewko, A.; Waters, B. New techniques for dual system encryption and fully secure HIBE with
short ciphertexts. In Proceedings of the Theory of Cryptography Conference, Zurich, Switzerland,
9–11 February 2010; pp. 455–479.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIFS.2012.2213594
http://dx.doi.org/10.1137/S0097539701398521
http://dx.doi.org/10.1007/s00145-010-9078-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Identity-Based Encryption
	Hierarchical IBE
	Bilinear Groups and Pairings
	Computational Complexity Assumptions

	Model
	The Proposed Scheme
	Overview: BBG-HIBE and Our Idea
	SWIBE Construction
	Security Proof

	Extension to CCA Security
	Fully Secure Scheme
	Composite Order Bilinear Groups
	Complexity Assumptions
	Fully-Secure SWIBE Construction
	Security Proof

	Experiment
	Conclusions
	References

