
electronics

Article

A Fast-Converging Scheme for the Electromagnetic
Scattering from a Thin Dielectric Disk

Mario Lucido 1,* , Mykhaylo V. Balaban 2, Sergii Dukhopelnykov 2

and Alexander I. Nosich 2

1 Department of Electrical and Information Engineering “Maurizio Scarano” (DIEI), University of Cassino and
Southern Lazio, 03043 Cassino, Italy

2 Laboratory of Micro and Nano Optics, Institute of Radio-Physics and Electronics of the National Academy of
Sciences of Ukraine (IRE-NASU), 61085 Kharkiv, Ukraine; mikhail.balaban@gmail.com (M.V.B.);
dukh.sergey@gmail.com (S.D.); anosich@yahoo.com (A.I.N.)

* Correspondence: lucido@unicas.it; Tel.: +39-0776-299-4310

Received: 11 July 2020; Accepted: 27 August 2020; Published: 6 September 2020
����������
�������

Abstract: In this paper, the analysis of the electromagnetic scattering from a thin dielectric disk
is formulated as two sets of one-dimensional integral equations in the vector Hankel transform
domain by taking advantage of the revolution symmetry of the problem and by imposing the
generalized boundary conditions on the disk surface. The problem is further simplified by means of
Helmholtz decomposition, which allows to introduce new scalar unknows in the spectral domain.
Galerkin method with complete sets of orthogonal eigenfunctions of the static parts of the integral
operators, reconstructing the physical behavior of the fields, as expansion bases, is applied to
discretize the integral equations. The obtained matrix equations are Fredholm second-kind equations
whose coefficients are efficiently numerically evaluated by means of a suitable analytical technique.
Numerical results and comparisons with the commercial software CST Microwave Studio are provided
showing the accuracy and efficiency of the proposed technique.

Keywords: thin disk; Galerkin method; integral equations

1. Introduction

Many applications in the framework of frequency-selective surfaces, graphene structures,
radome design, microstrip antennas and antenna arrays, just as examples, involve thin layers of
dielectric/conducting materials [1–10]. For these reasons, such structures have been extensively studied
in the past decades and even more recently. The literature devoted to this subject is principally
focused on finding approximate solutions based on Rayleigh-Gans or physical optics techniques, or on
proposing suitable numerical methods to achieve more accurate solutions. In the last case, when the
thickness of the involved structure is much less than the free-space wavelength, the classical 3D
approaches reveal to be not particularly suitable in terms of computation time, storage requirements
and they can even suffer from lack of convergence.

On the other hand, the problem can be significantly simplified if the scatterer is approximated as a
surface with the fields satisfying suitable boundary conditions, generally called generalized boundary
conditions [11,12]. In such a case, surface integral equation formulations for the effective electric and/or
magnetic current densities, taking into account the radiation conditions of the fields, are particularly
attractive because the integral equations and the unknowns are defined on a finite support [12,13].

The discretization of the obtained equation is, however, a key point because the convergence of
the approximate solution to the exact one cannot be generally established [14]. Moreover, it can lead to
a huge ill-conditioned matrix to be numerically inverted. Sometimes, compression techniques [15,16]
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and/or suitable discretization schemes [17–19] can be usefully applied. However, a general way to
overcome these problems is to recast the integral equation in hand as a Fredholm second-kind integral
equation by analytically inverting a part of the operator containing the most singular one [20]. Then,
due to the Fredholm’s theory, every discretization scheme preserving the Fredholm’s nature of the
obtained second-kind integral equation is a convergent scheme [21].

A different approach consists in properly select the discretization scheme in order to obtain a
guaranteed convergence matrix equation [20]. This means that regularization and discretization are
condensed in a single step. The wide literature devoted to this subject, in the context of the analysis of
propagation, radiation and scattering problems, have demonstrated that one way to reach this goal is
the application of the Galerkin method with a suitable selection of the expansion functions such that the
most singular part of the discretized operator is invertible with a continuous two-side inverse, and the
remaining part is a compact operator [22–32]. Moreover, if the physical behavior of the unknowns is
properly reconstructed by the expansion functions, the convergence is even fast, i.e., highly accurate
results can be achieved by means of a small size coefficients’ matrix, with an obvious advantage in
terms of computation time and storage requirement.

In this paper, an analytically regularizing approach for the analysis of the electromagnetic
scattering from a thin dielectric disk in a homogeneous medium is presented. Two independent
surface integral equations for the effective electric and magnetic currents, respectively, are obtained by
imposing the generalized boundary conditions on the disk surface. Due to the revolution symmetry of
the problem, all the involved functions are conveniently expanded in Fourier series and the surface
integral equations are recast as sets of one-dimensional integral equations in the spectral domain for
the components of each harmonic of the vector Hankel transforms (VHTs) of the effective currents.
Helmholtz decomposition allows to further simplify the problem by introducing new scalar unknowns
to be discretized. Galerkin method with complete sets of orthogonal eigenfunctions of the static parts
of the involved integral operators, reconstructing the behavior of the unknowns at the edge and around
the center of the disk, as expansion bases is used to discretize the integral equations. In this way,
the Galerkin projection acts as a perfect preconditioner and the obtained matrix equations are the
Fredholm second-kind matrix operator equations. Moreover, the convolution integrals are reduced to
algebraic products in the spectral domain. Hence, the resulting matrix coefficients are combinations of
one-dimensional improper integrals efficiently evaluated by means of a suitable analytical procedure.
The presented numerical results and the comparisons with the commercial software CST Microwave
Studio (CST-MWS) clearly show the accuracy and efficiency of the proposed technique.

This paper is organized as follows: Section 2 is devoted to the formulation and solution of the
problem, Section 3 shows the numerical results, Section 4 is dedicated to the conclusions and an
Appendix A concludes the paper.

2. Formulation and Solution of the Problem

2.1. Integral Equations in the Spectral Domain

In Figure 1, a thin dielectric disk of radius a, thickness τ, dielectric permittivity ε and magnetic
permeability µ is immersed in free space of dielectric permittivity ε0 and magnetic permeability
µ0. A cylindrical coordinate system (ρ,φ, z) with the origin at the center of the disk and the z axis
orthogonal to it is introduced.
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Figure 1. Geometry of the problem: (a) a thin dielectric disk, of radius a, thickness τ , dielectric 
permittivity ε  and magnetic permeability μ , immersed in free space of dielectric permittivity 0ε  
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are the electric and magnetic resistivities of the disk, respectively. It is interesting to observe that the 
integral Equations (1a) and (1b) are decoupled for the problem in hand [11]. 

The uniqueness of the solution is guaranteed by requiring that the fields components satisfy, 
additionally, the edge conditions and the radiation conditions [20]. 
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series. Hence, the surface integral equations for the effective electric and magnetic currents can be 
equivalently reduced to two infinite sets of independent one-dimensional integral equations: 

( ) ( ) ( ) ( ) ( ) ( ), 0 , 0sc n n inc n
eRρ ρ ρ− = −E J E , (4a)

Figure 1. Geometry of the problem: (a) a thin dielectric disk, of radius a, thickness τ, dielectric
permittivity ε and magnetic permeability µ, immersed in free space of dielectric permittivity ε0 and
magnetic permeability µ0; (b) a plane wave impinging onto the disk surface with propagation direction
(θ0,φ0).

A plane wave, i.e., Einc(r) = E0e− jk·r and Hinc(r) =
√
ε0/µ0k̂ × E0e− jk·r, where k =

−k0(sinθ0 cosφ0x̂ + sinθ0 sinφ0 ŷ + cosθ0ẑ) is the propagation vector, k0 = 2π/λ = ω
√
ε0µ0 is the

free-space wavenumber, λ is the free-space wavelength, ω is the angular frequency, (θ0,φ0) identifies
the propagation direction and r = xx̂ + yŷ + zẑ, impinges onto the disk surface generating a scattered
electromagnetic field (Esc(r), Hsc(r)). If

∣∣∣εµ∣∣∣� ε0µ0, τ� a and τ� λ, the disk can be approximated
as a flat zero-thickness surface, on which the following generalized boundary conditions have to be
satisfied [11,12,18]:

ẑ×
(
Etot

(
ρ,φ, 0+

)
+ Etot(ρ,φ, 0−)

)
× ẑ = Re J(ρ,φ), (1a)

ẑ×
(
Htot

(
ρ,φ, 0+

)
+ Htot(ρ,φ, 0−)

)
× ẑ = RmM(ρ,φ), (1b)

for ρ ≤ a, where
(
Etot(r), Htot(r)

)
denotes the total electromagnetic field:

J(ρ,φ) = ẑ×
(
Hsc

(
ρ,φ, 0+

)
−Hsc(ρ,φ, 0−)

)
, (2a)

M(ρ,φ) = −ẑ×
(
Esc

(
ρ,φ, 0+

)
− Esc(ρ,φ, 0−)

)
, (2b)

are the effective electric and magnetic currents, respectively, and:

Re = − j

√
µ

ε
cot

(
k0τ
2

√
εµ

ε0µ0

)
, (3a)

Rm = − j
√
ε
µ

cot
(

k0τ
2

√
εµ

ε0µ0

)
, (3b)

are the electric and magnetic resistivities of the disk, respectively. It is interesting to observe that the
integral Equations (1a) and (1b) are decoupled for the problem in hand [11].

The uniqueness of the solution is guaranteed by requiring that the fields components satisfy,
additionally, the edge conditions and the radiation conditions [20].

The revolution symmetry of the problem allows to expand all the involved functions in Fourier
series. Hence, the surface integral equations for the effective electric and magnetic currents can be
equivalently reduced to two infinite sets of independent one-dimensional integral equations:

Esc(n)(ρ, 0) −ReJ(n)(ρ) = −Einc(n)(ρ, 0), (4a)

Hsc(n)(ρ, 0) −RmM(n)(ρ) = −Hinc(n)(ρ, 0), (4b)
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for ρ ≤ a, where the apex n denotes the n-th term of the Fourier series, the symbol:

P(n)(·) =

 P(n)
ρ (·)

− jP(n)
φ

(·)

 (5)

has been introduced, and the n-th harmonics of the scattered electric and magnetic fields, respectively,
can be expressed in the spectral domain as follows [32]:

Esc(n)(ρ, 0) =

+∞∫
0

H(n)(wρ)
∼

G
e
(w)

∼

J
(n)

(w)wdw (6a)

Hsc(n)(ρ, 0) =

+∞∫
0

H(n)(wρ)
∼

G
m
(w)

∼

M
(n)

(w)wdw (6b)

where:

H(n)(wρ) =
(

J′n(wρ) nJn(wρ)/(wρ)
nJn(wρ)/(wρ) J′n(wρ)

)
, (7)

Jn(·) and J′n(·) are the Bessel function of the first kind and order n and its first derivative with respect
to the argument, respectively [33]:

∼

G
r
(w) =


∼

Gr,C(w) 0

0
∼

Gr,D(w)

 = 1
2ωχr

 −
√

k2
0 −w2 0

0 −k2
0/

√
k2

0 −w2

 (8)

with r ∈ {e, m}, χe = ε0, χm = µ0,
√

k2
0 −w2 = − j

√
−k2

0 + w2, and the following definition of the VHT
of order n (VHTn) has been introduced [34]:

∼

P
(n)

(w) = VHTn
(
P(n)(ρ)

)
=

+∞∫
0

H(n)(wρ)P(n)(ρ)ρdρ. (9)

Observing that [34]:

P(n)(ρ) = VHT−1
n

(
∼

P
(n)

(w)

)
=

+∞∫
0

H(n)(wρ)
∼

P
(n)

(w)wdw, (10)

the Equations (4) can be immediately rewritten as follows:

+∞∫
0

H(n)(wρ)
(
∼

G
e
(w) −ReI

)
∼

J
(n)

(w)wdw = −Einc(n)(ρ, 0), (11a)

+∞∫
0

H(n)(wρ)
(
∼

G
m
(w) −RmI

)
∼

M
(n)

(w)wdw = −Hinc(n)(ρ, 0), (11b)

where I is the identity matrix operator.
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2.2. Helmholtz Decomposition

Therefore, the problem in hand has been formulated in terms of two infinite sets of one-dimensional
integral equations in the spectral domain for the VHT of the harmonics of the effective currents, which are
vector functions. On the other hand, the problem can be further simplified by means of the Helmholtz
decomposition which leads to scalar unknowns instead of vector ones.

Let P(ρ,φ) be the effective electric/magnetic current density. Due to the Helmholtz decomposition,
it can be written as the superposition of a surface curl-free contribution PC(ρ,φ) = ∇sΦC(ρ,φ) and a
surface divergence-free contribution PD(ρ,φ) = ẑ×∇sΦD(ρ,φ), where ∇s = ρ̂ ∂

∂ρ + φ̂
1
ρ
∂
∂φ and ΦT(ρ,φ)

with T ∈ {C, D} are suitable potential functions [35]. Moreover, the n-th harmonic of PT(ρ,φ) with
T = C or T = D can be immediately written as a function of the n-th harmonic of the corresponding
potential function, i.e.,

P(n)
C (ρ) =

 d
dρ
n
ρ

Φ(n)
C (ρ), (12a)

P(n)
D (ρ) = − j

 n
ρ
d

dρ

Φ(n)
D (ρ). (12b)

It is possible to demonstrate (see Appendix A) that the VHTn of the function P(n)
T (ρ) has only one

non-vanishing component, i.e.,
∼

P
(n)

C (w) =

 ∼P(n)

C (w)

0

, (13a)

∼

P
(n)

D (w) = − j

 0
∼

P
(n)

D (w)

, (13b)

where:
∼

P
(n)

T (w) =

+∞∫
0

Jn(wρ)Φ
(n)
T (ρ)wρdρ. (14)

Henceforth, the functions (13) are assumed as new unknowns in the spectral domain.

2.3. Discretization of the Integral Equations

The obtained integral equations are discretized by means of the Galerkin method. Following the
line of reasoning in [32], it is possible to show that the behavior of the n-th harmonic of the effective
currents at the edge and around the center of the disk is correctly reconstructed by expanding the

unknown functions
∼

P
(n)

T (w) in complete series of weighted Bessel functions [32,36], i.e.,

∼

P
(n)

T (w) =
+∞∑

h=−1+δn,0

γ
(n)
T,h

√
2η(n)T,h

J
η
(n)
T,h
(aw)

wpT
. (15)

where δn,m is the Kronecker delta, γ(n)T,h denote the expansion coefficients, η(n)T,h = |n| + 2h + p T + 1

and pC = 3/2 while pD = 1. Moreover, the relation γ(n)D,−1 =
jsgn(n)|n|!
Γ(|n|+3/2)

√
a(|n|+1/2)

2|n| γ
(n)
C,−1 for n , 0 can be

established by imposing the currents to be vanishing outside the disk surface.
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Due to the spectral domain formulation, the convolution integrals are reduced to algebraic
products. Hence, the coefficients of the obtained matrix equations can be readily expressed as
combinations of one-dimensional integrals of the kind:

I(n)r,T,k,h = 2

√
η
(n)
T,kη

(n)
T,h

+∞∫
0

∼

Kr,T(w) J
η
(n)
T,k
(aw) J

η
(n)
T,h
(aw) dw, (16)

where:
∼

Kr,T(w) =

∼

Gr,T(w) −Rr

w2pT−1
. (17)

By extracting the asymptotic behavior of the kernel in (16), i.e.,
∼

Kr,T(w)
w→∞
∼

∼

K
∞

r,T(w) =
κr,T
w ,

and using the well-known Weber-Schafheitlin discontinuous integral [37], the following alternative
expression for the integral in (16) can be obtained:

I(n)r,T,k,h = 2

√
η
(n)
T,kη

(n)
T,h

+∞∫
0

(
∼

Kr,T(w) −
κr,T

w

)
J
η
(n)
T,k
(aw) J

η
(n)
T,h
(aw) dw + κr,Tδk,h. (18)

Since it is possible to demonstrate that the matrix operators associated to the first term at the right
hand side of (18) are compact operators in l2 [32], the obtained equations are the Fredholm second-kind
matrix operator equations in l2 [21], and the convergence of the discretization scheme is guaranteed.

The numerical convergence of improper integrals of oscillating functions with an algebraic decay
like the one in (18) can be time-consuming when highly accurate results are searched for. This problem
can be completely overcome by adopting the analytical procedure in the complex plane developed
in [38], which leads to the numerical evaluation of fast converging proper integrals.

3. Results and Discussion

An approximate solution can be obtained by truncating the obtained infinite matrix equations.
In order to show the fast convergence of the presented method, the following normalized truncation
error is introduced:

errN(M) =

√√√ N−1∑
n=−N+1

‖x(n)M+1 − x(n)M ‖
2
/

N−1∑
n=−N+1

‖x(n)M ‖
2
, (19)

where 2N − 1 is the number of considered harmonics estimated as in [39], ‖·‖ is the usual Euclidean
norm and x(n)M is the vector of all the expansion coefficients evaluated by using M expansion functions
for each unknown. All the simulations are performed on a laptop equipped with an Intel Core
i7-8550u 1.8 GHz CPU and 16 GB RAM, running Windows 10 and the integrals of the coefficients’
matrix evaluated by means of an adaptive Gauss-Legendre quadrature routine implemented in the
Matlab environment.

In Figure 2, the normalized truncation error, when a plane wave with incidence direction θ0 = 45◦,
φ0 = 0◦, electric field amplitude

∣∣∣E0

∣∣∣ = 1 V/m, TE incidence and TM incidence impinges onto a disk
with a normalized radius k0a = 1, 3, 5, thickness τ = 0.05a, dielectric permittivity ε = (10.5− j0.3)ε0

and magnetic permeability µ = µ0, is plotted as a function of M for N = 5, 9, 11, respectively.
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As can be seen in Figure 2, the convergence is very fast in all the examined cases. Indeed, in the 
worst case, an error less than 210−  is achieved form M = 10, while M = 18 allows to obtain an error 
less than 310− . Moreover, an increased normalized radius leads only to a greater number of 
harmonics to be used. This is because the values of the electric and magnetic resistivities are functions 
of the normalized thickness ( 0k τ ) and, therefore, a change in the normalized radius can increase or 

Figure 2. Normalized truncation error for disks with different radii (k0a = 1, 3, 5). N = 5, 9, 11, τ = 0.05a,
ε = (10.5− j0.3)ε0, µ = µ0, θ0 = 45◦, φ0 = 0◦,

∣∣∣E0

∣∣∣ = 1 V/m, (a) TE incidence and (b) TM incidence.

As can be seen in Figure 2, the convergence is very fast in all the examined cases. Indeed, in the
worst case, an error less than 10−2 is achieved form M = 10, while M = 18 allows to obtain an error less
than 10−3. Moreover, an increased normalized radius leads only to a greater number of harmonics
to be used. This is because the values of the electric and magnetic resistivities are functions of the
normalized thickness (k0τ) and, therefore, a change in the normalized radius can increase or decrease
the rate of convergence. In Figure 3, the normalized truncation error is plotted as a function of M for
three incidence directions, i.e., for θ0 = 0◦, 45◦, 90◦ and φ0 = 0◦, and for

∣∣∣E0

∣∣∣ = 1 V/m, TE incidence
and TM incidence, N = 2, 9, 11, k0a = 3, ε = (10.5− j0.3)ε0, µ = µ0. As expected, a change in the
incident angle θ0 affects the number of harmonics to be used in order to achieve a given accuracy.
On the other hand, for TE incidence, the change of θ0 does not significantly affect the number of
expansion functions to be used while, for TM incidence, the convergence is even faster if θ0 is larger.
To conclude, it is worth noting that a normalized truncation error less than 10−3 can be achieved in the
worst of the cases examined in this paper by filling a coefficient matrix of about 50,000 elements, with a
computation time less than 2 min.
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∣∣∣E0

∣∣∣ = 1 V/m, (a) TE incidence
and (b) TM incidence.

As clearly stated before, the convergence of the proposed method is guaranteed. Hence,
comparisons with CST-MWS are just provided in order to validate the numerical implementation and
to show the accuracy and the efficiency of the proposed approach.
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In Figure 4 the Bistatic Radar Cross Section (BRCS) for a disk with k0a = 3, τ = 0.05a,
ε = (10.5− j0.3)ε0 and µ = µ0, on which a plane wave orthogonally impinges with E0 = E0 ŷ,
obtained for M = 19 and N = 2 in order to achieve a normalized truncation error less than 10−3,
is plotted and compared with the results provided by CST-MWS. The agreement is quite good. It is
interesting to note, however, that CST-MWS requires a computation time of 80 min and 9.4 M mesh-cells
to reconstruct the plotted solution. After all, to the best of the authors knowledge, CST-MWS does not
provide a 2D model for dielectric objects and an accurate simulation of the considered 3D object has
turned out to be time-consuming and particularly burdensome in terms of memory requirement. As a
result, the proposed approach drastically outperforms CST-MWS in terms of both computation time
and storage requirements.
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In Figure 5, where the TE incidence is considered, the absolute values of the non-vanishing
components of the effective electric and magnetic currents along the x axis (φ = 0◦, 180◦),
i.e., the azimuthal component of the effective electric current and the radial component of the
effective magnetic current, are plotted as functions of ρ/a. Similarly, in Figure 6, the absolute values of
the non-vanishing components of the effective currents along the x axis obtained for TM incidence,
i.e., the radial component of the effective electric current and the azimuthal component of the effective
magnetic current, are plotted as a function of ρ/a. As expected, the radial component of the effective
magnetic current for TE incidence and the radial component of the effective electric current for TM
incidence vanish at grazing incidence (θ0 = 90◦) due to the symmetry of the problem with respect to
the z axis. To conclude, in Figure 7, the BRCSs for both TM incidence and TE incidence are plotted
in the plane φ = 0◦, 180◦ as a function of the observation angle θ and compared with quite good
agreement with the results provided by CST-MWS by means of the same discretization parameters
used to reconstruct the behavior in Figure 3. It is worth noting that the low number of expansion
functions and harmonics used to reconstruct the currents and the BRCSs with the proposed approach,
i.e., M = 19 and N = 11, is, however, enough to guarantee a normalized truncation error less than 10−3.
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4. Conclusions

In this paper, a new analytically regularizing scheme for the analysis of the electromagnetic
scattering from a thin dielectric disk has been presented. The method is accurate and efficient, leads to a
quick evaluation of near-field and far-field parameters and drastically outperforms the general-purpose
commercial software CST-MWS. Future perspectives are the generalization of the presented method to
the analysis of arrays of disks and disks in layered media.
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Appendix A

The aim of this appendix is to demonstrate Equations (13) and (14). Starting from the definition of
VHTn, the following relation can be immediately stated:

∼

P
(n)

(w) =

( d
dw
n
w

) +∞∫
0

Jn(wρ)P
(n)
ρ (ρ)dρ− j

( n
w
d

dw

) +∞∫
0

Jn(wρ)P
(n)
φ

(ρ)dρ. (A1)

Hence:

∼

P
(n)

C (w) =

( d
dw
n
w

) +∞∫
0

Jn(wρ)
d

dρ
Φ(n)

C (ρ)dρ+
( n

w
d

dw

) +∞∫
0

Jn(wρ)
n
ρ

Φ(n)
C (ρ)dρ. (A2)

The second component of the vector function (A2) vanishes. This result is obvious for n = 0 and
can be simply demonstrated for n , 0 by integrating by parts, i.e.,

n
w

+∞∫
0

Jn(wρ) d
dρΦ(n)

C (ρ)dρ+ d
dw

+∞∫
0
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ρΦ(n)

C (ρ)dρ

= − n
w
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0

d
dρ Jn(wρ)Φ

(n)
C (ρ)dρ+ d

dw

+∞∫
0

Jn(wρ) n
ρΦ(n)

C (ρ)dρ
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+∞∫
0

d
d(wρ) Jn(wρ)Φ

(n)
C (ρ)dρ+ n

+∞∫
0

d
d(wρ) Jn(wρ)Φ

(n)
C (ρ)dρ = 0

. (A3)

On the other hand, the following expression for the first component of the vector function (A2)
can be obtained by integrating by parts and using the Bessel’s equation [33]:

d
dw

+∞∫
0

Jn(wρ) d
dρΦ(n)

C (ρ)dρ+ n
w
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0
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0
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[
d
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(
wρ d

d(wρ) Jn(wρ)
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−

n2

wρ

]
Φ(n)

C (ρ)dρ

=
+∞∫
0

Jn(wρ)Φ
(n)
C (ρ)wρdρ

. (A4)

Hence, Equations (13a) and (14) for T = C have been demonstrated. Following the same line of
reasoning, it is possible to justify even Equations (13b) and (14) for T = D.
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