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Abstract: The formation of malignant neoplasm can be seen as deterioration of a pre-malignant skin
neoplasm in its functionality and structure. Distinguishing melanocytic skin neoplasms is a challenging
task due to their high visual similarity with different types of lesions and the intra-structural variants
of melanocytic neoplasms. Besides, there is a high visual likeliness level between different lesion
types with inhomogeneous features and fuzzy boundaries. The abnormal growth of melanocytic
neoplasms takes various forms from uniform typical pigment network to irregular atypical shape,
which can be described by border irregularity of melanocyte lesion image. This work proposes
analytical reasoning for the human-observable phenomenon as a high-level feature to determine
the neoplasm growth phase using a novel pixel-based feature space. The pixel-based feature space,
which is comprised of high-level features and other color and texture features, are fed into the classifier
to classify different melanocyte neoplasm phases. The proposed system was evaluated on the PH2
dermoscopic images benchmark dataset. It achieved an average accuracy of 95.1% using a support
vector machine (SVM) classifier with the radial basis function (RBF) kernel. Furthermore, it reached
an average Disc similarity coefficient (DSC) of 95.1%, an area under the curve (AUC) of 96.9%, and a
sensitivity of 99%. The results of the proposed system outperform the results of other state-of-the-art
multiclass techniques.

Keywords: pigmented skin lesions; pixel-based features; high-level features; pigment network;
melanocyte neoplasm phases; globules and streaks

1. Introduction

Pigmented skin lesions represent about 20% of all skin cancer cases [1]. Pigmented skin lesions
are generally divided into melanocytic and non-melanocytic lesions [2]. Melanocytic lesions refer to
lesions that have different colors, most often due to melanin, such as Melanocyte nevi, Solar Lentigo,
Dermatofibromas (DFs), and Vascular lesions (VASC) [3]. Non-melanocytic lesions lack melanin
pigment. Their color affects other factors, i.e., hemoglobin or keratin, such as keratinocytic, VASC,
and reactive lesions [4]. Exposure to ultraviolet radiation from the sun increases the risk of these
lesions to be malignant pigmented lesions or skin cancer.
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Skin cancer can be commonly classified as melanoma and non-melanoma pigmented lesions [4].
Melanoma is related to melanocytes, changing the color of malignant cells. The most popular forms of
non-melanoma skin cancer can be squamous cell carcinoma (SCC) and basal cell carcinomas (BCC).
Non-melanoma is commonly popular than melanoma, but melanoma accounts for most mortality of
pigmented skin [5].

Determination of unknown lesion of the skin is significant to specify the suitable treatment.
The curability of skin cancer has higher rates if it is detected early enough and cured surgically [6].
Due to the complexity of skin cancer treatment at later stages, the investigation of an efficient
non-invasive automated system can help in guiding diagnosis. As skin cancer diagnosis faces many
problems, including human faults and higher cost, researchers attempt to automate the diagnosis
process to verify it is benign or dangerous with high accuracy [3]. Therefore, high-performance
computer-assisted diagnostic (CAD) systems can help guide the diagnosis.

Melanocytic pigmented lesions of the skin, i.e., Melanocytic nevi (Melcyt NV), can progress to
pre-malignant dysplastic nevi (Dysp NV) or malignant melanoma (Mel) [7], as shown in Figure 1.
Thus, patients can be survived in early detected cases [8]. Early detection is a promising strategy to
reduce the skin cancer mortality rate [7]. The ability to rapidly spread to other parts of the body is a
unique feature that makes Melanoma one of the deadly diseases of the skin [8].
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Figure 1. The pigmented skin lesions at different stages.

The pigmented network can be typical or atypical [7]. The typical pigmented network is a
regular pigment network, which has uniform brown lines and rete ridges. These ridges are relatively
similar in width and equidistant as in Melcyt NV, and non-melanocytic lesions, such as lentigo and
dermatofibromas [9]. The pigment network comprises intersecting brown lines in the form of a grid
pattern, as shown in Figure 2 [10]. These brown lines refer to disorders of pigmentation either within
the keratinocytes or the melanocytes.
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Figure 2. The typical pigmented network.

Atypical pigment network has irregular lines varying in size, color, thickness, or melanin
distribution, often found in Dysp NV [10], as shown in Figure 3. Globules have a round to oval
shape located along the borders of a melanocytic lesion and commonly found in a growing nevus [11],
as shown in Figure 4.
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Figure 4. The globule dermoscopic structures.

Streaks are linear pigmented within the borders of a melanocytic lesion and include radial flowing
(lineal streaks) and round projections (pseudopods). The symmetrical distribution of streaks along the
margin of the melanocytic lesion favors the prognosis of a nevus. Still, asymmetrical distribution can
be expected to lead to the spread of melanoma [12], as shown in Figure 5.
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However, the significant similarity between peripheral globules and pseudopods is that the
bordering globules are small clear spaces separating the globule from the primary tumor mass.
They correspond to melanocytic cells and are usually associated with growing nevi. The radial linear
extends from the periphery of the lesion in a process known as radial streaming. In histopathology,
radial streaming also corresponds to pigmented melanocytes [12]. In contrast, pseudopods are directly
connected to the primary tumor mass through a stem, which favors the diagnosis of melanoma. Thus,
discrimination between radial lines and pseudopods can guide the diagnosis of malignant melanoma
from melanocytic nevi [13].

Thus, circumferentially distributed radial lines characterize the presence of Nevi, but segmental
pseudopods most likely represent the occurrence of melanoma. According to the clinical description,
malignant lesions are characterized by distinct high borders compared to benign cases [5]. The malignant
lesion has a different structure than the benign lesion. Thus, the irregularity of lesion borders can
provide intuitive rationale feature space for the judgment of melanoma.

Earlier dermatoscopic techniques, i.e., the asymmetry, border, color, and diameter (ABCD) rule,
seven-point checklist, Menzies, and CASH algorithm [14], focused on determining lesion type by
determining the lesion’s area and recognizing its various features. Recent skin imaging techniques
enable the visualization of skin structures, which positively affects the diagnostic capability and
enhance results [11]. The distributions of color and texture features also provide good discrimination
of pigmented skin lesions from unaffected skin regions in the image.

Color features are essential in the assessment of dermoscopic lesions. Most skin colors are caused
by an increase in a given chromophore, i.e., melanin is the most critical chromophore in pigmented
lesions. These colors may be brown, black, gray, or blue for pigment; yellow for lipids or keratin; white
for collagen; or red for blood [4].

Texture analysis attempts to identify, measure, and detect the differences between different regions.
The texture can be measured for a region but cannot be detected for a single point. The textural features
analysis methods can be divided into statistical and structural methods. Statistical methods look for
pixel value relationships and statistical moments, while structural methods are concerned more with
regions such as shapes and edges [15].

Statistical methods describe point pixel properties based on gray level statistical moments, using a
co-occurrence matrix or extended species distribution models (SDM) [16]. Statistical methods use local
grey level statistics to define texture, which is constant or varies slowly over a textured region [17].

Feature descriptors are generally used for capturing unique metrics from whole images or image
regions, including textural, statistical, model-based, and basis space methods [14]. Feature descriptors
vary in capturing technique and their attributes. Feature detectors determine interesting features in
the image, such as interest point, keypoint, or landmark. The key point detector determines the vector
orientation of the neighborhood feature descriptor, which provides some amount of invariance and
robustness [18].

The shape descriptor concerns the measuring of several pixel regions among the shapes to be
used for descriptor computations [19]. The morphological boundary shape descriptor is a method
for defining polygon and boundary shape. Morphological shapes are generally described as blobs.
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Thresholding is often the first step in defining object boundaries [18]. Morphological reshape operators
clean up the shape boundary by growing or shrinking, using erode and dilate techniques [5].

High-level features are features that have been designed using human-observable formulation
models, contrary to low-level features that were designed without describing human-observable
formulation models. Integration between high-level and low-level features increases the significance
of the feature space, which allows the system to provide a more reasonable justification for the
classification decision [20].

The feature space that contains high-level features can describe the other characteristics of
melanoma, i.e., the border shape and structure of patterns. Implementing a non-invasive, automated
pigmented skin lesion system able to identify the type of the lesion could save lives and reduce
unnecessary biopsies, in addition to cost reduction [21].

For this goal, this work develops a feature extraction technique-based greyscale, texture
morphology, statistical area filters, and basis space filtering for detecting pigment network.
The association between several descriptors for the same object increases discrimination rates.

The objectives of this paper are to develop a staging framework that could regulate the progression
of skin lesions and evaluate the use of concerning features identifying pigmented lesions accurately,
ranging from a Melcyt NV and Dysp NV to Mel. The feature space, which comprises of low-level
features for local region pixel details and high-level features for regional shape metrics, were extracted
in a pixel passed manner. The segmentation of melanocytic neoplasms is also conducted in a pixel
passed manner.

The extracted feature space is used as inputs to different classifiers to distinguish different phases
of melanocyte neoplasm. The proposed system was evaluated on the PH2 dermoscopic images
benchmark dataset. The high-level pixel-based features suggested are considered reliable biomarkers
for melanoma diagnosis and achieved an average accuracy of 95.1% using the support vector machines
(SVM) classifier with the radial basis function (RBF) kernel.

The rest of this paper is organized as follows: Section 2 presents various dermatoscopic techniques
for several studies. Section 3 introduces the proposed framework for staging melanocytic neoplasms
using high-level pixel-based features. Section 4 describes the dataset used and experimental results.
Finally, Section 5 concludes the work presented.

2. Related Work

Most of the recently evolved dermoscopic algorithms were developed to facilitate the ability
to distinguish different types of melanocytic neoplasms, using the ABCD rule and low-level
features [22–25]. However, recent studies suggest incorporation between high- and low-level descriptors
is a sign that refers to lesion borders. For example, Gutman et al. [26] demonstrated automatic detection
for globule and streak dermoscopic features. They performed localization and classification based on
superpixels and dermoscopic features in order to judge the presence and absence of the globules and
streaks. They evaluated the results using 807 images of training data and the 335 testing datasets from
the international skin Imaging collaboration (ISIC) 2016 dataset, which has a classification accuracy of
91%. ISIC 2026 lacks an intuitive mapping label for globule and streak dermoscopic features for further
analysis. Do et al. [27] adopted a melanoma detection system to localize lesions of the skin using a set
of image features and a hierarchical approach for segmentation. They computed the border irregularity
of the shape features, i.e., convexity, compactness, and distance variance between border points and
lesion centroid. They evaluated the results on images obtained from the Singapore National Skin
Center, comprised of 117 benign nevi and 67 malignant melanomas, and achieved 89.09% sensitivity
and 90% specificity. Pixel-based feature extraction techniques can lead to a better distribution of lesion
features to avoid misleading results. Lee et al. [28] designed a multiclass skin disease classification
system. Their model comprises of segmentation based (DenseNet and U-net) pre-processing steps fed
into a successive fine-tune of classification models. They performed the classification of seven skin
diseases to predict the disease class. They achieved results using the HAM10000 Dataset, obtaining
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classification accuracies of 0.899 and 0.785. The proposed model can be planned to add more flexibility
to the system. Abbadi and Faisal [22] presented an automated skin image diagnosis based on ABCD
rules and a new asymmetry determination method. They computed asymmetry by dividing the lesion
into horizontal and vertical parts, then counted the number of mismatched pixels between the two parts
using the union and intersection of the two parts. The proposed method was tested on 220 different
images of 120 images from the PH2 database and 100 images from the websites, in which 113 images
are of cancer, and 107 images are of non-cancer, achieving an accuracy of 95.45%. They tested accuracy
only on a sample of malignant and benign lesion images, in which the PH2 dataset included multiple
stages of skin lesion. Nammalwar et al. [29] integrated both texture and color features for segmenting
lesions of the skin. They used ABCD’s clinical features of pigmented lesions as a measurement to
detect and localize lesions in skin images, i.e., characteristics of the color, maximum of diameter,
and irregularity of the boundary. They first extracted texture and color information to be used in
segmenting lesion boundaries. Modified Kolmogorov-Smirnov (MKS) was used to discriminate the
texture distribution to feed into a boundary refinement algorithm in order to obtain the final segmented
image. They evaluated the proposed model on 18 skin cancer images obtained from the dermatology
gallery, based on the comparison with the Live Wire segmentation results. The author’s main concern
was to extract significant features for the segmentation method. They did not provide any quantitative
comparisons that assure the accuracy of their proposed method. Codella et al. [30] proposed a system
for the classification of melanoma using skin dermoscopic images. They combined the more recent
machine learning techniques, deep residual networks, and fully convolutional neural networks into
ensembles focused recognition techniques. They evaluated the system on the ISBI 2016 dataset and
achieved 94.7% accuracy. They showed that the integration between different approaches could have
higher performance. They performed a comparison on a fixed dataset partition, but maintaining
a held-out dataset comparison is essential for a public challenge. Li and Shen [31] proposed an
automated melanoma detection system using two deep learning methods. They used two fully
convolutional residual networks (FCRN) simultaneously for deeper classification. They implemented
the lesion feature network for dermoscopic feature extraction. They evaluated their model on ISIC
2017 and achieved an accuracy of 0.833. Kawahara et al. [32] employed pooling over a convolutional
neural network for augmented feature space. They trained convolutional neural networks (CNN)
using natural images to generalize classification to 10 non-dermoscopic classes. They evaluated their
model on 1300 images with the 10-class dataset and achieved an accuracy of 81.8%. They focused the
comparison on a partition of classes, with poorer comparison significance. Ballerini et al. [21] introduced
a hierarchical k-nearest neighbor (KNN) classifier in which images were classified hierarchically into
one of the two groups by the top-level classifier using low-level features. Then, within the second
level classifier, the images were classified into five diagnostic classes using other subsets of features.
The active contour region was used for segmenting lesions. They evaluated their model on a database
which comprised of 960 image lesions and achieved a 74% classification accuracy over the five classes
of skin lesions. The drawback of their method is that classification mistakes at the top level are not
adjusted in the second level, which is known as the “blocking” problem. The number of misclassified
images in the first level unbalanced the distribution of classes. Shrestha et al. [33] proposed a system
that can discriminate malignant melanoma along with benign dysplastic nevi, using texture measures.
Lesions are marked with the aid of a dermatologist. They evaluated their results on 106 dermoscopy
images, 28 for melanomas, and 78 for benign dysplastic nevi and achieved an average accuracy of
95.4%. Their work focused on detecting pigment network irregularity for only the earlier melanoma,
neglecting other stages in melanoma growth. Ganster et al. [34] used features of size and shape, color,
and local parameters to resemble the clinical ABCD that represents the border structure, variate color,
asymmetry, and dermatoscopic structures defined by a dermatologist. The feature set was optimized
to capture most of the significant information and then were fed into the k-nearest neighbors (KNN)
classifier. They evaluated their results on 5393 skin lesion images categorized into three classes with an
overall classification accuracy of 88%. It was noticed on their model that the higher cardinality subsets
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had large variability in the classification performance, which resulted from the classifier over-fitting
to the training data. Rezvantalab et al. [35] used CNNs in the classification of different skin diseases,
using 120 images from the PH2 dataset and 10,015 from HAM10000. They achieved an average
accuracy of 87.13% among skin lesion diseases. Hekler et al. [36] used CNN in the classification of
skin lesion images into five diagnostic categories. They evaluated their method on 300 test images
(60 for each of the five disease classes from the HAM10000 Dataset and achieved an accuracy of
82.95%. Adekanmi and Sellami [37] performed pixel-wise classification using a softmax classifier for
melanoma lesions. They categorized outputs into melanoma and non-melanoma based on results
derived from pixel-wise classification. They evaluated the results on the PH2 dataset and achieved
95% accuracy and 92% dice coefficient. Lynn and War [23] demonstrated a detection system for lesion
borders capable of extracting relevant features of dermoscopic structures for melanoma. They used a
bagging decision tree ensemble classifier to classify features extracted using the ABCD rule. The system
performance was evaluated on ISBI2016, ISIC2017, and PH2 benchmarking datasets and achieved an
average accuracy of 84.5%. Phillips et al. [38] proposed a Deep Ensemble for Recognition of Melanoma
(DERM). Their technique was developed to identify melanoma from pigmented lesion-associated
features. Their deep framework adopted a binary classification framework for recognizing melanoma
from benign pigmented lesions. They trained their model using 7102 dermoscopic images, including
melanoma and benign pigmented lesions. They achieved an average area under the curve (AUC) of
0.93 and an average sensitivity of 85%. Phillips et al. [39] developed an algorithm to assess suspicious
from benign skin lesions. They employed a deep ensemble method for recognizing melanoma.
They used 1550 images, including suspicious and benign skin lesions. They analyzed biopsied
and non-biopsied pigmented skin lesions. They achieved an average AUC of 90.1% for biopsied
lesions and 95.8% for other lesions. Haenssle et al. [40] proposed a CNN model to detect melanoma.
They used a pre-trained Google Inception v4 model. They utilized sensitivity, specificity, and AUC
for evaluating their model. They compared their CNN model against an international group of
58 dermatologists. They achieved an average specificity of 82.5%, sensitivity of 86.6%, and AUC of
88.9%. From the above-mentioned techniques, the techniques that evaluated their work on the PH2
dataset or using multiple lesion diseases were selected for performance comparison. Most of the
mentioned techniques rely on capturing diagnosing feature space using low-level features that were not
designed with the intent of considering the human-observable phenomenon. A feature set that contains
high-level features can provide understandable justification for the system’s diagnostic decisions.
The pixel-based feature extraction and segmentation technique can capture a single representation
that enables visualization of image structures [11]. The distributions of texture and color features
enable an excellent differentiation between pigmented skin lesions from unaffected skin regions in the
image [41]. Table 1 lists a summary of the comparison of the current discussed related work. For this
reason, this work adopted a high-level pixel-based characterization technique for diagnosing skin
image lesions to enhance diagnostic capability results. The high-level pixel-based features model
proved to be a reliable biomarker for diagnosing melanocytic neoplasms progression.

Table 1. A comparison of the current related work.

Study Image Analysis Dataset Methodology Performance

Rezvantalab et al. [35]
Classification of 8

diagnostic categories of
skin diseases

120 images PH2
dataset and 10,015

HAM10000

4 deep convolutional
neural networks

Average Accuracy
87.13%

Hekler et al. [36]
Classification of skin

lesions images into five
diagnostic categories

300 images
HAM10000 (60 for
each disease class

Convolutional neural
networks (CNN) into a

binary output
Accuracy 82.95%

Adekanmi and Viriri [37] Classification of
melanoma lesions PH2 dataset Softmax classifier for

pixel-wise

Accuracy 95%
(Binary

output classifier)
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Table 1. Cont.

Study Image Analysis Dataset Methodology Performance

Lynn and War [23] Skin lesion border
detection system

ISBI2016, ISIC2017,
PH2 datasets

Asymmetry, border, color,
and diameter (ABCD)

feature extraction rule and
bagging decision tree

ensemble classifier

Average accuracy
84.5%

Gutman et al. [26] Automatic detection for
globules and streaks

807 training and
335 testing form
ISIC 2016 dataset

Superpixels feature
extraction mask in

addition to
dermoscopic features

Accuracy 91%

Abbadi and Faisal [22]
Detecting and segmenting

malignant and benign
lesion image

220 images: 120
from PH2 and 100
from the websites

YUV color space
conversion, ABCD rules,
segmentation based on

Markov and Laplace filter

Accuracy 95.45%
(Binary

output classifier)

Lee et al. [28]

WonDerM pipeline
(pre-processing,

segmentation and
classification)

HAM10000 Dataset (DenseNet and U-net) Accuracy 89.9%

Do et al. [27] Detection of melanoma
117 benign nevi

and 67 malignant
melanomas

GLCM features,
hierarchical segmentation

and SVM classifier
Specificity 90%

Nammalwar et al. [29] Segmentation of
skin lesions 18 images

ABCD’s clinical features,
Modified

Kolmogorov–Smirnov
(MKS), boundary

refinement algorithm

Figure
comparisons

Codella et al. [30] Segmentation and
classification of melanoma ISBI 2016 dataset

U-Net architecture, six
color channels, RGB (red,
green, and blue) and HSV

(hue, saturation, and
value) color spaces

Accuracy 76%

Li and Shen [31]

Segmentation, feature
extraction, and lesion

classification using two
deep learning methods

ISBI 2016 dataset
2000 images

two fully convolutional
residual networks (FCRN),

lesion index calculation
unit (LICU)

Accuracy 83.3%

Kawahara et al. [23]
Linear classifier with no
lesion segmentations nor

pre-processing
1300 images multi-scale features

using CNN Accuracy 81.8%

Ballerini et al. [21] Hierarchical classifier 960 images
k-nearest neighbors,

region-based
active contour

Accuracy 74%

Shrestha et al. [33] Discrimination of early
malignant melanoma 106 images Haralick statistical

texture measures Accuracy 95.4%

Ganster et al. [34] Early recognition
of melanoma 5393 images

shape, color and local
features, k-nearest

neighbor (KNN) classifier
Accuracy 88%

Phillips et al. [38] Recognition of Melanoma 7102
dermoscopic images Deep Ensemble Model

Area under the
curve (AUC) of

0.93, 85%
for sensitivity

Phillips et al. [39]
Assessment of the

suspicious from benign
skin lesions

1550 images artificial
intelligence algorithm

AUC of 90.1% for
biopsied lesions

and 95.8% for
other lesions

Haenssle et al. [40] Detection of melanoma

Compared to an
international group

of 58
dermatologists.

CNN
82.5%, sensitivities
of 86.6% and 88.9%

AUC

3. The Proposed Framework

In this section, the steps of staging melanocytic neoplasms using high-level pixel-based features
are discussed in detail. The proposed non-invasive staging framework consists of the following steps,
as shown in Figure 6.
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3.1. Pre-Processing and Segmentation

The melanocytic neoplasms images were enhanced using (CLAHE) contrast limited adaptive
histogram equalization method. CLAHE is an effective pre-processing technique that yields better
discrimination and visualization of skin image lesions [42]. CLAHE uses thresholding, equalization,
and bilinear interpolation, which result in a limited homogeneous contrast region [43]. The images
of the dataset have various sizes. Features extracted from different sizes of images would not have
the same feature values. Thus, image pixel values were rescaled to 768 × 576. The size of 768 × 576
was the optimal size that keeps the original image information. Thus, the images were ready for the
segmentation step.

For melanocytic dermoscopic images, pixel-based segmentation was carried out in a single-pixel
representation manner. The pixels of the original color images are matched with the pixels of the
corresponding ground truth (GT) according to a label given by the metadata file. This technique relies
on intensity levels within RGB color channel integer values and the background level. Melanocytic
neoplasms were identified by intensity levels within the RGB color channel, represented by integer
values, where 4 represents MEL, 2 represents the Dysp NV, 1 represents Melcyt NV, and 0 indicates the
background objects. Thus, the final labels resulting from segmenting dermoscopic images had the
values {0; 1; 2; 3} that can be used in staging melanocytic neoplasms. The resulting labels were used by
the classifier to allocate pixel values of different melanocytic neoplasms to their corresponding stages.
Figure 7 shows some examples of original Melcyt NV, Dysp NV, and mel dermoscopic images and
their corresponding GTs.

3.2. Feature Extraction

Shape and pattern feature descriptors are a significant indicator affecting discrimination. Within
the shape feature, every single pixel can be a feature descriptor in discriminating shapes. Thus,
shapes and patterns may be represented as a single pixel, pixels in a line, a rectangular region of
pixels, a polygon shape, or a region of pixels [16]. Texture can be computed based on global or local
descriptors. Local descriptors can be described as statistical relationships among neighboring pixels in
a region. Global descriptors can be described as computing pixel value relationships among image
regions [15]. Local feature approaches are metrics used to identify the nearest range of features around
the interest points within images [17]. Global feature approaches use uniform texture metrics to
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generalize an entire object with a single vector, such as gray level co-occurrence matrix (GLCMs),
Grey-level spatial dependency matrices, co-occurrence matrices, or extended SDMs. Color descriptors
are computed by RGB-D (red, green, and blue with its corresponding depth image) data channels
for greyscale, intensity, or RGB (red, green, and blue) color. Deep feature hierarchies start with local
feature descriptors then produce high-level features in feature detection hierarchal layers, producing
more in-depth representations [44]. Feature descriptors can also be dense or sparse, based on the
selection of pixels. A dense descriptor uses all the pixels in a specified region or patch as a kernel
sampling pattern, i.e., Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features
(SURF). However, a sparse kernel concerns specific pixels, i.e., the local binary descriptor, where only
the selected pixels are used, instead of using all pixels of the region [16].
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High-level features capture the human-observable phenomenon by describing border irregularity
about a lesion image using a morphological boundary shape descriptor [45]. The incorporation
between a small set of high-level features and a set of low-level features affected classification
results. A morphological boundary shape descriptor is a method for processing boundary shape [20].
Morphological operations can be applied using a structuring element, such as a disk, to define the object
boundary and alter the shape in some deterministic way. Morphological reshape operators clean up
the shape boundary by growing or shrinking, using erode and dilate techniques [46]. Other significant
indicators are also computed and incorporated into the feature space. These descriptors include color
features using different color spaces, texture, and statistical features to identify regions based on texture,
or statistical measures around each pixel in the input image [44].
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3.2.1. Morphological Boundary Shape Descriptor

The shape descriptor concerns measuring several shapes of the pixel regions required for descriptor
computations [19]. The morphological boundary shape descriptor is a method for defining polygon and
boundary shape [45]. Morphological shapes generally use thresholding in defining object boundaries.
The proposed high-level morphological boundary shape descriptors can give a more significant
measure for the irregularity of the entire border [20]. Morphological reshape operators can clean up
the lesion borders by growing or shrinking, using erode and dilate techniques [46].

Binary Dilation

The binary dilation of A by B, denoted A
⊕

B, is defined as the set operation [47]: A ⊕ B = { ‡|
(
B̂
)
‡

∩ A , ∅}, where B̂ is the structuring element B reflection [17]. The binary dilation cab is defined as
the intersection between the set of reflected structuring pixel elements when translated to ‡, and the
foreground pixels in A [46].

Grayscale Dilation

In the general form of grayscale dilation, the grayscale dilation of A(x, y) by B(x, y) is defined
as [45]:

(A ⊕ B)(x, y) = max
{
A(x − x′, y − y′) + B(x′, y′)|(x′, y′) ∈ DB

}
, (1)

where DB is the structuring element domain of B, and A(x, y) is assumed to be –∞ outside the domain of
the image [46]. Grayscale dilation is performed with a flat structuring element (B(x, y) = 0). Grayscale
dilation use local-maximum operator structuring element:

Binary Erosion

The binary erosion of A by B, denoted A θ B, is defined as [9]: A θ B = { ‡|(B)
‡
⊆ A}. The binary

erosion cab is defined as the set of pixel locations ‡ given by the intersection between the structuring
pixel elements when translated to ‡, and the foreground pixels in A [17].

Grayscale Erosion

The grayscale erosion of A(x, y) by B(x, y) is defined as [47]:

(A θ B)(x, y) = min
{
A(x + x′, y + y′) − B(x′, y′)|(x′, y′) ∈ DB

}
, (2)

where DB is the structuring element domain of B, and A(x,y) is assumed to be +∞ outside the domain
of the image. Grayscale erosion is generally performed with a flat structuring element (B(x,y) = 0).
Grayscale erosion uses a local-minimum operator structuring element. The operations of morphological
dilation and erosion require a flat structuring element as a binary neighborhood, two-dimensional
or multidimensional. The origin of the pixels identifies the pixel in the image being processed.
The opening operation is computed using a 2D-shaped structuring element, while the morphological
closing operation is used to fill the gaps in an image [17].

3.2.2. Local Feature Descriptors

Local texture pixel details are computed using the statistical relationships within pixels
neighborhood colorimetric in different color spaces [44]. Texture features are captured using a
statistical randomness measure that assigns each output pixel to corresponding useful statistic
values. Colorimetric using different color spaces, i.e., RGB, CIE XYZ, CIE Lab, and HSV for better
characterization. Color channel (colorRGB) intensities are also normalized to eliminate the noise
resulting from lights and shadows for better classification results. The HSV color space (colorHSV)
can handle the differences in skin image lesions by removing the effect of illumination changes. Each
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component can provide different information: the hue (H) component can provide intensity value
without illumination changes and the component of saturation (S) can also provide a higher contrast to
the image being processed. Furthermore, the CIE color spaces (labCIE and xyzCIE) can achieve higher
accuracy results. Thus, they can handle the higher similarity within the skin color images [16].

3.3. Feature Reduction

The construction of feature space that is composed of high and local features resulted in a large
dimensionality of features. The pixel-based feature extraction technique resulted in the generation
of a large feature vector for each pixel. The feature vectors are three variables for each color space
(RGB, CIE XYZ, CIE Lab, and HSV), nine variables for texture features, four descriptors for the
shape, and five pigment features for the presence of globules and streaks. This ends with a total of
26 variables. To handle the curse of dimensionality, principal component analysis (PCA) is used. PCA
is a projection-based technique, which projects data into a set of orthogonal axes to obtain the relevant
information and dispose of the rest of the data [48]. The dimensionality reduction for large feature
vectors reduced the variables to 17 significant variables. The data being transformed from high to low
dimensional space affected the difficulty in processing data.

3.4. Classification of Melanocytic Dermoscopic Images

The high and local reduced feature arrays are concatenated with their corresponding labels that
refer to the neoplasm phase. As mentioned previously, this work aims to stage melanocytic neoplasms
dermoscopic images. The stages of melanocytic neoplasms can be Melcyt NV, Dysp NV, or Mel [23].
The SVM and Gradient Boosted Trees (GBT) classifiers are trained using reduced high-low feature
space to categorize the processed pixels into neoplasms stages.

3.4.1. Support Vector Machine Classifier

SVM is a machine learning algorithm for classification. The SVM main objective is to find a
dependency description between a set of object measurements, measured variables, and specific
properties of these variables. Estimating the dependency between these observations can help in
classifying new sets based on heuristics. Estimating the function mapping f: RN→ {±1} can determine
the corresponding values for new observations [49].

Non-Separable Case

Using hard SVM, the hyperplane cannot separate in all cases. In these cases, the promotion of soft
margin SVMs is needed. The soft margin SVMs can found separation hyperplanes using positive slack
variables ξi which can be used to adapt the constraints in the following equations [50]:

∀ i


w× xi + b ≥ +1− ξi y = +1
w× xi + b ≤ −1− ξi y = −1

ξi ≥ 0
, (3)

where the model parameters are the weights w, bias b, and the feature input x. Slack variables
adaptation gives SVM the flexibility to reduce the optimization influence by allowing some cases to lie
inside the margin or within the cases of the other class, as shown in Figure 8 [50].

RBF SVMs

The RBF kernel can handle the nonlinear cases by mapping samples non-linearly into a
higher-dimensional space. The RBF utilizes two parameters: c and γ. Parameter setting issues
are to identify suitable values for (c, γ), through which the model can predict unknown data accurately.
The parameter setting is commonly performed by approximations or heuristics within iterative
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processes for the pair values of (c, γ). The RBF kernel in 2D space for two inputs, x and z, can be given
by Equation (4) [49].

k(x, z) � a + c
(
2γ xTz

)
+ q

(
2γ xTz

)2
, (4)

The term q
(
2γ xTz

)2
gives constant, linear, and second-order terms, while the value of the term

c
(
2γ xTz

)
is bounded within the range [0, 2γ], where 0 ≤ xTz ≤ 1 in L2-norm normalization.
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3.4.2. Gradient Boosted Trees:

GBT is a combination of accurate weak learners (e.g., decision trees), to create a powerful and
effective predictive model [51]. The GBT ensemble boosting relies on minimizing the loss function by
calculating the mean squared error between the target and predicted outputs when doing gradient
boosting [52]. GBT has great popularity due to its accurateness, flexibility, and robustness, with less
computational resources [52]. This is given a training set, {(x1 , y1), . . . , ( xn , yn)}, to minimize the
expected value of loss function L(y, F(x)) [53]:

F̂ = argmin
F

Ex,y[L(y , F(x))]. (5)

Gradient boosting approximates F̂ as a weighted sum of weak learners of function h(x) and the
coefficient γi [52].

F(x) =
∑M

i=1
γihi(x) + const. (6)

When using GBT to fit the model, the input space is partitioned into disjoint regions R1m,..., j. Thus,
the base learner h(x) for the tree ensemble model can be calculated by Equation (7) [53].

hm(x) =
J∑

j=1

b jmI
(
x ε R jm

)
, (7)

where b jm is the predicted value within R jm and I is a convex loss function [54]. For each iteration,
the model is updated, as in Equation (8) [52]. The update rule is modified by Friedman by using γ jm for
each region, instead of b jm, as shown in Equation (9) [53]. The final gradient boosting can be obtained
by minimizing the objectives as in Equation (10) [54].

Fm(x) = Fm−1(x) + hm, (8)

Fm(x) = Fm−1(x) +
∑J

j=1
γ jmhm(x)I

(
xε R jm

)
, γ jm, (9)
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Fm(x) = argmin
γ

∑
xiε R jm

L(yi, Fm−1(xi) + γ hm(xi)). (10)

3.5. Staging Melanocytic Neoplasms

The single-pixel representation was obtained from the segmentation step, using the original
color images and their corresponding GTs, resulting in identified intensity levels within the RGB
color channel in integer values, where 4 represents Mel, 2 represents the Dysp NV, 1 represents
Melcyt NV, and 0 indicates the background objects. Thus, the final labels resulted from segmenting
dermoscopic images {0; 1; 2; 3} are used to allocate pixel values of different melanocytic neoplasms to
their corresponding stages.

Label {1} Melcyt NV has a typical pigment network with uniform brown lines and regular
equidistant rete ridges. Label {2} Dysp NV is characterized by a typical pigment network with irregular
grid lines, globules, and streaks that may be found with the symmetrical distribution. Label {3} Mel is
characterized by a typical pigment network with irregular grid lines and asymmetrical distribution of
globules and streaks, with the spread of melanoma expected [55].

The formation of Mel can be seen as the deterioration of pre-malignant skin lesions in the
functionality and structure of the infected lesion. They emerge from various pigmented lesions that
appear on sun-damaged areas relative to limited photo-protection. Therefore, the distinction between
pigmented pre-malignant and malignant lesions is a challenging task that can lead to early detection
of different types of lesions and minimization of unnecessary biopsies. Melanocytic neoplasms have
different dermoscopy structures, such as pigment network, globules, and streaks. Detection of streaks,
globules, and pigment network is very significant in the assessment of the malignancy of a lesion [55].
Table 2 lists the pseudo-code for the staging melanocytic neoplasms.

Table 2. The pseudo-code for staging melanocytic neoplasms.

Start
Load the training data
Load the corresponding GT data
Load the labels CSV file
Step 1. Pre-processing:
Step 1.1 Image resize:
Images were rescaled to 768 × 576
Step 1.2 Image Enhancement:
Images were enhanced using CLAHE.
Step 1.3 Image Conversion:
Images were converted to grayscale.
Step 2. Pixel base Segmentation:
For Original Color Images
For Corresponding GT Images
For CSV labels file
Test whether a label is melcyt nv, dysp nv or mel
Use Corresponding GT mask along with Original Color Images
End for
Return single pixel labels have the values {0; 1; 2; 3}; 0 for background, 1 for melcyt nv lesion, 2 for dysp nv and
3 for mel
Save integer intensity levels array of segmented images as labels mat file.
End

High-level features using a morphological boundary shape descriptor can describe the border
irregularity to consider the human-observable phenomenon. Melanocytic neoplasms can be Melcyt NV,
Dysp NV, or Mel [45]. Abnormal growth and proliferation of abnormal cells can increase malignancy
in malignant cases. Melcyt NV is characterized by a typical pigment network with uniform brown
lines and regular equidistant rete ridges. Dysp NV has an atypical pigment network with irregular
grid lines, globules, and streaks that may found with the symmetrical distribution. Mel characterized
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by an atypical pigment network with irregular grid lines, and asymmetrical distribution of globules
and streaks means that the spread of melanoma is expected. The border irregularity features, i.e.,
pigment network, streaks, and globules, are mapped to intuitive labels given by the PH2 dataset [56]
set to construct the high-level features. The local descriptors in the form of color and texture features
are also extracted in a pixel-based manner. The small set of high-level features and the set of low-level
features are incorporated together to construct the feature space that is used for staging melanocytic
neoplasms. The high and low-level feature space is concatenated with clinical diagnosis labeling to
construct a training set to be fed into the classifier.

4. Materials and Methods

4.1. Dataset

For evaluating results, 150 skin image lesions from the PH2 dataset [56] are used. The PH2
dataset of dermoscopic images has been developed for benchmarking research purposes, to facilitate
comparative studies for segmentation and classification algorithms. The database of PH2 dermoscopic
images has been acquired at the Dermatology Service of Hospital Pedro Hispano, Matosinhos,
Portugal. The dermoscopic images of the PH2 database are 8-bit RGB color images with a resolution of
768 × 560 pixels, the same conditions as the Tuebinger Mole Analyzer system, and a magnification
of 20×. This dermoscopic database has a total of 200 dermoscopic images of melanocytic neoplasms,
including 80 benign nevi (non-melanoma), 80 atypical nevi, and 40 melanomas. This database is
comprised of training images and their corresponding GTs, clinical label diagnoses, and high-level
intuitive labels. The PH2 dermoscopic images were rescaled to 768 × 576 to unify the size of the skin
lesion. Different evaluation metrics were adopted to check the significance of the proposed melanoma
characterization framework.

4.2. Hardware and Software Specifications

This work was implemented on an HP (Hewlett-Packard, Palo Alto, CA, USA) Envy laptop with
AMD FX-7500 Radeon R7 CPU, 10 Compute Cores 4C + 6G at 2.10 GHz, and 6 GB RAM: Windows 10,
64-bit operating system, 64-based processor system type. The first processes of the algorithm were
implemented by MATLAB 2018a. Then, comparisons are evaluated using RapidMiner Studio.

4.3. Performance Evaluation

The four outcomes of P positive instances and N negative instances formulates the 2 × 2 confusion
matrix for the experiment. The area under the receiver operating characteristics (ROC) curve (AUC) is
an important evaluation metric for checking the performance of the classification model. The higher
the AUC, the better the model in distinguishing between classes [57]. The ROC curve is plotted with
the true positive rate (TPR) against the false positive rate (FPR), where TPR is on the y-axis, and FPR is
on the x-axis [57]. The accuracy (ACC) measure is used to check the capability of the classification
model. Accuracy can be calculated using Equation (11). The sensitivity (Sen) or Recall measure is
used to check the capability of a classifier to recognize the positive class patterns. The sensitivity of
the classifier can be determined using Equation (12). The specificity (Spec) measure is used to check
the capability of a classifier to recognize the patterns of negative class. It can be calculated using
Equation (13). The F measure or dice similarity coefficient (DSC) considers both precision and recall,
measuring the accuracy of the test. DSC ranges from 0 worst score to 1 best score as a weighted average
of precision and recall. The DSC measure can be calculated using Equation (14) [24].

Accuracy =
TP + TN

TP + FP + TN + FN
× 100, (11)

Sen =
TP

TP + TN
, (12)
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Spec =
TN

TN + FP
, (13)

DSC = 2×
Precision × Recall
Precision + Recall

. (14)

4.4. Results

Various classification models are used for comparisons to evaluate the proposed technique. SVM,
GBT, random forest (RF), Naïve Bayes (NB), and deep learning (DL) classifiers are used for comparison.
Significant evaluation metrics are used to check the capability of the distinguishing between classes.
ACC, AUC, DSC, Sen, and Spec are used as performance indicators. The proposed framework achieved
higher performance results using the SVM and GBT classifiers. During the training of the GBT
classifier, the optimal parameters were 150 trees in the forest with a maximal depth of 7. The optimal
learning rate was 0.1. The RBF kernel parameters were exploited in training, gamma was set to 0.01,
and the C parameter was set to 1000. The SVM model included a total of 1176 support vectors and
1.234 Bias (offset).

To evaluate the results of the proposed system, the computed results were compared with other
different state-of-the-art classifiers, which are RF, NB, and DL. RF classifier utilized 140 decision trees in
the forest, with a maximal depth of 7. The NB model built the Bayesian classification method. The data
distribution was modeled with best-fit Gaussian and multinomial distribution. The DL model is
constructed based on a multi-layer feed-forward neural network, which is based on back-propagation.
This model was used as a classifier, which was trained by the previously extracted feature. The network
structure consists of an input layer, three hidden layers, and an output layer. The input layer consists
of 17 input feature neurons resulting from dimensionality reduction. The first and second hidden
layers consist of 50 neurons each. The last hidden layer consists of 25 neurons. The output layer
has four neurons based on the number of tested classes. We conducted hyper-parameterization to
choose the optimal values for the learning rate, momentum training, annealing rate, regularization,
and loss function in order to enable high predictive accuracy. The number of images was extended
using an augmentation technique in different transformations, i.e., rotation, shifting, scaling (zoom
in/out), and flipping. The parameters and their optimal values for the comparing classifiers are listed
in Table 3.

Table 3. The parameters of the comparison classifiers.

Classifier Parameters Value

SVM

Kernel RBF
Gamma 0.01

C parameter 1000
Support vectors 1176

Bias (offset) 1.234

GBT
No. of trees 150

Maximal depth 7
Learning rate 0.1

RF
No. of decision trees 140

Maximal depth 7

NB
NB model Bayesian

Distribution best-fit Gaussian
Distribution type multinomial

DL

No. of epochs 20
Activation function ReLU

Loss function Cross-Entropy
ε 1.0 × 10−8

L1 1.0 × 10−5

L2 0
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The 10-fold cross-validation technique is employed to evaluate the performance of the proposed
system. For the 10-fold cross-validation, the dataset is split into 80 for training and 20 for the validation
set. The performance evaluation using 10-fold cross-validation for the proposed technique against
other classifiers can be seen in Table 4.

Table 4. Ten-fold cross-validation performance evaluation.

Model ACC AUC DSC Sen Spec Recall Precision Total Time

SVM 92.2% ± 0.3 0.969 ± 0.012 95.1% ± 0.2 99.0% ± 0.2 69.9% ± 5.3 99.0% ± 0.2 91.5% ± 0.3 25 min, 55 s
GBT 92.1% ± 0.1 0.962 ± 0.002 95.0% ± 0.1 98.5% ± 0.1 71.1% ± 0.8 98.5% ± 0.1 91.8% ± 0.2 12 min, 40 s
RF 90.0% ± 0.2 0.945 ± 0.003 93.6% ± 0.1 95.4% ± 0.3 72.5% ± 0.9 95.4% ± 0.3 91.9% ± 0.2 20 min, 53 s
NB 84.7% ± 0.0 0.906 ± 0.0 89.9% ± 0.0 89.1% ± 0.0 70.1% ± 0.2 89.1% ± 0.0 90.7% ± 0.0 6 min, 1 s
DL 84.1% ± 0.1 0.898 ± 0.0 90.5% ± 0.1 98.9% ± 0.0 35.8% ± 0.5 98.9% ± 0.0 83.5% ± 0.1 8 min, 39 s

Regarding the comparison measurements in Table 4, the higher performance was achieved using
the SVM classifier, rather than GBT. The proposed system achieved an average ACC of 92.2%, AUC
of 0.969, DSC of 95.1%, Sen of 99.0%, and Spec of 69.9% using SVM. Besides, the proposed system
achieved an average ACC of 92.1%, AUC of 0.962, DSC of 95.0%, Sen of 98.5% and Spec of 71.1%
using GBT. RF, NB, and DL achieved average ACCs of 90.0%, 84.7%, and 84.1%, respectively. They
achieved average AUCs of 0.945, 0.906, and 0.898, respectively. They achieved average DSCs of 93.6%,
89.9%, and 90.5%, respectively. They achieved average Sens of 95.4%, 89.1%, and 98.9%, respectively.
They achieved average Specs of 72.5%, 70.1%, and 35.8%, respectively. The results of the proposed
system, using the SVM and GBT classifiers, outperforms other state-of-the-art techniques. The SVM
model achieved higher results because of its potential for high accuracy with few training sets [24].
The SVM multiclass classifier has the ability to map the class of interest, locate the support vectors,
and use the optimal kernel function that makes the classifier more flexible and robust against the
outliers [25].

In addition, we used a four-fold cross-validation technique to validate the obtained results.
For the four-fold cross-validation, the data set is split into 70 for training and 40 for the validation set.
Table 5 shows a comparison of the proposed technique against other classifiers by using a four-fold
cross-validation technique. Higher performance was achieved using the SVM classifier than GBT.
The proposed system achieved an average ACC of 92.9%, AUC of 0.959, DSC of 95.3%, Sen of 98.8%,
and Spec of 86.7% using SVM. Furthermore, the proposed system achieved an average ACC of 92.6%,
AUC of 0.959, DSC of 94.2%, Sen of 93.5%, and Spec of 77.5% using GBT.

Table 5. Four-fold cross-validation performance evaluation.

Model ACC AUC DSC Sen Spec Recall Precision Total Time

SVM 92.9% ± 0.3 0.959 ± 0.007 95.3% ± 0.2 98.8% ± 0.1 86.7% ± 1.5 98.8% ± 0.1 94.8% ± 0.6 16 min, 22 s
GBT 91.6% ± 0.4 0.959 ± 0.001 94.2% ± 0.3 93.5% ± 0.9 77.5% ± 0.6 93.5% ± 0.9 92.0% ± 0.5 11 min, 14 s
RF 89.8% ± 0.4 0.945 ± 0.002 92.9% ± 0.2 92.6% ± 0.3 82.6% ± 1.0 92.6% ± 0.3 93.3% ± 0.4 15 min, 15 s
NB 85.2% ± 0.1 0.923 ± 0.0 89.2% ± 0.0 84.8% ± 0.0 86.4% ± 0.2 84.8% ± 0.1 94.2% ± 0.1 4 min, 13 s
DL 90.1% ± 0.1 0.956 ± 0.002 93.6% ± 0.0 99.9% ± 0.0 64.8% ± 0.3 99.9% ± 0.0 88.0% ± 0.1 7 min, 35 s

The comparison measurements for other classifiers, RF, NB, and DL, achieved average ACCs
of 89.8%, 85.2%, and 90.1%, respectively. They achieved an average AUCs of 0.945, 0.923, and 0.956,
respectively. They achieved an average DSCs of 92.9%, 89.2%, and 93.6%, respectively. They achieved
an average Sens of 92.6%, 86.4%, and 64.9%, respectively. They achieved an average Specs of 72.5%,
70.1%, and 35.8%, respectively. The results of the proposed system, using SVM and GBT classifiers,
outperforms other state-of-the-art techniques.

To visualize the performance for the proposed diagnostic system, a ROC curve was constructed
for the proposed model, along with the other tested classifier. A ROC curve is created by plotting the
TPR against the FPR. Figure 9 shows the relationship between sensitivity and specificity for all tested
classifiers. The results show the quality of the proposed model’s predictions, along with the other
tested classifiers.
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The literature works include some techniques based on a binary output classifier and others
based on a multiclass output classifier for evaluating their results. The multiclass output techniques
were used for performance comparison with the proposed framework. Performance comparison
of researchers that evaluated their work on the same PH2 dataset and adopted a multiclass output
classifier as the proposed work is presented. Performance comparison with state-of-the-art multiclass
techniques is shown in Figure 10.
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4.5. Discussion

Earlier dermoscopic techniques relied on capturing diagnosing feature space using low-level
features that were not designed with the intent of considering the human-observable phenomenon.
A feature set containing high-level features can provide understandable justification for the system’s
diagnostic decisions. The pixel-based feature extraction and segmentation technique can capture
a single representation that enables the visualization of image structures. The distributions of
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texture and color features enable an excellent differentiation between pigmented skin lesions from
unaffected skin regions in the image. For this reason, this work adopted a high-level pixel-based
characterization technique for diagnosing skin image lesions to enhance diagnostic capability results.
The proposed model is evaluated on the PH2 dataset of dermoscopic images acquired from Hospital
Pedro Hispano, Portugal. Several researchers have evaluated their model on the PH2 dataset of
dermoscopic images. Some of these researchers evaluated their model on the PH2 dataset, i.e.,
Adekanmi et al. [37], Lynn et al. [23], and Abbadi et al. [22], and adopted a binary output classifier in
their model. Adekanmi et al. [37], Lynn et al. [23], and Abbadi et al. [22] achieved average accuracies
of 95%, 84.5%, and 95.45%, respectively, but in binary output classifiers.

Other researchers, i.e., Rezvantalab et al. [35], evaluated their model on the PH2 dataset and
adopted a multiclass output classifier for evaluating their results. Rezvantalab et al. [35] achieved
87.13% accuracy adopting a multiclass classifier on the PH2 dataset. Others adopted a multiclass
output classifier for evaluating their model using a different dataset, i.e., Hekler et al. [36] and Codella
et al. [30]. Hekler et al. [36] and Codella et al. [30] achieved accuracies of 82.95% and 76%, respectively.
The proposed technique outperforms the results achieved by other researchers, achieving 92.2%
multiclass classification on the PH2 dataset for characterizing different melanocytic neoplasms stages.

5. Conclusions

This paper proposes a comprehensive pixel-based framework for staging melanocyte neoplasms.
The framework proposed uses high-level analytical reasoning to describe border irregularity, in addition
to various feature descriptors, i.e., color, texture. Different types of features are derived from staging
growing of lesions, from benign lesions in terms of NV up to pre-malignant Dysp NV or malignant
melanoma. The distributions of texture and color features enable differentiation between pigmented
and unaffected skin regions within the images. The adopted a high-level pixel-based technique assisted
the extraction of significant features for training the model. These features are color features in different
color spaces, local statistics, and texture morphology. The mapping between the high-level features to
intuitive labels given by the PH2 data set assisted the construction of feature space. The incorporation
between a small set of high-level and low-level features affected the classification results. Staging
melanocyte neoplasms were carried out by training SVM and GBT classifiers, with the extracted
feature space along with clinical labels. The results show that the proposed system can help in guiding
the diagnosis of pigmented skin lesions at different stages. The diagnosis of skin lesions at earlier
stages can help in improving the durability of skin cancer and reducing the skin cancer mortality rate.
For future works, more analysis of the images and expansion of the image database is required for
more promising results. On the other hand, DL performs better with a large number of data. Therefore,
future works will also seek to investigate DL with a large skin cancer dataset. We will work to employ
a CNN with a multi-path to classify different grades of skin cancer.
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