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Abstract: The state-of-the-art centralized Internet of Things (IoT) data flow pipeline has started aging
since it cannot cope with the vast number of newly connected IoT devices. As a result, the community
begins the transition to a decentralized pipeline to encourage data and resource sharing. However,
the move is not trivial. With many instances allocating data or service arbitrarily, how can we
guarantee the correctness of IoT data or processes that other parties offer. Furthermore, in case of
dispute, how can the IoT data assist in determining which party is guilty of faulty behavior. Finally,
the number of Service Level Agreement (SLA) increases as the number of sharing grows. The problem
then becomes how we can provide a natural SLA generation and verification that we can automate
instead of going through a manual and tedious legalization process through a trusted third party.
In this paper, we explore blockchain solutions to answer those issues and propose continued data
integrity services for IoT big data management. Specifically, we design five integrity protocols across
three phases of IoT operations—during the transmission of IoT data (data in transit), when we
physically store the data in the database (data at rest), and at the time of data processing (data in
process). In each phase, we first lay out our motivations and survey the related blockchain solutions
from the literature. We then use curated papers from our surveys as building blocks in designing the
protocol. Using our proposal, we augment the overall value of IoT data and commands, generated in
the IoT system, as they are now tamper-proof, verifiable, non-repudiable, and more robust.

Keywords: blockchain; IoT; integrity service; data in transit; data at rest; data in process

1. Introduction

Since Kevin Ashton coined the term Internet of Things (IoT) [1], engineers have utilized centralized
IoT architecture for years. Many state-of-the-art IoT products are still adopting this approach, such as
Philips Hue and Amazon Alexa [2]. Several factors lead to this centralization. First of all, the IoT
economics forces IoT devices to become constrained-resource devices in favor of low prices to
encourage many adoptions. The company then builds central remote servers that gather IoT data
and overtake those devices’ required computations. Eventually, the server piles up IoT data and
provides better IoT services that, in the long run, may be worth more than the company’s previous
investment on those IoT devices” hardware. Furthermore, IoT big data management is easy to manage
in a centralized architecture. In terms of security, the administrations only need to secure the servers
where the IoT data resides and sometimes, ironically, neglect IoT devices” security. They can also
provide data sharing for other parties through Application Programming Interfaces (APIs). Since the
company can do multiple things from a single place (i.e., the servers in the Cloud), it is convenient.

As IoT applications become sophisticated, centralized architecture begins to suffer from a
single point of failure, poor scalability, high latency, and privacy issues. To overcome these issues,
the community begins the transition to a decentralized IoT architecture (cf. [3] for detailed comparisons
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of centralized and decentralized IoT architecture). However, this movement is challenging to realize.
The IoT data flow now becomes more complicated because many entities share data, commands,
and resources. This complexity results in more variations to the IoT data flow pipeline and augments
data fragmentation. Poor management and unauthorized tampering in one part of the pipeline may
result in inefficiency or malfunction on other IoT operations, causing economic loss. Therefore, we need
a reliable ecosystem that can log arbitrary IoT data flows to guarantee the correctness of the IoT process
in this new decentralized architecture.

The rise of blockchain, which comes with the popularity of Bitcoin [4], exhibits a promising
potential of decentralization through its cryptocurrency. Many researchers then argue that they can
also apply blockchain to other non-cryptocurrency domains. For example, in IoT, blockchain can
facilitate the sharing of data and resources, create a marketplace for IoT entities, and allow automation
in some parts of the IoT processes with verifiable property [5].

In synergy with those researchers’ claims, this paper investigates whether the blockchain
can provide a continued integrity service for IoT big data management. Our discussion focuses
on integrity issues of the IoT data flow pipeline across three IoT operation phases—during the
transmission of IoT data and commands (data in transit), when we store them in the database
(data at rest), and at processing time (data in process). We first conduct a literature survey on the
state-of-the-art blockchain projects related to each of the phases and find several blockchain-based
strategies. However, their proposed solutions tackle specific issues. Meanwhile, we argue that the
decentralized IoT processes are interdependent on one another. Therefore, a grand design is required
to provide a continual integrity service throughout those phases.

We fill the research gap by proposing five integrity protocol designs—decentralized identity
management, secure channel establishment, blockchain receipts with the chain of signatures,
decentralized e-marketplace, and collaborative federated learning. We intertwine all of those proposals
to create a continued integrity service throughout IoT big data management. Our initial surveys also
play a role as building blocks for our designs. Using our proposed model, we augment the overall
value of IoT data and commands generated in the IoT system as they are now tamper-proof, verifiable,
non-repudiable, and more robust.

In summary, we made the following contributions:

o  We propose blockchain-based integrity services for data in transit by proposing decentralized
identity management and secure channel establishment. Our designs comprise registration,
update, and revocation of the public key and the associated domain names. We also present a
secure and reliable Transport Layer Security (TLS) or Datagram Transport Layer Security (DTLS)

secure channel using our identity management as its foundation.
o We investigate using the chain of signatures and blockchain receipts to provide data integrity

during data at rest for IoT databases. Using both combinations, we can preserve the forensically

sound guarantee of the stored raw IoT data and commands.
o We leverage the blockchain to empower the decentralized marketplace and federated

learning to encourage IoT entities’ collaborations. This proposal augments the overall data’s
robustness because blockchain logs every action in IoT processes. As a result, entities can
offer IoT data training services or participate in federated learning processes in a fair,
transparent, secure, and verifiable manner.

We organize the rest of this paper as follows. We revisit some backgrounds about IoT big data
management in Section 2. Section 3 describes our proposed design to provide data integrity for IoT
data transmissions. Section 4 lays out our approach using the chain of signatures and blockchain
receipts to offer a data integrity service for stored IoT raw data and commands. Section 5 elaborates on
our blockchain-based marketplace and federated learning to facilitate the data training collaboration
among loT entities. Afterward, we discuss how our proposed design can solve open problems related
to IoT big data management as well as future considerations and challenges in Section 6. Finally,
we conclude in Section 7.
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2. IoT Big Data Management

In this section, we explore what the IoT data flow pipeline looks like in the IoT big data
environment. Then, we describe typical IoT data flow pipeline options that developers can apply in
their IoT systems. Finally, we discuss the IoT data flow pipeline’s common issues and challenges and
present blockchain technology contributions in solving those mentioned obstacles.

2.1. Characteristics of IoT Data Flow Pipeline

Raw IoT data from a single device tell us little information, like knowing our neighborhood’s
current temperature. It can be useful to some extent; however, it can be more appealing if we have
more data or combine it with other IoT devices. For example, by gathering the sensor’s temperature
reading periodically (e.g., every 10 min) for a day (24 h, from 12 AM to 12 PM), we can determine
the high and low temperatures for that particular day. It also enables us to detect potential global
warming if we track and store temperature data for decades (by comparing high and low data yearly).
Moreover, installing additional temperature sensors scattered across multiple neighborhoods gives us
more precious insights, such as understanding the average temperature for overall neighborhoods or
determining the hottest or coldest areas.

Unfortunately, IoT devices are mostly machines that have constrained resources.
Thus, they cannot process IoT data by themselves. The state-of-the-art IoT data process is to
do it in powerful servers far away from the devices. We commonly define this location as the Cloud.
This method forms a widely known IoT data flow pipeline, as illustrated in Figure 1a. We can
categorize this data flow into five layers with three operations types, which we describe as follows.

The sensing layer comprises IoT devices, which can be sensors or actuators. Sensors generate IoT
data for the IoT system, and actuators listen for commands from IoT services. In the middleware layer,
IoT gateways sit between IoT devices and services to intercept IoT data from the devices and conduct
microprocessing. It can be a data clean-up process, where the gateway removes duplicates or invalid
data before sending them to IoT services, or it can also be the aggregation of data, where the gateway
groups similar data (e.g., using minimum, maximum, or average summarization) into one IoT data.
IoT services reside in the application layer to store aggregated IoT data and to serve it to IoT users.
To gain insights, IoT workers dwell in the processing layer to train the IoT data using machine learning
algorithms. The workers send trained analytic results back to IoT services, which the services then
may transfer to users or devices as feedbacks. Finally, the network layer is responsible for the delivery
of data between IoT entities. The channel between devices and gateways are varied, and we can use
many options such as Bluetooth, Zigbee, and 6LowPAN. Meanwhile, we can use coherent well-known
TCP/IP stacks to deliver messages from gateways to services, services to workers, and vice versa.

Throughout those previously mentioned layers, we have three types of IoT operations.
First, data in transit includes procedures that we take during transmissions of IoT data. These steps
mostly happen in the network layer, where entities pass the IoT data from one to another. Second, data
at rest is a process where we store IoT data in the local database. The middleware layer may store IoT
data temporarily for real-time application use cases. They will delete this data when it is no longer
needed. Meanwhile, the application layer saves IoT data permanently in the database for analytic and
presentation purposes. This layer is capable of storing many data, usually clustered in several servers.
Third, we process the IoT data in a stage that we called data in process. These operations may include
micro- and macro-processings, which happen in the middleware and processing layers.
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Figure 1. A general Internet of Things (IoT) data flow pipeline, which comprises of 5 layers (i.e., sensing,
network, middleware, application, and processing layers) and 3 types of operations (i.e., data in transit,
data at rest, and data in process). We present three IoT data flow pipeline scenarios: (a) the centralized
IoT data flow pipeline, (b) the collaborative IoT data flow pipeline, and (c) the privacy-preserving IoT
data flow pipeline.

2.2. Types of IoT Data Flow Pipeline

Centralized IoT Data Flow Pipeline: in this first category, all of the required IoT data are gathered
and stored centrally in IoT services. Therefore, management (in terms of security, data sharing, and
service provisioning) becomes easy. In early IoT systems, when a particular company wants to develop
anew IoT platform, they build their framework (from IoT devices to IoT workers) following this data
flow pipeline as a template, shown in Figure 1a. As a result, this development encourages many siloed
architectures to exist among corporations, creating inefficiency and disorganization in IoT pipelines
with many implementation variations. Moreover, the nature of this architecture allows vendors to
interpret IoT devices as slaves because most of them are passive devices that collect data for IoT
services. Therefore, this phenomenon creates ethical malpractices. For example, developers usually
put more focus on how they can provide better services using all of the already collected data and
neglect the condition of the IoT devices” hardware, software, or both by rarely providing new features
or security updates. Last but not least, this centralized pipeline is vulnerable to single-point-of-failure
and scalability issues. The increased latency due to Cloud processing also hinders the applicability of
real-time processing. Therefore, we argue that this architecture is more suitable for pilot programs or
small-scale IoT operations.
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Collaborative IoT Data Flow Pipeline: one key idea to alleviate the weakness of the centralized
pipeline is through data sharing and collaboration. As shown in Figure 1b, these actions can be
performed in several layers. The vendor can move some loT data processing from the application layer
to the middleware layer. Thus, IoT gateways can do more complicated operations besides cleaning up
and aggregations by acting as the secondhand of the IoT services. We usually coin this process as fog
computing [6]. By processing data in IoT gateways, IoT events are now faster to complete. We can
then realize the IoT real-time application use cases. Moreover, the gateways can also act as temporary
machines to serve IoT users’ requests when the actual IoT services are crashing or under heavy load,
increasing the system’s scalability. IoT services can mutually share the collected IoT data with other
services to provide better analytics in the application layer. Finally, in the processing layer, the IoT
vendor can let other vendors use its IoT workers’ resources to train other vendors’ data on their behalf.
The vendor can do so when its workers are idle, thus producing additional revenue for the vendor.

Privacy-Preserving IoT Data Flow Pipeline: while the collaborative approach helps in reducing
the latency and increasing overall scalability, it still does not solve data privacy issues. In particular,
IoT data still needs to be sent to IoT services to train it. If this data is very sensitive, then IoT
users are at a disadvantage because there is no other way to benefit from the IoT system’s analytics
without giving up their private data. Therefore, a recent trend arises regarding a fully distributed
privacy-preserving IoT data flow pipeline, depicted in Figure 1c. The similarity between this pipeline
and the collaborative one is that we can still find cooperation between IoT gateways and IoT services.
Meanwhile, the difference is that we remove IoT workers from the architecture. IoT devices will instead
train their private data in their local machine and share only local trained models to the IoT gateways
and services. In this sense, IoT devices become both sensing and processing layers. This approach
preserves users’ privacy since the gateways and services only understand the local models and cannot
view private data.

2.3. Basic Challenges and Requirements for IoT Data Flow Pipeline

Those three previously mentioned pipelines have their merit and disadvantages. Developers can
choose to deploy one of those pipelines according to their needs. Regardless of their choices, some
common challenges and requirements are still required to ensure the IoT data flow pipeline’s integrity.
We analyze them, along with the corresponding blockchain solutions in Table 1, and describe them
as follows.

Identity: all entities that participate in the IoT process must have a unique identity.
Otherwise, we cannot conduct proper data management and determine an IoT data or process’s origin.
For IoT devices, the identity can be the Universal Unique Identifier (UUID) [7], a global identifiable
ID that the IoT manufacturers embedded in IoT devices. For IoT services or users, the identity can
be a combination of usernames and passwords. Both UUID and username require central server
identity management, which is prone to credential theft [8]. On the other hand, blockchain identifies
users in the network by their unique addresses, derived from public keys. Public key generation is
decentralized, and any node can create a new public key without contacting a centralized third party.
Thus, we can use the blockchain public key as a global identity system in our architecture.

Non-repudiation: IoT data and processes may come from anywhere. Attackers can pretend to
be one of the authorized entities and can send malicious data or processes. In these circumstances,
the IoT pipeline should detect attackers and ensure that they cannot deny or make valid excuses to
revoke the fact that they transmitted malicious detected packets. When users store information as
transactions in the blockchain, they must first sign the transactions before broadcasting them to other
peers. The signatures serve as proof that the users know the transactions. Anyone can verify the
authenticity of the signature, and the users cannot deny their own signature. Moreover, this feature
is available not only in the blockchain network (on-chain) but also in the non-blockchain network
(off-chain), e.g., the Internet or IoT network. Therefore, we can also use the same blockchain public
key architecture to sign arbitrary IoT data and processes off-chain.
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Tamper-proof: the IoT environment requires having tamper-proof data storage and process
logs, in which attackers should not be able to modify the contents. Malicious changes can generate
malfunctions, inaccurate predictions, or both, that may result in economic loss. The blockchain
aggregates transactions into blocks. Each block has its own hash that will protect its integrity.
Furthermore, the blockchain requires each block’s hash to be referenced to the next block extending it.
Therefore, the longer the blockchain extends a particular block, the more difficult it is to tamper its
contents. Any modification in that block requires the attackers to modify the next blocks” contents to
be considered a valid chain of blocks. Finally, the data stored in the blockchain is also fully distributed.
Attackers then need to modify the contents in the majority of the blockchain nodes in the network to
successfully tamper a particular data, which is a challenging task to achieve.

Fault-tolerant: the IoT process should be able to continue working even during crashes or failures.
In the IoT system, failures in one part of the data flow pipeline can be catastrophic as it may hinder
progress in other parts of the pipeline. In the blockchain, all nodes store the data ledger locally and
synchronize it with other nodes. This concept is similar to a replicated state machine in the distributed
system. This mechanism guarantees decentralized control with no single point of failure, increasing
the IoT system’s robustness.

Confidentiality: with many entities sharing data and resources in the IoT pipeline, there can be
cases when vendors or users do not want other entities to know their contents, especially when the data
is very private and sensitive [9]. Thus, it is useful if the system has options to protect the secrecy of these
private data and resources by using encryption. Unfortunately, the data stored in the conventional
blockchain, such as in Bitcoin [4] or Ethereum [10] are not encrypted. However, using blockchain
public keys as building blocks, we can construct secure encryption schemes. For example, Quorum [11]
modifies the Ethereum blockchain to enable private transactions, which encrypts transactions to be
understood only by selective receivers. There is also an Ethereum library [12] to encrypt arbitrary data
off-chain using Ethereum public keys.

Privacy: IoT vendors mostly conduct a massive data collection strategy to produce useful insights
for their services. They often perform this operation by sacrificing users’ privacy [13], threatening
the trust and usability of overall IoT systems. Blockchain cannot fully solve this problem; however,
it can help users achieve pseudonymity. By using blockchain public keys, users can generate arbitrary
identities each time they contact the IoT systems. Attackers will find it very difficult to relate one
public key to another and pinpoint the real users of the public keys” holders.

Trusted SLA: the primary issue that hinders collaborations between IoT vendors is trust.
By default, one vendor sees others as competitors; therefore, they act with complete distrust. When
a vendor wants to perform partnerships with others, both parties need to create a Service Level
Agreement (SLA) that will act as a legal document that protects their agreement. State-of-the-art
SLA generations require yet another trusted third party. Moreover, it also takes time to produce such
SLAs as it may include manual labor processes. Blockchain can help to create automatic trusted SLAs
between parties in the form of smart contracts. The smart contracts’ code is not only deterministic but
also open in the blockchain. Anyone can verify the smart contract’s source code, so others can safely
trust smart contracts” execution.

To sum up, we argue that blockchain is a suitable platform candidate to provide integrity services
for IoT big data management. In the following sections, we lay out how we can use blockchain to
protect the integrity of the IoT data flow during three phases of IoT operations: data in transit, data at
rest, and data in process. In each part, we first present our motivations for the discussed phase.
Then, we introduce our proposed design and analyze its benefits.
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Table 1. Basic requirements for the management of the IoT data flow pipeline.

Properties

Challenges

Blockchain Solutions

Identity

Given an IoT data or process, we need to
determine who the source of that data or
process is.

Blockchain provides public keys that we can
use as verifiable identities.

Non-repudiation

The origin of IoT data or processes should
not deny that they generate such data
or processes.

For the sender to store information in
the blockchain, they must sign the data
as transactions.

Tamper-proof

Attackers should not be able to modify
the contents of IoT data or process
logs maliciously.

Blockchain stages the data into a block
data structure with the hash of the block
chained to the previous block to produce a
hard-to-tamper reference.

Fault-tolerant

The data management should be functional
despite failures that may happen during
its lifetime.

Blockchain network is fully distributed;
therefore, it eliminates the single point
of failure and increases the system’s
robustness.

Confidentiality =~ The system requires having the capability = Blockchain does not provide this ability.
to encrypt sensitive information from being However, we can use the public keys
leaked to the public. that the blockchain has to provide secure

encryption.

Privacy We need to protect users’ privacy by The use of public keys in the blockchain
protecting their private data when renders pseudonymity and strengthens
conducting massive data collections and  users’ privacy.
processings.

Trusted SLA Trust issues hinder collaboration, and Using smart contracts, we can automate the

producing SLAs is lengthy and tedious task.

trusted SLA generation process.

3. Blockchain Solutions for Data in Transit

This section investigates integrity services for IoT data and commands that [oT entities transmit
in the system. More specifically, we focus on identity management and deploying a secure channel to
protect data transmission.

3.1. Motivations

To protect the integrity of the transmitted loT data through the Internet, we commonly construct
a secure channel, a transmission medium that covers several security guarantees. First, the channel
assures that participants are communicating with the right entities, not fake ones. Second, only those
involved parties can see the delivered data. Others should not be able to gain any knowledge about
the content of transmitted information. Finally, the members are confident that the data they receive is
original such that no other entities tamper with the data.

We can use existing encryption and digital signature schemes to build a secure channel.
However, we find that the underlying components of the secure channel, mainly identity service
providers such as Public Key Infrastructure (PKI) [14] and Domain Name Service (DNS) [15],
pose centralization threats that may hinder collaborations between entities in our IoT data flow pipeline.

In PKI architecture, a centralized Certificate Authority (CA) exists as a trusted third party.
Other entities can let CAs sign their public key to enforce trust in them. If outsiders can prove
that the CA signed a particular public key, they can safely assume that it belongs to a valid entity
because the CA already verified it. In other words, they accept and trust any public key that the
CA signs.

Because of the absolute power that the CA has, if the CA misbehaves (e.g., due to attacker
infiltration or misconfigurations), the damage can be catastrophic [16]. The CA can flag a hazardous
website that contains malware as valid and safe. Users then visit the site and are infected by the
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virus. Furthermore, we also argue that the current PKI solutions cannot cope with the scale of IoT
devices. Constrained Application Protocol (CoAP) [17] and Message Queuing Telemetry Transport
(MQTT) protocol [18] allow IoT users or services to query IoT data to IoT devices directly through
gateways. IoT gateways now behave like servers and need to serve many requests from users and
services. Therefore, the CA now has additional jobs to sign public keys from many gateways.

Similar issues occur in the DNS as well. The commonly used DNS system stores the mapping
between domain names and IP addresses in a hierarchical and centralized manner. Thus, DNS servers,
especially DNS root servers, have absolute authority over the registered names. Using this DNS
architecture, it raises the same problems as we previously stated in the PKI system.

To solve the previously mentioned issues, we have no other options but to reduce or eliminate
centralization. We can use blockchain as a platform for decentralization, as proposed in [19] for PKI
and in [20] for DNS. However, to the best of our knowledge, no comprehensive design shows how
those decentralized identities can be used to generate a secure channel. To fill that gap, we design both
decentralized identity management and secure channel establishment using blockchain. While plotting
our design, we also carry out a literature survey on other blockchain-related solutions regarding
data in transit. We then apply the chosen papers from our survey as our design’s building blocks.
We summarize their contributions to our design in Table 2.

Table 2. The list of related works serving as building blocks for our data in transit solutions.

Project Related to Contributions to Our Design

Yakubov et al. [21]  Identity Management We apply the proposed idea to extend X.509
certificate fields for our blockchain integration in a
quasi-centralized approach.

SCPKI [19] Identity Management We use the presented WoT scheme to produce a certificate
in our fully decentralized method.
Wilson and Identity Management We take the authors’ suggestions regarding the incentive
Ateniese [22] mechanism for public key endorsements in our design.
CertCoin [23] Domain Names, The authors introduce two-key management: online
Identity Management and offline key, which we tweak it to work with our

smart contract.

Kalodner et al. [24] Domain Names We acknowledge the authors” namespace business model
recommendations for our future design.

BATM [25] Reputation We assume using the proposed reputation system in our
design, which considers positive or negative reviews and
their timestamp.

PADVA [26] Secure Channel, We apply the proposed TLS timestamping in our design,
Reputation which makes use of client-random and server-random
to prove that TLS handshakes are performed.

3.2. Our Proposed Solutions

We divide our explanations into two segments: decentralized identity management and secure
channel establishment. They are all parts of the overall IoT data in transit integrity. We present new
notations that we employ throughout the rest of this paper in Table 3.
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Table 3. The list of new notations introduced in our data in transit design.

Notation Description

X The IoT entity, which can be an IoT device, gateway, service, or worker. They are
defined as D, GW, S, and W, respectively.

PKgg’l’”e The online public key of X entity.

SKgpline The online secret key of X entity.

txg(”ll”"’ The online blockchain address of X entity.

PKg(ff tine The offline public key of X entity.

sk /1ine The offline secret key of X entity.

% tine The offline blockcahin address of X entity.

dx The arbitrary domain name of X entity.

X The public IP address of X entity.

SIGNgk, (]) A function to generate a signature using any asymmetric digital signature
algorithm (e.g., ECDSA) from payload ] using the secret key of X entity, SKx.

sig The generated signature output of the SIGN(.) function.

cert The certificate as proof of identity (e.g., X.509 certificate).

random The client-random or server-random parameter from TLS handshake.

VERIFYpk, (], sig)

Al B

A function to verify whether the signature of ] payload, sig, is produced using
a secret key corresponding to PKx public key. This function returns True or
False.

A concatenation between A data and B data.

3.2.1. Decentralized Identity Management

Our decentralized identity management design becomes the foundation for all IoT entities to

recognize and verify one another. We will use this identity scheme throughout the rest of our proposals.
Figure 2 summarizes our design.

loT Ent/ty loT Em‘/ty iuﬁ,g(;ls;:;
(a) a8 ginerate B/ockcha/n {b) 1. generate Bloc <Ch0
ey 2 register key
public key % save 4. add 3. save
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() 1create > O
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domain
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1. create g 5. show certificate
—_— (d) domain Q > O
< - 3. form &
et E certificate 2. form 'S A4ouch key

ifi B 3. submit g
$ / certificate domain Blockchain A, save
5. save Blockchain 4. submit domain
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domai .
omain List of Smart Contract's Methods

C SubmitPublicKey (addr, pub) )
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( UpdatePublicKey (addr, pub) )
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Figure 2. The overview of our decentralized identity management design: It comprises of public key

registration for (a) the quasi-centralized and (b) fully decentralized approaches, namespace registration

for (c) the quasi-centralized and (d) fully decentralized methods, (e) online key revocation, and (f)

offline key revocation. We also show the list of required smart contract methods for implementation.

Decentralization Options: we can choose whether to make our system becomes quasi-centralized

or fully decentralized.

e Quasi-centralized

approach reduces CA and the DNS server’s centralization impact by

implementing a kind of certificate transparency [27] in the blockchain. When we store a list
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of identities in the blockchain, the list becomes open to all nodes. Thus, they can verify an IoT
entity’s trustworthiness and can expose the possibility to detect malicious identity or misbehaving
CA and DNS servers quickly.

e The fully decentralized method removes the role of the CA or DNS server altogether, and all
participants collectively manage the identity management. Specifically, we employ the Pretty
Good Privacy (PGP) technique [28], where we manage identity distributedly in the form of Web of
Trust (WoT) [29]. In this second option, we leverage blockchain as a platform to perform WoT.

IoT users, gateways, services, notaries, or any party that wants their name to be identifiable by
others can begin registering their identity to the blockchain on the “public bulletin board”. They need
to register both their public key and specified namespace. Our design is inspired by CertCoin [23],
which provides an excellent key management example. We take the general idea from that proposal
and tweak it to be compatible with our smart contract design.

Public Key Registration: the following steps describe our public key registration procedure.

1. The entity generates two pairs of keys—the online and offline key—using ECDSA key-generation
procedure similar to the one used to generate the Ethereum address [30]. PK§Hine, SKgptine,
PKg{f li”e, and SK?{ fline are the online public key, online secret key, offline public key, and offline
secret key, respectively. From these keys, the entity also generates the corresponding online and
offline addresses a$¢ and zxg{f 'Me X refers to the entity’s role in the IoT system, whether it is
an IoT device, gateway, service, or worker. Thus, X = {D,GW, S, W}.

2. The entity submits a3/ and PK{i" to the smart contract by calling the SubmitPublicKey (addr,
pub) method. The addr and pub are the entity’s online address and online public key to be
submitted. The entity must use its offline address, zxg{f tine
transaction for this method.

3.  The smart contract maintains the mapping between offline and online keys in key-value storage.

Upon receving the transaction from the previous step, the smart contract retrieves txg(”li”e and

of fline
X

, as the sender when forming the

PKgpline It also queries a
entry in the list using uco){f e 3 keys and {agline | PK§Hine} as its values.

4. Inthe fully decentralized approach, the entity calls the AddIncentive (reward) method to add a
prize to encourage other entities to vouch for this key. The reward is the award that endorsers of
this public key can claim later. The entity also must use their offline address, zxg(ff line, as the sender
when creating the transaction for this method. We take this idea from Wilson and Ateniese [22],

which discuss the endorsement issues of PGP and WoT for a newly registered key.

from the sender parameter. The smart contract then saves a new

The rationale in using two keys, online and offline keys, is for safety reasons. In particular, there is
a possibility that attackers can guess the secret key, especially if we do not use a secure seed during
key generation [31]. By having a secondary offline key as a backup, we can overrule our online key
if attackers correctly guess or steal it. This security is guaranteed for two reasons. First, we use the
online key mainly for off-chain use cases (i.e., things unrelated to the blockchain network). Meanwhile,
the offline key is used only for on-chain use cases (i.e., blockchain network-related). On-chain scenarios
happen less frequently than off-chain ones. Thus, it minimizes the leak probability of our offline key.
Second, we assume that the entity put more security precautions on the offline key than the online
key. For example, the entity puts the offline secret key in a separate and more secure machine than the
online secret key.

Namespace Registration: after the public key is registered, we can continue to record our
namespace. The smart contract will tie this namespace to the already submitted online public
key. The entity can make arbitrary namespace, and the system can support many categories.
However, to simplify our explanation, we only consider the namespace of domain names for DNS
service in this paper.

For the quasi-centralized approach, we do the following.
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1. The entity creates an arbitrary domain name, dx. It also retrieves the public IP, yx, from the
Internet Service Provider (ISP). ‘

2. The entity submits dx and yx along with uc;){f lmg, ocg’("”m, and PK‘)’(””"E to the CA off-chain. It also
needs to provide detailed information regarding proof of domain name and public IP address
possession for legal purposes. The CA verifies the proof and makes sure that the submitted
domain name is unique.

3. The CA then forms a certificate that testifies the entity’s possession of the domain name.
In particular, the CA creates X.509 certificates for TLS or DTLS scenarios. We borrow the X.509
extensions from [21]. The authors suggest to include blockchain information such as the address
of the smart contract, the CA’s blockchain address, and the hashing algorithm as additional info
in X.509 fields. Therefore, when another party receives this signature, that party can pinpoint the
issuers’ details and determine which smart contract they contact to verify the signature.

The CA includes a§i"¢, PK$!"¢, and additional info suggested from [21] in X.509 fields. It then
signs the certificate using the CA’s secret key, sigcq = SI GNSKOCV;(,-W (certx). certx refers to the X.509
certificate for X entity. Finally, the CA includes its signature in the certificate, certx < sigca || certx.

4. The CA submits the vc‘;{f tine, dx, and 9x to the smart contract by calling the
SubmitDomainName (addr, name, ip) method. addr, name, and ip are the offline address,
domain, and the public IP address name to be submitted, respectively.

For simplicity, in this example, the domain name registration is free. Kalodner et al. [24] conducted
an extensive empirical analysis of Namecoin [20], a working example of a decentralized domain
name system run in the blockchain. Their research concluded that Namecoin is in poor condition,
mainly because of economic reasons. To mitigate similar failures, the authors provide insights regarding
a better-decentralized namespace design by allowing administrators to choose five options of controls
from the most robust control to the weakest one. They also suggested using auctions, algorithmic
pricing, and secondary market to boost decentralized domain names’ economy. We can take the
authors’ suggestion when designing our future economic model.

5. The smart contract maintains a list of registered domain names in a key-value store.
Upon receiving the transaction in the previous step, the smart contract puts dx as the key
and {w;’{f tine || vx} as the value in the store. We apply domain names as keys to ensure the
uniqueness of the stored namespaces. We save yx to map the domain name with its IP address.

(}){ fline
online keys storage. Therefore, from this link, the smart contract can find a relationship between
dx and its associated online identities, zxg("””e, and PKg("””e .

6. The CAreturns certy to the entity. The entity can then present this certificate during the handshake
of the secure channel establishment that we explain in the next section. By default, other users
will trust this certificate because the CA signed it.

The role of as a value is to bridge this domain name list and the mapping of offline and

For the fully decentralized approach, we do the following.

1. The entity creates an arbitrary domain name, dx. They also receive the public IP, vx, from the ISP.

2. Because there is no CA in this approach, the entity forms a certificate by itself, which produces
proof regarding possession of the domain. We borrow the certificate format proposed in
SCPKI [19]. Some mandatory information includes the smart contract address, the entity’s
online public key, and its online address. These parameters are essential to guide other users in
the verification of the certificate.

After that, the entitiy signs the certificate with its online secret key, sigx = SIGN Kgpline (certx).
certy refers to X’s certificate. The entity then includes its signature in the certificate,
certx < sigx || certx.
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3. The entity submits oc?{f line, dx, and 7x to the smart contract by calling the

SubmitDomainName (addr, name, ip) method.
4. Similar to the quasi-centralized approach, the smart contract then puts dx as the key and
of fline .
ay || 7x} as the value in the storage.
5. Once it is stored, the entity can present certx during the handshake of secure channel
establishment.

By default, other users will not trust the entity’s certificate because it is a self-signed certificate.
Similar to the methodology in the WoT, to build trust upon this certificate, other users need to vouch
for or approve of this certificate by signing it using their online secret key.

6. To endorse a particular certificate, IoT entities can vouch for the certificate’s corresponding online
address. The IoT entity calls the VouchKey(addr, bet) method. addr and bet are the online
address and the stake to endorse the given address.

We draw the betting idea from Wilson and Ateniese [22], which suggests that users specify
the amount of money they are willing to risk to verify a particular public key. The system adjusts
the trust level by considering the number of deposits, with a higher wager equal to higher trust.
Moreover, the system also determines the incentive that endorsers can take by considering their initial
bet. Similarly, punishment (in the form of reduced reputation) also increases as the wager rises.

During IoT operations, attackers can infiltrate our system and steal our identities.
Therefore, we design two revocation procedures to protect our identity system.

Revoking the online key: let us say that attackers correctly guess or steal the online secret key.
However, possession of the offline secret key is still safe and owned by the entity. The entity can
outsmart the attackers by revoking the old online key and updating it with a new online key.

1. The entity generates a new pair of online key and its address, SK&”“"“’, PKg(”li”f/, and zxg(”””",.
2. The entity then uploads both the key and address to the smart contract by creating a transaction

that calls the UpdatePublicKey (addr, pub) method. addr and pub are the new online blockchain
address and public key. Note that they need to use the old offline address, zxg(ff lme, as the sender

of the transaction when calling this method.
3. Upon receiving this transaction, the smart contract checks the sender and ensures that it equals

the previously stored address during identity registration. This check is to guarantee that only
the original submitter can update the online keys. If everything is valid, the smart contract stores
the new online keys in the database.

Note that the entity must also reconfigure its old certificate to match the newly updated online
public key. It can do so by refollowing the namespace registration procedure.

Revoking the offline key: let us say that attackers correctly guess the offline secret key.
However, the entity still has its offline key. Then, the entity can outsmart the attackers by closing
its key.

1. The entity creates a transaction that calls the ClosePublicKey(.) method. They need to use the
previously registered offline address, a‘;{f ¢ as the sender when forming the transaction.

2. Upon receiving this transaction, the smart contract checks its sender and makes sure it exists
in storage. This check is to guarantee that only the original submitter can close online keys.
If everything is verified, the smart contract marks the online keys as closed.

The closing procedure is irrevocable. Therefore, once it is closed, the online key and the associated
certificate will also become invalid. Furthermore, because we tie dx with a?{f li”e, the offline key’s
closing will render the domain names unusable. Unfortunately, the entity cannot transfer this domain
name to other offline keys. Therefore, they lose access to their unique domain names. One solution to
this issue is to submit yet another backup account for this domain during namespace registration.

Note that we cannot protect the entity if attackers steal the entity’s offline secret key, and the
entity no longer has access to its key.
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3.2.2. Secure Channel Establishment

This section shows how we can build a secure channel between IoT entities using our previously
described decentralized identity management as its foundation. Figure 3 depicts an overview of our
secure channel design.

5. verify
certificate 4.ServerHello, 3.ClientHello
ServerKeyExchange, . B
ﬂ serverHelloDone List of Smart Contract's Methods

/oTServ/ce

7. CllentKeyExchange C ResolveAddress (name)
ChangeCipherSpec,
Wd_//v ( GetReputation (name)
8. ChangeCipherSpec, loT ( VerifyCertificate (name)
Finished Gateway
b3 resolve

address 1. get reputation VoteDomain (name, score, proof)

9. vote \P

domain 6. compare
cert|f|cab Blockchain

Figure 3. Overview of our blockchain-based secure channel design for TLS or DTLS: we also put the

NN N AN

list of required smart contract methods for developers to implement.
First of all, we make the following assumptions.

e A trusted party deploys the smart contract in the blockchain network. For example, the CA is
responsible for this role in the quasi-centralized approach. For the fully decentralized method,
the government can serve this role.

o  We employ IoT services and gateways in this scenario merely as an example. One can reuse the
protocol to build a secure channel between any IoT entities.

o The gateway already registered its public key, address, namespace, and IP address in the
blockchain, specifically PK%”I}\}"E, oc‘é”%"e, dcw, and ycw. Moreover, the gateway’s certificate, certgy,
is also ready to use.

e The gateway provides IoT data and service by allowing IoT services to access the IoT domain
through a URL (e.g., https://gateway.bit) tied to ygw. Thus, dgw is gateway.bit.

o The IoT gateway already built some positive reputation scores in the system.

We endorse the use of a reputation system proposed in BATM [25]. The authors define five
reputation factors, which include negative and positive events. Their proposal also considers
the freshness of the events by factoring the formula using a continuously decreasing function.
Therefore, the latest events will have more weight than old events, and they will contribute more
to the final reputation score.

e The secure channel protocol is based on TLS [32] for TCP traffics or DTLS [33] for UDP traffics.

Then, the IoT service builds a secure channel with the IoT gateway by following these steps.

1. The IoT service is trying to access IoT contents from the URL (e.g., https://gateway.bit).
Optionally, before the service accesses the URL, it invokes the GetReputation(name) method in
the smart contract by including the gateway.bit (i.e., dgw) as the name argument. The smart
contract then returns the reputation score for the gateway.bit domain.

2. Assuming that the IoT service is satisfied with the reputation score, it begins to access the URL.
We assume that this is the first time the IoT service accesses this URL. Therefore, the service
conducts DNS operations to resolve the IP address for the given domain. It calls the
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ResolveAddress(name) method and puts gateway.bit as the name argument. The smart contract
returns the domain’s IP address, ygw.

3. The IoT service begins the initial TLS handshake. During this exchange, the service must gather
proof that it participates in the handshake to later vote for the gateway’s certificate. For this
purpose, we borrow the concept of TLS notary in PADVA [26].

First, as a client, the IoT service begins the handshake by sending a ClientHello message.
The service also generates client-random as the client part of the exchange to produce the final
ephemeral secret key. This random generation includes the UNIX timestamp, which can serve as
our proof.

4. The gateway replies with ServerHello, ServerKeyExchange, and ServerHelloDone messages.

ServerKeyExchange includes the server-random property as the server part of the exchange
to build the final ephemeral secret key. The gateway puts a UNIX timestamp in this random,
which can serve as our proof. Moreover, the gateway also signs the server-random, defined as
randomgy, and generates the signature, sig.sndoms,, = SIGNSKOGHVIVL-M (randomgy).

Note that the gateway also sends their registered certificates certgyy to the user at this step.

5. Upon receiving the certgy, the IoT service retrieves the gateway’s public key, PK‘E;”]}\}”E, from the

certificate and verifies that VERI FYPK"C’}L}’”’ (randomgw, sigrandome,,) returns True. After that,
the service validates the rest of the certificate.

For the quasi-centralized approach, the service checks if the CA signs certgw and
VERIF YPKOC,Xim(certGw,sigC ) must return True. Meanwhile, for the fully decentralized method,

it verifies that the gateway indeed signs the certificate and that VERIFY,gonine (certow, siggw) must
GW
return True.

6. The service compares the required fields in the certificate with the ones stored in the smart
contract. It invokes the VerifyCertificate(name) method with gateway.bit as an argument.
First, the smart contract makes sure that the certificate (i.e., identifiable by PK"GnVI\f”") exists in the
blockchain. Second, it validates that the certificate is still active and not expired. Finally, the smart
contract verifies that the certificate is associated with the given domain. The smart contract will
return a True value when everything checks out. Otherwise, it returns False.

7. The service then sends ClientKeyExchange and ChangeCipherSpec messages to negotiate the
encryption algorithms and specifications that both parties will use after they established the
secure channel. It then closes the handshake by transmitting a Finished message.

8. Finally, the gateway replies with a ChangeCipherSpec message to confirm the selection
of encryption algorithms and specifications. It then ends the handshake by sending a
Finished message.

The IoT service and gateway can construct a session key using the parameter they both got from
the previously exchanged messages. Afterward, they communicate by encrypting the message with
the assembled session key.

9.  Once the secure channel session expires, the service votes on the gateway by executing the
VoteDomain(name, score, proof) method by submitting gateway.bit as the name argument.

The score is the reputation score to give. The service can only vote once over some time, and it
votes either by giving a negative or positive mark. If all verification is successful, the service gives a
positive score. Otherwise, it puts a negative value. As long as most IoT services are honest, we argue
that we can maintain a credible certificate reputation.

We can enforce a small payment mechanism in transaction fees or deposits to discourage malicious
actors from spamming votes to a particular gateway by creating multiple fake accounts and giving
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dishonest reviews. Moreover, when casting a vote, the service also discloses their client-random
and server-random as proof of the secure channel establishment. A notary, as a trusted third-party
auditor, will audit the submitted proof. The system can punish any false reporting by making the
malicious voter unable to claim their deposit back.

3.3. Quick Analysis

Aside from single-point-of-failure and scalability issues, centralized identity management
possesses other problems. First of all, CA manages trusted certificates centrally. Therefore, when those
certificates are compromised, the CA cannot provide a seamless revocation procedure [34].
Moreover, the DNS has severe privacy and censorship issues. The former refers to a scenario where
DNS servers can log DNS requests to get users’ information on the site they are trying to request [35].
The latter happens when governments or authoritative entities censor the Internet by removing access
to DNS resolvers [36].

By using our design, IoT entities register their identity to the smart contract, stored distributedly
across multiple nodes in the network. Therefore, our proposal eliminates the single-point-of-failure
from the system while increases overall scalability and robustness. Furthermore, because submitted
public keys and domain names are replicated to each of the blockchain nodes’ storage, identity lookups
become local processes. This change speeds up the revocation speed since the revocation list is also
cloned to all nodes. Finally, the lookups also turn private since no other party can log or censor our
DNS query requests as they are now also local procedures.

4. Blockchain Solutions for Data at Rest

In this section, we explore integrity services for IoT data at the storage location. More specifically,
we put concerns in two kinds of storage: the repository of IoT raw data and the list of IoT commands
generated during IoT operations. Our main goal here is to provide a robust, non-repudiable,
and tamper-proof database that can augment the value of stored IoT data and commands.

4.1. Motivations

We can apply solutions from our data in transit design during IoT data gathering to protect the
transmitted IoT data’s integrity through a secure channel. However, this protection is ephemeral as it
only guards communication. In the IoT system, it is common for IoT entities to pass an IoT data or
process. Once a particular entity receives data from others, the entity decrypts, stores, and continues
to process it in a plaintext form. Eventually, the entity will deliver the processed data to another entity
by building another secure channel. If attackers can compromise one of those IoT entities, the IoT
data loses its overall credibility because our data in transit only satisfies the integrity between parties
that construct the secure channel. Other entities cannot measure the quality of communication as they
are not involved in it. Thus, we argue that to ensure continued integrity service, we need to provide
additional protection in the IoT data itself.

In general, the digital signature algorithm, for example, the Elliptic Curve Digital Signature
Algorithm (ECDSA) used in Ethereum [30], can be used to provide a non-repudiation guarantee to an
IoT process. Furthermore, when multiple entities contribute to IoT operations, we can use sequential
aggregate signatures [37]. Using this approach, each of the involved entities takes turn signing the
process in order. In this way, they cannot deny their participation. Hossain et al. [38] proposed using a
chain of signatures for forensic IoT use cases using blockchain. However, their approach requires the
IoT system to store [oT data, responses, and signatures in the blockchain. Therefore, their solution is
inefficient and costly.

A better idea is to only store the IoT metadata, instead of the raw data, in the blockchain.
In particular, we can hash the IoT data and store only the resulted hash. Proof of existence [39]
introduces this method by letting anyone anchor hashes of any digital file in the blockchain. The system
puts the digital file hash in a transaction and then submits it to the blockchain. The received
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transaction hash becomes the receipt for other users (acting as validators) to verify the file’s authenticity.
Upon receiving a digital file from the source, they can hash the file and can try to find it in the blockchain
using the transaction hash. Because everyone agrees that the blockchain state remains secure, when
the users obtain the digital file hash in the blockchain, they can safely assume that the file is authentic.

We propose to combine the chain of signatures and blockchain receipt techniques to provide
non-repudiation and tamper-proof database for the IoT system. While designing our solution, we also
conducted a literature survey on other blockchain-related solutions regarding data at rest. We then use
curated papers from our survey as our design’s building blocks. We summarize their contributions to
our design in Table 4.

Table 4. The list of related works serving as building blocks for our data at rest solutions.

Project Related to Contributions to our design

FIF-IoT [38] Chain of signatures  The author provides a role model of a chain of signatures
based on blockchain.

Proof of Existence [39] = Blockchain Receipt A legacy blockchain receipt proposal acts as
our inspiration.

ChainPoint [40] Blockchain Receipt It provides an example of a working blockchain anchoring
technique using Merkle Root hash.

Xueping Liang etal. [41]  Blockchain Receipt =~ We apply the authors’ idea of using daemon to generate
blockchain receipts.

Jay Kishigami et al. [42] = Data Sharing The authors propose a licensing mechanism based on the
blockchain that we can employ in our design to control
IoT data distributions.

NuCypher KMS [43] Data Sharing We can use the proxy re-encryption technique that the
authors propose to make our shared IoT data confidential.

4.2. Our Proposed Solutions

Prerequisite: We assume that we use the distributed identity management as proposed in
Section 3. All of the entities here have the secret key, public key, and address for offline and online
identities. We also bring up a new entity, the auditor, which plays a role as the validator of the stored
IoT data. All of the blockchain nodes in the IoT system are eligible to become an auditor. We introduce
new notations that we employ throughout the rest of this paper in Table 5. Figure 4 shows an overview
of our proposed data at rest design. We divide our explanations into IoT data gathering, IoT data
storing, and IoT data sharing. They all contribute to the overall integrity of the stored IoT data in
the database.

2. construct Merkle Root

1. gather data using and blockchain receipt
chain-of-signatures Auditor
loT 4. share data and receipt List of Smart Contract's Methods
»
3 _o »
Gateway = 2 G ( StoreRootHash (hash) )
Merkle Root
loT 5 v (VerifyRootHash (hash) )
Service VIR
receipt
loT Devices loT Data Storing i loT Data Sharing
Blockchain

oT Data Gathering

Figure 4. Our blockchain design to protect the integrity of stored IoT data: The protocol starts from
gathering IoT data using a chain of signatures, creating Merkle Root and its corresponding blockchain
receipts, and then sharing and verifying the receipts. We also depict the required list of smart contract
methods for developers to implement.
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Table 5. The list of new notations introduced in our data at rest design.

Notation Description

data The IoT raw data from IoT devices.

aggr The aggregated IoT data after micro-processing in the IoT gateway.

comm The IoT commands for IoT devices from the IoT service.

feed The feedback from IoT devices in response to IoT commands.

grouplD An identifier used to link the contents of a table in IoT gateways to the one in
the IoT service.

H(p) A hashing operation of p payload using any hash function (e.g.,

SHA-256 algorithm).

h The hash of a payload, the output of H(p).

Y A table in a database.

y A sub-table, which is a segment of a table.

row A particular row in a table.

m The threshold of the maximum number of new rows inserted in the table to

trigger blockchain receipt generation.
n The number of leaves as a parameter to construct the Merkle Root in the
blockchain receipt.

4.2.1. IoT Data Gathering

Transmitting IoT Data: during IoT operations, the IoT service collects IoT raw data from multiple
IoT devices. The data may transit in one or multiple IoT gateways for micro-processings or as a hop to
connect to the service. Therefore, multiple entities may contribute to the final IoT data. With chain of
signatures, all involved parties sign the data they receive before they relay the data to other parties.
Thus, when it reaches the end of the transmission pipeline, we can trace which entities have received,
processed, and relayed it. In Figure 5, we outline our design of a chain of signatures usage in the IoT
system, which we can further describe as follows.

data szgn | data | Sigp ‘Siycw‘
(a) Q . <:> > % id raw signatures grouplD
== | 1 | data | SigD Sigew -
’ data | Sigp l szgcw,l SIgGW, 2 | data |S19D SIIGW SIGGWs| -
MO%O O [ o

W, GWy g = 4 | feed | sigs sigp Sigaw 11

© e R %

—e= id raw signatures | grouplD

1 | datap, | $igp, 10
O 2 | datap, | Sigp, 10

D, - 3 | comm | sigs 11
-
% 4 | feed | sigs sigp 11

(d) o S—
; o SV A ET e e

Figure 5. Four scenarios of IoT data flows using chain of signatures: scenarios (a,b) are the delivery

of a simple IoT data reading from a single IoT device through one or multiple IoT gateways to the
IoT service. Scenario (c) considers IoT raw data from multiple devices, including a data aggregation
scheme performed by the gateway. In scenario (d), the IoT service transmits a command to the device,
which the device acknowledges as feedback. Finally, (e,f) depict the final data stored in the service’s
and gateway’s database from scenarios (a) to (d).

o In the first image (a), an IoT sensor device, D, transmits its IoT data readings to the nearby IoT
gateway, GW. D also provides its signature to the generated data, sigp, which it signs using
its private key, sigp = SI GNSKg,zmg (data). data is an IoT data reading. GW then relays the
message to the IoT service, S. Therefore, GW also appends its signature siggw to the received data,
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sigow = SI GNSKOGWW (data || sigp). When the data arrives at the Cloud, S stores signed data in its
database, as shown in the image (e) with id = 1.

e The second image (b) depicts a similar scenario like the one in (a). However, we have
two gateways now, GW; and GW,. Therefore, the chains are longer compared to the
previous example. When the data arrives in S, the service stores the received data depicted
in the image (e) with id = 2. It contains three signatures: sigp, siggw,, and siggw,,
which were derived from sigp = SIGNSK%l;,-m (data), sigew, = SIGNSK%%,;(data |l sigp),

and sigcw, = SIGNSng;g(data || sigp || sigemw,)-

e In the third scenario (c)) GW receives two readings from two devices: D; and D,.
Like the two previous scenarios, device signatures sigp, and sigp, accompany those readings.
The signatures are obtained from sigp, = SIGNSK%”;,-M (datap,) and sigp, = SIGNSKg,zing(dataDZ).

However, different from previous scenarios, GW now has a local database. GW stores datap, and
datap, in its local database as shown in image (f) with id = 1 and id = 2. Furthermore, GW also
generates a reference pointer for those two data, groupID = 10. This pointer links contents in its
local database with the one stored in S later.

Once it finishes storing the data, GW conducts data aggregation by averaging the values and then
signs the aggregated data with its secret key, siggw = SIGNSK%%M (aggr || grouplID | sigp, || sigp,)-
aggr and grouplD denote the aggregated IoT data and the group identifier. After that, the gateway
delivers aggr, sigcw, Sigp,, sigp,, and groupID to S. The service then saves them in the database,
as shown in the image (e) with id = 3.

Transmitting IoT Command: In our final scenario, we use a chain of signatures to ensure the
integrity of IoT commands issued from IoT services to IoT devices, depicted in Figure 5 in the image
(d). S creates an IoT command, comm, for the device. The service signs this command with its secret
key, sigs = SIGNg Knline (comm). Tt then delivers the command and the associated signature to the
specified IoT gateway, where the device resides.

Upon receiving this command, GW verifies that sigs is valid. The gateway then creates another
reference pointer for this process, groupID = 11, and stores the command in local storage, shown in
image (f) with id = 3. After that, GW relays the command to the IoT device. We assume that the device
fully trusts the gateway and that all communications from the device will return to the service through
the same gateway. Therefore, the gateway does not need to include the signature at this moment.
After processing this command, the device sends acknowledgment as feedback. The device forms a
feedback, feed, and its signature, sigp = SI GNSK%””'” (feed || sigs). It then sends them back to GW by
also including the IoT service’s original signature, sigs.

GW stores the feedback and signatures in its database, shown in image (f) with id = 4. After that,
the gateway signs this feedback, siggw = SI GNSK%W“’ (feed || sigs || sigp). GW then deliver feed,
grouplD, sigs, sigp, and siggy to S. Finally, the feedback and signatures rest in S’s database as in
image (e) id = 4.

Using a chain of signatures, we can pinpoint the origin of the IoT data or command stored
in a database, which is the first instance that signs that data or command. It also provides strong
non-repudiation properties for all involved participants. However, signing and verifying digital
signatures are costly operations in terms of CPU resources. Therefore, administrations may limit these
procedures only to essential or crucial IoT operations.

4.2.2. IoT Data Storing

The chain of signatures only provides a partial integrity guarantee to our databases. Assuming
that attackers can compromise the service or gateway, they can further tamper the storage and
render those signatures obsolete. Therefore, we need a complementary tamper-proof property
in our database. Using blockchain is one solution, but it is expensive to store all the data,
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commands, pointers, and signatures in the blockchain. Proof of existence [39] introduces the idea
of storing the hash of data instead of the raw data in the blockchain. As a result, we can reduce the byte
size that has to be saved. However, this method is still inefficient because the IoT system generates a
vast amount of data. To save much more storage space, we can extend the hashing further by forming
a Merkle Tree [44] and store only the root hash in the blockchain [40].

Generation of Blockchain Receipt: The blockchain returns transaction (tx) hashes each time we
store data in it. These tx hashes are receipts or proof that a particular data exists in the blockchain,
thereby maintaining the data’s credibility because the blockchain is tamper-proof. We can leverage
these so-called “blockchain receipts” to build a verifiable database system. Figure 6 showcases our
overall blockchain receipt design for an IoT system. We describe the generation of receipts in the
following paragraph and elaborate on its verification in the next section.

> hy=H(hs | hg) «— ]
(a) } (b)

Blockchain Recei
id data id data id data id data { (for Y2)
1 5 101 8 201 7 301 4 : {
| m: 400,
100 | 6 200 | 5 300 | 6 400 | 5 L
I ’
h1 = H(y1) ha = H(y2) h3 = H(ys) hs = H(ys) ! rOOt; h7['
‘ ‘ ( )y proof:
o>y = H(hy || he) < > hg = H(hg || ha) < } left: hy,
~_ — : right: hg
I
I

Figure 6. (a) A scenario for constructing a Merkle Root, /17, from a table containing 400 rows of IoT raw
data (m = 400) split into 4 sub-tables (n = 4): From this structure, we can build blockchain receipts for
each of the sub-tables. (b) The receipt for y,.

1. First of all, we have two essential parameters for blockchain receipts: m and n. m is a threshold
defining the number of newly inserted rows in a table to trigger the blockchain receipt generation
process. Meanwhile, 7 is the number of leaves to construct the Merkle Root [44]. These two
parameters are configurable by the administrations. For simplicity, let us assume that we set m
equal to 400 and # to the value of 4.

2. During IoT operations, the IoT service receives and saves IoT data in its database. Suppose that
we have a daemon in our system that detects our storage state, similar to the idea proposed in [41].
Once the service has more than 400 newly inserted data, it triggers the m parameter and starts
building blockchain receipts.

3.  Following the m parameter, the service queries 400 rows of tables from the database. We separate
these data into a new table, Y. Then, we divide this table into 4 sub-tables, Y = {y1,y2,¥3,V4},
matching the n parameter. y; is a concatenation of the first 100 rows in the table, which is

y1 = rowy || rowy || ... || rowigo. Meanwhile, y», y3, and y4 are for the second, the third, and the
fourth 100 rows. They are y, = rowqg; || rowsy || ... || rowapo, y3 = rowog || rowamy || .. || rowseo,
and y4 = rowsgy || rowspy || ... || rowano, respectively.

Figure 6a illustrates this table division. For easy explanation, the picture only shows a small
table data structure with two columns: id and data. However, in real environments, we can have a
higher number of rows and columns. More importantly, the tables must also include the column that
stores our chain of signatures from the previous section, which can augment the data’s authenticity in
each row.

4. The service calculates the Merkle Root hash, which is again illustrated in Figure 6a. From each
of the sub-tables, the service generates the hash: h; = H(y1), h, = H(y2), hs = H(y3), and
hs = H(ys). H(.) refers to any hash function. After that, the service hashes /1 and h, to generates
hs. Then, it hashes h3 and h4 to produces hg, specifically hs = H(hy || hy) and hg = H(h3 || hg).
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Following a pyramid scheme, the service then forms the summit by hashing 5 and & together:
hy = H(hs || he). This hy is the Merkle Root hash.

5. The service then stores hy in the blockchain by forming a transaction to call the StoreRootHash
(hash) method in the smart contract. The hash is the Merkle Root hash to be stored, which is h7.

6.  Once the service saves the root hash in the blockchain, it generates blockchain receipts for each
of the sub-tables. An example of such a receipt is shown in Figure 6b. That receipt is for vy,
which contains data from row 101 to 200. In the receipt, we can find the m, n, root, and proof
information. The root indicates the Merkle Root hash, while the proof is the trace of the y»’s
opposite hash in the pyramid scheme to reach the root hash. Then, the service keeps these
blockchain receipts in a secure place separated from IoT raw data storage.

4.2.3. IoT Data Sharing

Verification of Blockchain Receipt: in most cases, the IoT service needs to allocate its stored IoT
data and command to other entities for analytics or presentations. The following paragraphs explain
how the second entity, as an auditor, can use the blockchain receipts to validate an arbitrarily assigned
data and can determine whether anyone tampered with the data.

1. The IoT service delivers the IoT data, Y, and its corresponding blockchain receipts to the auditor.
In this example, we assume that the service shares the data in plaintext form and without any
authentication.

Depending on its contents, we might need to protect data privacy and only allow limited access
to the data. In this case, we can borrow the licensing mechanism proposed in [42]. Using their
approach, we can set licenses or permissions to each of the allocated IoT data only to registered,
trusted, or paid customers.

Moreover, to further enhance data privacy, we can also conduct encryption procedures to the
IoT data. We are interested in using the proxy re-encryption technique proposed in [43]. This novel
encryption technique allows an entity to transform (by re-encrypting) an encrypted data from one
public key to another, without decrypting it. Combined with the licensing technique, we can then
provide fine-grain access control to each of the IoT data, while our chain of signatures and blockchain
receipt proposal preserves the integrity of the data.

2. After receiving all of the data and associated receipts, the auditor queries the m and n parameters
from the receipt. First, it takes 400 records of data following the m parameter. Then, because 7 is
equal to 4, the auditor splits the data into 4 sub-tables and forms , y5, y4, and yj;. For simplicity,
we only show the verification of y) in this section. The corresponding blockchain receipt is
depicted in Figure 6b.

3.y, contains the second 100 rows of the table: v, = row}y, || row}y, || ... || rowhy,. The auditor
hashes v} to generate 1), h}, = H(y5).

4. Afterward, the auditor queries the proof information from the receipt. The proof contains
instructions on aligning the provided corresponding hashes (1 and k) with &), to form the
Merkle Root hash. The auditor must follow the directions in order. The first line of the proof
gives two parameters: the hash 11 and the hash’s alignment left. Therefore, the auditor puts /1
on the left of I, and hashes it to generate hf, hi = H(h; || h}). After that, following the second
line guidance, the auditor puts hg on the right of hi to generate h}: h, = H(hj || he). When we
find no other advice, it means that we reached the Merkle Root hash already. In this case, h’7 will
be the auditor’s generated root hash.

5. The auditor then queries the root information from the receipt and obtains /7, the Merkle Root
generated by the IoT service.

6. The auditor then conducts two verifications. First, it needs to ensure that /1 is equal to hy.
Afterward, it needs to check if this h’7 is recorded in the blockchain. The auditor forms a transaction
that calls the VerifyRootHash (hash) method in the smart contract. The hash is the Merkle Root
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hash to be verified, which is /. The method will return True if they find A} in the smart
contract’s storage.

7. If all of the above validations do not result in an error (or return False), then the auditor can
assure that no one tampered with the sub-table data’s content. The auditor can then continue the
same process to verify the rest of the sub-tables, mainly y/, i3, and y}.

4.3. Quick Analysis

Luo et al. [45] elaborate a data poisoning scenario for IoT models. In their scenario, attackers have
access to several compromised IoT devices. Then, they create fake or false inputs for the systems to
confuse or misclassify the IoT systems. Without a non-repudiable and tamper-proof storage, the IoT
administration may find difficulties detecting the origin of the attacks. They may guess that the breach
happens at the IoT service where the IoT data is stored. They can also randomly speculate that the
IoT gateway is acting maliciously by sending invalid data. Our proposal augments IoT databases
to have non-repudiable and tamper-proof properties. Therefore, we can speed up this detection.
The administration can swiftly verify whether the system’s databases are secure and quickly determine
that the IoT devices themselves are hostile.

During the collaborations between two parties in our system, one entity can become malicious,
either intentionally or unintentionally. Let us say that the first party cheats the agreed SLA by sharing
fake or invalid data with the second party. Therefore, their action is damaging the receiving party.
The second party can sue the first party by bringing the log of IoT data and commands as evidence to
the court. However, without a non-repudiable and tamper-proof database, the submitted evidence
will lose the “forensically sound” property [46] and no longer have credibility. In contrast, with the
combination of the chain of signatures and blockchain receipts that we propose, we can preserve the
log’s integrity to guarantee its trustworthiness.

5. Blockchain Solutions for Data in Process

We look at two integrity services during IoT data processing. In the collaborative IoT data flow
pipeline, we are interested in the alliance between IoT services and workers by forming a decentralized
marketplace. Meanwhile, we consider designing a federated learning platform in the blockchain for
the privacy-preserving IoT data flow pipeline.

5.1. Motivations

Collaborative IoT data flow pipeline: The vast amount of IoT data that the IoT services gathered
are idle in their database, waiting for IoT workers to process them to generate insights. It is simple to
let a particular IoT application deploy its own workers to process their data. However, this solution is
expensive and unproductive. In particular, when the application has no more data to process, then its
workers will contribute nothing to the system. Therefore, nowadays, shared IoT data processing
services such as the one in Amazon [47] and Azure [48] are gaining popularity. Instead of building
their own silos and training the IoT raw data in their private servers, IoT services now can rent other
companies’ servers and instruct them to train the IoT services” data.

To facilitate the previously mentioned collaboration scheme, we need an electronic marketplace
(e-marketplace). We can leverage blockchain as a platform to build a reliable marketplace. For example,
Sterling [49] showcases a decentralized marketplace based on blockchain. The authors combine
blockchain smart contracts, trusted execution environment, and differential privacy to provide a secure
and privacy-preserving marketplace. Our data in process design goal is similar to this proposal.
However, unlike Sterling, we do not consider the IoT raw data and machine learning models as
commodities in our market. Instead, we use the market as tools for IoT workers to exchange IoT
training services among themselves.

Privacy-preserving IoT data flow pipeline: the practice of companies building private data silos
and then harvesting as much data as possible from users is deteriorating users’ privacy. Users are not
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in control of their data, and most of the time, they do not have any options but to comply with this
malpractice simply because they want to reap the “free” service that the company offers. We argue that
this problem is by design; we cannot expect the IoT device to generate analytics by itself. The device
needs processing power, and much data from other IoT devices, which with the current design, is very
impractical. Nowadays, Federated Learning [50] (FL) is gaining traction because of the ability to train
data in the IoT device’s hardware with limited data by collaborating with other IoT devices. Instead of
sharing private data, the device shares the trained model to other entities, which they can aggregate to
construct the global trained model. However, the original FL architecture is still centralized because
the IoT service solely manages the training. Therefore, we can leverage blockchain as a decentralized
platform to conduct FL.

CrowdSFL [51] proposes a crowdsourcing platform that leverages blockchain as a marketplace
for requesters (analogous to IoT services) and workers. However, in their approach, the requester
solely updates the global model. Thus, it holds a decisive role in determining the shape of the trained
model. As a result, this proposal is strongly centralized. Yang Zhao et al. [52] also suggested a similar
blockchain platform to perform FL, which makes use of Mobile Edge Computing (MEC) servers as
helpers for IoT devices to train their data. They propose using the Algorand-based leader election
scheme [53] to choose a candidate miner to update the global model. This approach is quasi-centralized
because the algorithm picks only small subsets of participants to become the leader. Unlike those
proposals, we design our FL protocol to involve all IoT devices to simultaneously maintain their own
view of the global model. Thus, our design is decentralized.

While devising our solutions, we also perform a literature survey on other blockchain researches
related to e-marketplace and federated learning. We then employ curated papers from our survey as
our design’s building blocks. We summarize their contributions to our design in Table 6.

Table 6. The list of related works serving as building blocks for our data in process solutions.

Project Related to Contributions to Our Design

Sterling [49] E-marketplace This project shows us an example of a privacy-preserving
blockchain-based marketplace for private data and machine
learning model trading.

Wibson [54] E-marketplace We can use the notary system that the authors propose to be
auditors and mediators between data sellers and data buyers
in our marketplace.

CrowdSFL [51] Federated Learning We can employ the reward distribution mechanism and
the El-Gamal re-encryption scheme in this proposal to
our design.

Yang Zhao et al. [52] Federated Learning We borrow the idea of using MEC servers to alleviate some

training burdens from IoT devices.

Dongxiao Liu et al. [55] Reputation System We endorse the use of the proposed reputation system, which
provides an anonymous reputation system that is hard to
trace to protect the reviewers’ privacy.

Jiawen Kang et al. [56] Incentive Mechanism = We use the proposed incentive mechanism, which presents
an incentive mechanism for mobile devices to encourage
active participation in the federated learning process.

5.2. Our Proposed Solutions

We divide our explanations into two themes: the decentralized marketplace and federated
learning. Both of them are based on blockchain and contribute to the IoT data processing integrity.
We bring up new notations regarding our data in process design in Table 7.
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Table 7. The list of new notations introduced in our data in process design.

Notation Description

MEC The Mobile Edge Computing (MEC) servers.

hg The Merkle Root hash of the IoT service dataset, which also acts as job identifier
in our marketplace.

prop A training proposal from IoT worker to IoT service.

w The training result from an IoT worker.

global The global model from an IoT service for federated learning.

hipes The IPFS hash of our global model, which serves as training process identifier in
our federated learning.

local The updated local model from an IoT device.

hbDa The IPFS hash of a local model from device a for epoch b.

5.2.1. Blockchain-Based Decentralized Marketplace

Prerequisite: first of all, we use our distributed identity management, as proposed in

Section 3. Entities have the secret key, public key, and address for both offline and online identities.
Then, we introduce several actors.

1.

IoT services act as buyers in our e-marketplace. We assume that they have many raw IoT data
from their IoT operations, but they cannot train them on their own.

IoT workers exist as sellers in the market, which provides training services for IoT services.

A notary (e.g., the government as a trusted third-party) initially governs the market. This entity
develops the market rule by also counting feedback from IoT services and workers as the market
players. The market can be run automatically in a decentralized manner without any further
intervention once the notary deploys the smart contract.

Afterward, we made the following assumptions.

The smart contract has a reputation system, and the IoT services and workers already built some
positive scores in the system.

In general, we can integrate our market with any available reputation system. However, we are
interested in using the proposal from [55]. The authors present a reputation procedure with the
anonymity feature, which can protect users’ privacy. Therefore, users are most likely to give
honest reviews without being worried about being tracked or discriminated against if they give
poor score reviews.

In this scenario, we use deep neural networks [57] as an example of IoT data training.
However, this market can be redefined customarily to match any machine learning algorithm.
Thus, it is algorithm-agnostic.

For simplicity, we only show a one-to-one mapping scenario between IoT services and workers.
In real cases, race conditions may exist. IoT services can contact many IoT workers, and IoT
workers may process multiple jobs from several IoT services.

Figure 7 summarizes a scenario where the IoT service negotiates an IoT training service with the

IoT worker. We elaborate on them in the following paragraphs.
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Figure 7. Overview of our blockchain design of the decentralized marketplace: the design flow starts
from an IoT service creating a training job offer for IoT workers. The workers then propose a training
offer. If negotiation is complete, the worker trains IoT service’s data and submits reports back to the
service and blockchain. Finally, the worker claims their reward when the job finishes. The figure also
depicts a list of smart contract methods for developers to implement.

The IoT service conducts preparation for IoT data processing. It transforms its whole IoT raw
data into a training dataset and splits them into several data chunks (or batches). During this
separation, the IoT service applies our data at rest strategy in Section 4 to generate Merkle Root
hash and the blockchain receipts. More specifically, Y becomes the whole training dataset, and y

is the training batch. Let us also say that /g is the root hash of the training dataset.
The IoT service then creates a job request in the smart contract by calling the

CreateJobRequest (root, reward, param, deadline) method. root is the Merkle Root hash
of the training dataset, hs. reward is the payment for IoT workers after completing the task, e.g.,
100 coins. param is the training parameter and requirements. They can be the type of training
(e.g., classification, prediction, or generation) and the desired training result (e.g., having at least
90% accuracy). Finally, deadline is the time limit for the workers to return the training result to
the service, e.g., a UNIX timestamp.

In this step, the IoT service also pays the reward in the form of a deposit. This policy ensures that

the service indeed has the money to pay the workers; therefore, they can trust the job offer.

3.

The smart contract maintains lists of job requests in local storage. At any given time, they can
only have one of the following states in the smart contract.

e Unprocessed is when the IoT service just offered the job request, and no IoT worker

processes it.
e InProgress tells us that the IoT service has assigned the job to one of the IoT workers.
e Success indicates that the job request is completed and that both the IoT service and worker

are satisfied with the result.
e Failed implies that the job’s processing is unsuccessful due to one of the party cheats

or timeout.

Upon receiving a transaction from the previous step, the smart contract queries the sender

information from the transaction, which is zx%”li”e, then combines it with arguments from the method
and saves them to the list. At this moment, the smart contract labels this new request as Unprocessed.

4.

IoT worker queries for available job lists in the smart contract by invoking the
GetAvailableJobList (.) method. The smart contract returns a list of all jobs that currently have
the status of Unprocessed. Each of the available jobs is distinguishable by root or kg as the job
identifier.
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5. Optionally, the worker can check the IoT service reputation by calling the GetReputation (addr)
method in the smart contract. addr is the address of the IoT service, zxg”“"e, which the worker
obtains when querying for the available job list in the previous step. Based on this reputation,
the worker can decide whether to trust the job offer.

6. The worker picks one of the jobs that it is willing to train. In general, it can pick any job with the
highest reward to maximize profit. However, the worker should choose wisely with consideration
of its processing ability. If the worker fails to report the desired output to the service before
the deadline, the worker will not be able to claim the reward, and this event can diminish its

reputation.

After deciding which job to take, the worker delivers a training proposal to the IoT service
off-chain. We denote prop as the training proposal. The worker first includes the job identifier,
hg, and its address, zx%‘li”e, in the prop. Then, it also must provic}g their signature, sigw =
online

SIGNSK%I,-ne(prop). Therefore, the final proposal will be prop <« hg || af"™" || sigw || prop.

7. Upon receving the proposal, the IoT service validates the worker’s signature, and
VERIFY, Koine (prop, sigw) must return True. After that, the IoT service can check the worker’s

reputation by calling the GetReputation(addr) method. addr is the worker’s address, ag!i"e.

The acceptance of a job request is then subject to the service’s judgments over the worker.

8. Assuming that the service is satisfied with the worker’s reputation, the service accepts the training
offer by calling the AcceptTraining0ffer (root, addr) method. root and addr are the job id,
hg, and the worker’s address, vc%””“, respectively.

9. The smart contract sets the job request to InProgress. While in this state, no other workers except
the one that the IoT service previously approved can handle this job. This lock-in mechanism
ensures that no race conditions happen to boost the fairness of the market.

10. The service sends batches of raw IoT data to the worker off-chain. On each batch, the service
also includes the associated blockchain receipt. With this receipt, the worker can verify that the
incoming batches are part of g, as described in Section 4. In other words, the service cannot cheat
the worker by training more data than they previously registered in step 2.

11.  The worker begins training the received data.

12.  After it is complete, the worker hashes the training result (e.g., the checkpoint data if we
are using TensorFlow [58]) and stores it in the smart contract. We denote ryy as the training
results from the IoT worker and hy as its hash, hyy = H(ry). The worker then calls the
ReportTrainingResult(root, trainedHash) method, with root and trainedHash as the job
identifier, hg, and the hash of training result, /.

13.  The worker delivers the training result to the service off-chain. Before transmission, the worker
must include the job identifier, /g, and its signature, sigiy = SI GNSK"W”“”“ (rw) to the training
result. The final training result will be ryy < hg || sigw || rw.

14.  The service verifies the signature and checks if the hash of the received training result matches the
one in the smart contract. Specifically, VERIF YPK%‘“”C (rw, sigw) must return True and the service

can find hy, calculated from hy = H(ry) in the smart contract. Furthermore, it makes sure that
the result fulfills the desired training output agreed during the job request submission in step 2.
Note that the service can replicate (without retraining) the training process easily with the given
checkpoint to determine whether the training indeed has the desired output.

15.  Assuming that the service is satisfied with the result, it ends this job request by calling the
EndJob(root, status) method. The status is either Success or Failed. If the result fulfills
the training objectives, then the service sends Success state. Otherwise, they set the status to
Failed. As a fail-safe mechanism, the service can only call this method after the worker submits
the training result. Therefore, the service cannot cancel InProgress jobs arbitrarily and damage
the worker’s training efforts.

16.  Upon receiving the previous transaction, the smart contract sets the job request to either Success
or Failed.
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17. When a job request is successful, the worker withdraws the reward from the smart contract using
the ClaimReward (root) method. However, if the job fails, the service takes its previous deposit
back from the smart contract using the same method. Moreover, the service can also retrieve their
deposit back if the worker cannot complete the training within the given deadline. The smart
contract will automatically set the job status to a Failed state.

18.  Once the job session ends, whether it is successful or failed, the service and worker vote for each
other’s reputation by invoking the VoteReputation(addr, score) method. addr is the address

of the service or worker, a2"" or %" Meanwhile, the score is the reputation value to give.

Notary services: because the market is decentralized, it opens the possibility for each player to
cheat the system. The worker can intentionally send a fake result in step 13 to halt IoT servers to get a
valid training result. Recall that the system locks the training process of an InProgress job request
only to one worker at any given time. As a result, if the worker is malicious, it can delay the service
time to get a valid training result. Moreover, the service can also deliver a fake confirmation in step
15. Even though the worker already transmitted a valid training result, the service can maliciously
deny this result by sending fake approval. To solve these issues, we need the help of a trusted third
party. For example, we can employ a notary service [54] as a mediator and judge in case of conflicts.
This notary is the same entity that deploys the smart contract.

5.2.2. Blockchain-Based Federated Learning

Prerequisite: similar to our decentralized marketplace design, here we also apply our distributed
identity management from Section 3. All entities have the secret key, public key, and address for both
offline and online identities. The following actors are present in our federated learning.

1. IoT devices generate IoT raw data and train them in their local machine. Instead of allocating
their private IoT data, IoT devices share their training results with IoT services.

2. Mobile Edge Computing (MEC) servers are edge servers available near IoT devices. They help to
alleviate parts of the training from the IoT devices by splitting the training model.

3. IoT services take the trained model from IoT devices and provide analytics to IoT users. They also
create the training rule and apply it to the smart contract. If IoT devices agree with the regulation,
they can join the training.

We made the following assumptions.

1.  The smart contract has a reputation system, and IoT devices and the service have positive scores.
We use the same reputation procedure [55] as in our decentralized marketplace.

2. In this example, we apply the federated learning that McMahan et al. [50] proposed.
However, our design can be reconstructed to match any federated learning algorithm. Thus, it is
algorithm-agnostic.

3. We only show a one-to-many mapping scenario between the IoT service and their manufactured
devices. In real cases, several IoT services can use the platform simultaneously.

The following steps detail our federated learning design, which we also summarize in Figure 8.
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Figure 8. The overview of our blockchain design for federated learning: IoT devices first download the
initial model from the IoT service. At each epoch, they train the model using private IoT data, share
the result to other devices, and update the global model. Once the training is complete, the IoT service
delivers rewards to IoT devices based on their contributions. We also show the list of required smart
contract methods for developers to implement.

The IoT service prepares the model and its parameters (e.g., the number of nodes and layers,
the structure of the model, the value of learning rate, weight, bias, and the activation function
to use).

We define two models: local and global. The former is a model that the IoT devices train

independently without considering private data from other devices. Meanwhile, the latter is an
aggregation of local models, where IoT devices combine all local model parameters from others.

2.

The IoT service signs the model and obtains the signature, siggops, derived from
Sigalobal = SI GNSKg”’i”e (global). The global denotes the initiated global model. The IoT service
then stores this signature and the global model in the InterPlanetary File System (IPFS) [59].
From this action, the service retrieves the IPFS hash, hjprg, indicating that the IPFS network has
saved its model.

The IoT service then creates a new federated learning process in the blockchain by calling the
CreateTrainingRequest (hash, reward, targetRound, deadline) method. hash is the IPFS
hash of the model, /1;prs, which also acts as a training process identifier to distinguish one training
from another. reward informs the number of payments for all voluntary training participants (e.g.,
10 coins). targetRound denotes the final global epoch required to end this federated learning
process (e.g., 3 epochs). Finally, deadline is the time limit range (e.g., in UNIX timestamp) for
IoT devices to submit their local model at each epoch.

In this step, the IoT service must pay the reward in the form of a deposit. This deposit testifies

that the payment is indeed redeemable, and it can enforce trust among training participants.

4.

The smart contract maintains lists of training requests in local storage. At any given time, they can
only have one of the following states in the smart contract.
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e Unprocessed tells us that the training request is open for anyone to join.
e InProgress informs us that the training registration has finished and that all participants

are currently performing training.
e Finished indicates that the IoT service has ended this request.

After receiving the transaction from the previous step, the smart contract saves the transaction
parameters in its key-value storage. It also stores the sender of the transaction, a". The smart
contract then sets the round parameter to 0. This round tells the current training epoch the federated
learning algorithm. By assigning this parameter, the smart contract also initiates this training request’s

status as Unprocessed.

5. Interested IoT devices can begin querying for available federated learning processes using the
GetAvailableTraining(.) method. The smart contract returns a list of all Unprocessed training

requests, which includes the owner address, a%"¢ and the corresponding training identifier,

hipps.

6. Optionally, IoT devices can check for the training request owner’s reputation by calling the
GetReputation(addr) method. addr is the address of the IoT service, a%””"e. If IoT devices
satisfy the service’s reputation, they can continue the process. Otherwise, they can stop and look
for other training requests.

7. After choosing one training request to perform, IoT devices register to participate in the training
by invoking the RegisterTraining(.) method. The smart contract will take the sender of this
transaction, a%/"¢, and will save it to the list of participants in its local storage.

8.  The deadline for the current epoch expires. The smart contract then sets the status of the training
request to InProgress and the round parameter to 1. With this change, registration is now closed.
The devices can now begin performing training.

9. IoT devices download the initial global model from the IPFS network using hjprg. They also need
to verify the authenticity of the model, and VERIF Yngnune (global, si 8global) must return True.

10.  They then perform the local training using their own machines and private data. Once the training
is complete, they update their local model parameters.

Because IoT devices are constrained devices, they may outsource some training to the MEC
servers. Yang Zhao et al. [52] propose to train the fully connected layers in those servers while feature
extractions are done in IoT devices. They also apply the differential privacy parameter between those
layers to prevent the leak of private data to MEC servers.

When using this feature, IoT devices must ensure that they communicate with valid MEC
servers that the IoT service endorses. Therefore, additional handshakes using our proposal in
Section 3 are required. During registration, the IoT service can sign its MEC server address,

online

sigmec = SIGNggonine (&3¢ ), and then present this signature as a certificate. In this case, the IoT
S
service behaves like a CA for MEC servers.

11. IoT devices sign their wupdated local model and generate the signature,
SiQlocal = SIGNSKDD,,W(Zocal). local denotes the updated local model. They then upload

the model and its signature in the IPFS network. We denote hlba as the IPFS hash containing the
local model update from device a for epoch b. Thus, thl and h%,z represent the first and second
IoT devices” hash for the first epoch.

For simplicity, the updated model is transmitted in plaintext form. However, encryptions can be
enforced when necessary.

12.  IoT devices then store the local update metadata to the blockchain by calling the
StoreLocalModel (hash, localHash) method. hash is the training identifier, ijprs. localHash
is the IPFS hash pointer for others to download the updated local model (e.g., h%)l ).
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13.  When receiving the transaction for this method, the smart contract put the hash and sender of
this transaction (i.e., a2/ into storage. The smart contract maintains a list of the updated local
model per epoch.

14. The deadline for the current epoch expires. The smart contract sets the round parameter to 2.

15.  IoT devices are aware of the round change and begin downloading all updated local models from
other devices. They query for all models from h%)l to h%)n, where n denotes the index of the last
IoT device.

16.  Each of them validates the downloaded model and votes for the quality of the model. They make
sure that VERI FYPK”D”“"" (local, sigj,cqr) returns True. After that, they call VoteReputation (addr,

score) with addr and score as the device’s address and the reputation score to give.

This voting is essential to determine and punish malicious devices that perform poorly. If a
particular device’s score is inferior, the system can exclude its model from being combined with others.
Thus, we can preserve the grade of the global model. Furthermore, IoT services will only allocate
rewards to devices that operate well during training.

17.  IoT devices simultaneously aggregate all local model parameters from all devices and update the
global model.

18.  IoT devices then perform training for the next epoch (repeating step 10 to 17) until round matches
the targetRound that the IoT service specified previously in step 3.

19.  Once the final epoch is complete, the IoT service gathers all of the local model parameters
from devices.

20.  After that, it updates the global model.

21. The IoT service starts to distribute the reward to all IoT participants by invoking
the CloseTraining(hash, rewardParam) method. hash is the training identifier,
hiprs. rewardParam is a softmax array multiplier that will be applied to split compensation to all
training participants.

We assume that the IoT service has a strict and fair policy on allocating rewards to IoT devices.
In particular, it may use the proposal in CrowdSFL [51], where the price is given based on the number
of private data used in training and the quality of the training. Otherwise, other incentive mechanisms
such as [56] can be used.

22.  The smart contract then changes the training status to Finished.
23.  IoT devices can begin claiming their reward using the ClaimReward (hash) method with the hash

sets to hyprs.
24. Last but not least, the IoT device can vote for the IoT service using the
VoteReputation(addr, score) method. addr and score are the IoT service address,

aZ'line and the reputation score to give.

5.3. Quick Analysis

The state-of-the-art e-marketplace is centralized and poses many obstacles. The classic problems
commonly found in a centralized system are single-point-of-failure and scalability issues (especially
during sales period [60]). Furthermore, we also notice monopoly issues. Because of the central control
of the marketplace, the administrator can change the policy that may benefit themself but damage
users in the market. For instance, Uber changes their pricing policy several times that may put either
drivers or riders at a disadvantage [61]. This issue is augmented by the fact that the market most
probably is not transparent. The publics” remarks or suggestions are most likely not included in the
market policy’s decision-making. Using our designed marketplace, the market’s rule is deterministic
and transparent because the notary implements it as a smart contract. Moreover, the blockchain is
fully distributed; therefore, it can further scale the market.

The prevailing FL faces similar centralization problems as in the e-marketplace. Even though
the device sends only the model and not the raw IoT data to the server, the server still plays a crucial
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role in determining the training result when forming the global trained model. Thus, we can expect
another monopoly scheme if the server for a particular reason does not include or accept the submitted
trained model from a particular IoT device [62]. Using our designed FL, IoT devices can construct the
global model independently without IoT service intervention. We can then preserve the generated
global model’s fairness because the FL rule is reflected in the smart contract code, which is open to the
public and immutable. Last but not least, the blockchain’s tamper-proof properties are useful to serve
as a piece of strong evidence to solve any dispute among entities that may happen in our market and
FL process.

6. Discussion

In this section, we present how our proposed blockchain integrity platform model can solve the
previously mentioned open problems in IoT big data management. We then elaborate on several
further considerations and challenges in realizing our proposed design.

6.1. Solutions to IoT Big Data Open Problems

A previous survey study has investigated several open problems regarding the IoT big data
architecture [63]. We selectively pick issues related to data in transit, data at rest, and data in
process. Then, we discuss our contributions in solving the mentioned obstacles, as shown in Table 8.
Overall, our design answers several of those open problems, especially for security-related ones.
Our proposal also assists the non-security issues by augmenting the integrity of their solutions.

Table 8. Summary of how our proposed design can tackle open problems mentioned in [63].

No Open Problems Related to Our Solutions

1 Users are reluctant to rely Datain Process We transform SLAs into smart contracts, and all
on conventional IoT big data users can safely assume that the execution of a smart
systems because they do not contract is always deterministic; thus, it is trustable.
provide reliable SLA.

2 Users’ sensitive information ~Data in Transit ~ Using a combination of a chain of signatures
needs to be secured and Data at Rest and blockchain receipt, we can easily detect
protected from external DatainProcess if anyone has tampered with our database.
interferences. Meanwhile, our blockchain-based secure channel

can be used to provide secrecy during data
transmissions.

3 The IoT system should DatainTransit We design our identity system based on the
assign a non-repudiable Data at Rest public key mechanism, which provides a reliable
identification system to each  Data in Process  non-repudiation guarantee.
of the IoT devices.

4  Enterprises should maintain  Data at Rest The blockchain receipt can ensure the integrity
a metadata repository of of the metadata repository such that, when that
the IoT devices for auditing metadata is shared with auditors, it still preserves
purposes. the forensically sound guarantee.

5 The system may face DatainProcess The reputation system can force device owners to
difficulty in keeping IoT update their devices. For instance, we give weak
devices up to date. ratings to outdated devices or have a policy that

bans obsolete devices.
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Table 8. Cont.

No Open Problems Related to Our Solutions

6  Administrators also need Datain Transit While malicious traffic detections require other
to  identify  suspicious technologies (e.g., machine learning algorithm),
traffic patterns for incident we can assist this process by ensuring TLS
management. communication integrity. For example, we can prove

that a particular TLS handshake indeed happened.

7 The system also needs to Data in Transit In our design, the blockchain serves as a

have interoperability and Data at Rest standardized integrity platform for participants to
protocol convergence Data in Process  collaborate in a secure and trustable manner.

to achieve efficient

collaboration.

8 The IoT data training DatainProcess While the actual training accuracy depends on the

generates low accuracy dataset, the model, and the algorithm, our platform
during the training of the forces participants to train honestly to achieve the
analytic model. best accuracy.

9 We need to have a DatainProcess The distributed training through split learning and
parallel computation of federated learning come to the rescue. Our platform
the IoT data to support a provides a complementary procedure to protect the
multi-source platform. integrity of those learnings.

6.2. Future Considerations and Challenges

In this paper, we only propose the design and entrust implementations to interested adopters.
Therefore, in this part, we discuss some future considerations and challenges.

Public vs. private blockchain: There are two types of blockchain: public (or permissionless)
and private (or permissioned). The pioneer blockchain proposed in Bitcoin [4] is public,
which allows anyone to join the blockchain network freely. Meanwhile, the private blockchain
(e.g., Hyperledger Fabric [64]) requires authentication to join the network. Furthermore, the private
blockchain enables private transactions [11], which allow the transaction to be encrypted such that
only the sender and receiver can read it while others cannot. Adopters must understand the properties
of the blockchain platform that they choose, whether it is public or private, and its implication to
privacy. More specifically, since the data stored in the blockchain is visible to all nodes, they have to
decide whether everyone is allowed to see the data or only authorized nodes need to know.

Consensus-based scalability: With the vast number of IoT data traffics, it is vital to assess our
blockchain platform’s scalability to cope with those high traffic demands. Since blockchain is a
distributed system, its scalability depends on the underlying consensus algorithm. The trend is either
to choose between the Proof-of-Work (PoW) or the Byzantine Fault Tolerance (BFT) algorithm [65].
Using PoW enables the blockchain to scale to thousands of nodes but suffers low throughput. On the
other hand, BFT achieves higher throughput but fails to scale more than 16 nodes [66]. By knowing
this issue, adopters have to carefully pick the blockchain platform that best suits their application,
whether they want a high number of throughputs or a high number of nodes.

Shift of trust: the author in [67] defines trust as a probability that a person will perform a given
action that is beneficial for the giver. The more likely that the person takes action means higher the
trust. In centralized IoT, trust resides centrally in the IoT service. If the service can correctly perform
IoT-related analytics, the trust will be higher for the company. We argue that using blockchain does
not mean eliminating the trust system. Instead, it shifts the trust from the IoT service to the blockchain
itself. In particular, the security of the blockchain relies heavily on the consensus operation. Therefore,
we have to trust the blockchain network such that the notorious 51% attack or even the 25% attack [68]
does not happen. If we use BFT as our consensus, then we need to make sure that not more than 33%
of the nodes fail or become malicious at the same time [69]. Hence, adopters must understand this
trust principle when developing the blockchain platform for IoT data integrity.
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Mitigation not remediation: when a breach happens, security guarantees of blockchain are
limited to preventing and detecting, not recovery. For example, in our example of the data at rest
solution, we can easily detect attackers’ tampering attempts using blockchain receipts. However, it is
impossible to restore the data if our data is modified or, even worse, deleted during attacks. Therefore,
adopters have to be aware of the importance of a backup system to remediate after attacks [70].

Usability: we should learn from PGP that poor usability due to complex key management and
setup can result in people calling the system dead [71]. On the contrary, by observing the current trends,
blockchain has better user experiences. First, blockchain has wallet applications to help users manage
their private and public keys [72]. Second, developers create distributed applications (DApps) [73] as
interfaces for users to interact easily with the blockchain platform. Third, the blockchain community
is growing globally across many sectors [74]. This growing community will produce arguably more
mature hardware and software components for future blockchain.

Quantum computing: finally, the blockchain’s main threat is the rise of quantum computing that
promises to break the underlying cryptography foundations such as hashing and RSA public-key
cryptosystem [75]. Specifically, Grover’s algorithm can dramatically speed up the hashing process to
find collisions, easing modification of the blockchain’s contents. Then, Shor’s algorithm can factor
large prime numbers faster, breaking the asymmetric-key cryptosystems’ purpose. Therefore, further
research regarding the future of the blockchain post-quantum era (e.g., proposed by Kiktenko et al. [76])
needs to start right now before the quantum technology arrives.

7. Conclusions

We proposed a grand design of blockchain-based continued integrity service for IoT big-data
management in three IoT phases: data in transit, data at rest, and data in process. We first presented
our motivations at each phase and surveyed related blockchain research from the literature as
building blocks in constructing our design. Afterward, we laid out our solutions. For data in
transit, we proposed decentralized identity management and secure channel establishment based
on blockchain. For data at rest, we presented the use of a chain of signatures combined with
blockchain receipts to augment the integrity of stored IoT data. We then designed the blockchain-based
decentralized marketplace and federated learning for IoT entities to collaborate during data in
process. As future works, interested adopters can try to implement our design in their IoT systems.
With the building blocks already available, we argue that our proposal should be feasible to carry out.
More importantly, a more in-depth exploration of the reputation and incentive mechanism should
be the primary research directions. We argue that those two points are the heart of decentralization
because they can force participants to obey the consensus rule.
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Abbreviations

The following abbreviations are used in this manuscript:
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IoT Internet of Things

TLS Transport Layer Security

DTLS Datagram Transport Layer Security

CoAP Constrained Application Protocol

MQTT  Message Queuing Telemetry Transport

SLA Service Level Agreement

API Application Programming Interface

UUID Universal Unique Identifier

PKI Public Key Infrastructure

DNS Domain Name Service

CA Certificate Authority

PGP Pretty Good Privacy

WoT Web of Trust

ISP Internet Service Provider

ECDSA  Elliptic Curve Digital Signature Algorithm

FL Federated Learning

MEC Mobile Edge Computing

IPFS InterPlanetary File System

PoW Proof-of-Work

BFT Byzantine Fault Tolerance

DApp Distributed Application
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