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Abstract: In hazy environments, image quality is degraded by haze and the degraded photos have
reduced visibility, making the less vivid and visually attractive. This paper proposes a method for
recovering image information from a single hazy image. The dark channel prior algorithm tends
to underestimate the transmission of bright areas. To address this problem, an improved dehazing
algorithm is proposed in this paper. Assuming that intensity in a dark channel affected by haze
produces the same offset, the expected value of the dark channel of a hazy image is used as an
approximation of this offset to correct the transmission. However, this correction may neglect scene
difference and affect the clarity of the recovered images. Therefore, a weighted residual map is used to
enhance contrast and recover more information. Experimental results demonstrate that our algorithm
can effectively lessen color oversaturation and restore images with enhanced details. This algorithm
provides a more accurate transmission estimation method that can be used with a weighted residual
map to eliminate haze and improve contrast.

Keywords: image enhancement; image filtering; image texture; residual map

1. Introduction

Aerosols in the air scatter light into the atmosphere. This scattering impairs the direct transmission
of scene radiance and degrades image quality, especially on hazy days [1]. These degraded images
usually have low contrast and saturation, loss of detail, and hue shift, thereby affecting visual effects
and subsequently image processing. Hence, many approaches have been developed to eliminate haze
and generate realistic clear images.

Based on the atmospheric scattering model describing the attenuation and distribution of light
through aerosols, a hazy image is described as a convex combination of scene radiance and atmospheric
light, and the coefficients of this equation are determined by the scene transmission of each pixel in the
image. In a color (RGB) image, each pixel of the model has four unknowns, the scene radiance per color
channel (one each for R, G, and B) and a transmission value. However, a single image can only provide
three constraints for each pixel, i.e., the intensities of the three channels. Therefore, more constraints are
needed to address this uncertainty. Some methods use additional information about the scene, such as
multiple images taken under diverse conditions [2], polarization angle [3], or geometric features of the
scene [4], to determine transmission and obtain haze-free images.

More recently, some dehazing methods using a single image have been developed; for example,
by assuming that local transmission is not correlated with surface shading [5], relaxing the physical
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model by maximizing the contrast of the image [6,7], or introducing statistics of clear images, such as
the dark channel prior, which in most local areas of haze-free images the minimum value of the
intensity is a small number that is close to zero [8].

A dehazing method using dark channel prior (DCP) was proposed in 2009; in 2010, its speed
was further improved by means of replacing the soft matting method with guided image filtering [9].
Dark channel prior is based on the observation that clear outdoor images usually have some points with
lower color channel values in local areas, and the intensity of these points changes due to atmospheric
light. He exploited this change to estimate the transmission and remove haze. Though this algorithm
can effectively recover haze-free images for most outdoor images, it still has a limitation that for bright
regions where the dark channel is invalid, transmission is often underestimated, causing color shift
and supersaturation in the restored image.

Subsequently, some novel algorithms have been proposed. Meng [10] proposed a regularization
method to remove haze from a single input image by combining it with weighted L1-norm-based
contextual regularization to estimate the unknown scene transmission. Fattal [11] derived a local
formation model that explains the color lines in hazy images and used it to recover images. Zhu [12]
modeled the scene depth of hazy images and trained this model with a supervised learning method to
recover depth information. Berman [13] assumed that colors of a clean image are well approximated
by a few hundred distinct colors and used them to remove haze. Follow-up works based on the dark
channel prior are still in progress [14]. Wang [15] used the layered total variation, multichannel total
variation, and colour total variation model to denoise and preserve edges. Zhu [16] combined the
dark channel prior with a patch-based prior to avoid artifacts. Bui [17] proposed a color ellipsoid
prior for dehazing for which the dark channel prior is a special prior vector. Golts [18] minimized
an unsupervised dark channel prior energy function to train a convolution neural network for the
purpose of dehazing.

Inspired by the success of the convolution neural network (CNN) in object detection [19],
recognition [20] and related tasks [21], learning-based methods has been used to extract features for
dehazing [22]. Li [23] proposed an image dehazing model built with a convolutional neural network
(CNN) that generates clean images. Generative Adversarial Network (GAN) which has been made
great progress in text-to-image synthesis [24], image-image translation [25] and other applications [26]
was also applied for dehazing [27]. Li [28] developed an encoder and decoder architecture in the
generative network and a loss function built on the pretrained VGG features and an L1-regularized
gradient prior to solve image dehazing problem. Zhang [29] proposed a densely connected pyramid
dehazing network (DCPDN) for dehazing. This method embedded the atmospheric scattering model
into the network and connected encoder-decoder structure with multi-level pyramid pooling module
to estimate the transmission map. Suàrez [30] employed a stacked conditional Generative Adversarial
Network (GAN) to remove the haze on each color channel independently. Nevertheless, this approach
requires ground truth images for training. Gated fusion network [31] is based on the basic principle of
image fusion and is learned to generate the clear image directly without without assuming restrictions
on scene transmission and atmospheric light. Enhanced Pix2pix Dehazing Network (EPDN) [32]
transformed a hazy image to a clear image pixel by pixel directly without relying on the physical
scattering model, which includes three parts: the discriminator, the generator, and the enhancer.

We proposed an improved algorithm based on the dark channel that restores images to the original
color and well-preserved the details. This progress stems from two key improvements compared with
previous work. First, we use the expected value of the dark channel of a hazy image to correct the
transmission to avoid image color oversaturation. Second, a weighted residual map is introduced
to increase the contrast of haze-free images. This approach has a significant effect on lessening color
oversaturation and sharpening the edges and details.

The remainder of the paper is structured as follows: In Section 2, we review the image degradation
model and the dark prior. A transmission estimation algorithm is introduced to obtain more accurate
transmission by correcting the offset using the expected value of the dark channel. Then, a weighted
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residual map is used to further improve the contrast of recovered images. In Section 3, we present the
results of our proposed algorithm for hazy images; conclusions are presented in Section 4.

2. Materials and Methods

2.1. Image Degradation Model and Dark Prior

According to the atmospheric scattering model [33], images captured in hazy weather can be
expressed as

I(x) = t(x)J(x) + [1− t(x)]A (1)

where I(x) is the observed intensity; J(x) is the radiance of the real scene, a haze-free image that needs
to be recovered; x = (m, n) is the image coordinates; Transmission t(x) = exp [−β · d(x)] describes
the portion of the radiance that is not scattered during propagation through the atmosphere to the
imaging system, where β is the atmospheric scattering coefficient related to the wavelength, and d(x)
is the scene depth. The atmospheric light A represents the intensity of ambient light and is usually
approximated as a global constant.

Analyzing Equation (1), when the transmission and atmospheric light are known, a dehazed
image can be obtained as follows:

J(x) =
I(x)− A

t(x)
+ A (2)

Therefore, based on this model, the key for the dehazing methods is to obtain the transmission
and atmospheric light of the scene.

To estimate the transmission, He et al. [8] used the dark channel prior (DCP), statistics of the
locally minimized images (dark channel) of clear images to compute the transmission and restore the
image. The dark channel is defined as

Jdark(x) = min
c∈{r,g,b}

{
min

y∈Ω(x)

[
JC(y)

]}
(3)

where Jdark(x) is the dark channel of J(x), JC(x) is a color channel of J(x), Ω(x) is the neighborhood of
x, and its size is 15× 15.

He et al. [8] believed that 0.1% of the brightest pixels in the dark channel usually belong to most
haze-opaque regions. Picking the brightest color in these pixels is equivalent to choosing the largest
intensity in the area with the heaviest haze, which is the optimal solution for the atmospheric light A.
This paper uses the same method to estimate A of each channel as that in [8] .

Minimizing Equation (2), the transmission can be estimated by

t(x) =
1− min

c∈{r,g,b}

{
min

y∈Ω(x)

[
IC(y)

AC

]}
1− min

c∈{r,g,b}

{
min

y∈Ω(x)

[
JC(y)

AC

]} (4)

According to the dark channel prior, for most local areas that do not cover the sky, there are
always pixels with at least one color (RGB) channel with very low radiance intensity, i.e., Jdark(x)→ 0.
Then, the transmission can be generated as follows:

t(x) = 1− min
c∈{r,g,b}

{
min

y∈Ω(x)

[
IC(y)

AC

]}
(5)

The dark prior is valid and effective when there are shadows, colorful objects, or surfaces of
objects and dark objects or surfaces in the scene. However, when there is an extensive bright region in
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the hazy image such as whitish sky or objects, this prior will lead to underestimation of transmission,
which will result in color cast or oversaturation in these regions of recovered images.

2.2. Transmission Estimation Using Offset Correction

To solve this problem, this study devises an improved algorithm based on an offset correction to
more accurately estimate the transmission of bright regions.

Considering that the dark channel of haze-free images in the bright area may have a high value,
the dark channel prior is extended to a full scene prior:

Jdark(x)→ α(x) (6)

when α(x) = 0, it is a dark channel prior, and when α(x) ∈ (0, 1), it is a prior satisfying bright scenes.
Due to the variability of the scene, the statistics α(x) of the bright regions that do not conform the dark
channel prior are difficult to calculate quantitatively and can only be approximated.

To reasonably estimate α(x), this paper proposes a method to estimate transmission using the
expected value of the dark channel of foggy images. It is known from the dark channel prior that the
expected value of the dark channel image of clear outdoor images is zero. For hazy images, the intensity
of the dark channel affected by the haze will increase on the whole. Correspondingly, its expected value
will produce an offset compared with clear images.

In this study, we assume that the brightness of the dark channel in the scene is affected by haze
to the same degree and has the same increment. Then, the statistics α(x) can be approximated by
the difference between the dark channel Idark(x) of a hazy image and its expected value . To ensure
α(x) > 0, α(x) is defined as

α(x) := max
[

Idark(x)− µcen, 0
]

(7)

where max (•) is the maximum function, Idark(x) is the dark channel of the hazy image I(x), and µcen

is calculated as

µcen =
∑
x

Idark(x)

MN
(8)

where MN denotes the number of pixels.
Bringing Equation (6) into Equation (4) gives an offset-corrected estimation of transmission:

t̃(x) =
1− min

C∈{r,g,b}

{
min

y∈Ω(x)

[
IC(y)

AC

]}
1− min

C∈{r,g,b}
α(x)
AC

(9)

when the offset-corrected transmission t̃(x) is calculated, according to Equation (2) the dehazed image
J̃(x) can be estimated as

J̃(x) =
I(x)− A

t̃(x)
+ A (10)

We neglect the difference in the degree of impact, which may affect the clarity of a dehazed image.
Fortunately, we can improve the contrast using a weighted residual map, which will be discussed next.

Although the expected value is only an approximation, this approach can effectively reduce the
estimation error of the transmission in bright regions and avoid color oversaturation. Figure 1 shows
a comparison between DCP and our method with regard to transmission and the recovered image.
As shown in Figure 1d, our method can more accurately estimate the transmission of bright regions
and exhibit better transition at the edges.
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(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) (e)

Figure 1. Effect of offset correction in our proposed method. (a) Foggy image; (b) the transmission of
DCP; (c) the result of DCP; (d) our offset-corrected transmission; (e) our result with offset correction.

Unlike the setting of the minimum threshold for the transmission of bright areas, this method
does not just reflect the uniqueness of shooting conditions, such as scene and illumination, but can
also consider the intensity difference in bright areas to obtain an estimated value that is closer to the
true transmission value.

2.3. A Weighted Residual Map

As the expected value is a measure of the central tendency of the intensity of the dark channel
image, it cannot accurately calculate the transmission of each pixel and thoroughly remove haze
in regions where local intensities in the dark channel are significantly higher than the expected
value. Therefore, we propose a dehazing approach to further recover image details using a weighted
residual map.

The fundamental idea of a weighted residual map is to use a residual map between the actual
observed image I(x) and the image J̃(x) estimated by the offset-correcting approach for dehazing.
The residual map Rresidual(x) is defined as

Rresidual(x) = I(x)− J̃(x) (11)
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As shown in Figure 2a, this residual map contains unrecovered scene and structure information
that we can use to estimate a more accurate recovery of the original image.

Substituting Equation (10) into Equation (11) gives

Rresidual(x) =
[

1
t̃(x)
− 1
]
[A− I(x)] (12)

From Equation (12), the residual map Rresidual(x) is proportional to the offset-corrected transmission
t̃(x). From transmission t(x) = exp [−β · d(x)], distance d(x) is negatively correlated with transmission, as is the
offset-corrected transmission t̃(x). From Equation (12), the residual map Rresidual(x) is also negatively
correlated with the offset-corrected transmission t̃(x). Therefore, according to Equation (12), regions in
the residual map with lower transmission that are farther away from the imaging device have larger
intensity magnification, which is the opposite of what we desire. Therefore, we apply a negative
residual map for contrast enhancement and get a dehazed image as follows:

J(x) = J̃(x)−ωRresidual(x) (13)

where ω is the weight function, which is used to further adjust the influence of different regions in the
residual image on the final restored image J(x). In this paper, the offset-corrected transmission t̃(x) is
chosen as ω:

t̃(x)Rresidual(x) =
[
1− t̃(x)

]
[A− I(x)] (14)

The appealing property of this selection lies in converting an inverse function to a linear function
while preserving distance dependence. Chosing t̃(x) as ω makes these two multiplicative terms in
Equation (14) of the same order of magnitude, thus avoiding overamplification, and the range of
the value can be limited to [0, 255]. Besides, this selection will balance the restored information and
excessive sharpening, as shown in Figure 2b.

The pseudo code of the dehazing algorithm with offset correction and a weighted residual map
is in Table 1. Firstly, the offset-corrected transmission t̃(x) is estimated by calculating the full scene
prior α. Secondly, the final dehazed image J(x) is estimated according to the dehazed image J̃(x) by
the offset-correcting approach and the weighted residual map t̃(x)Rresidual(x).

Table 1. Dehazing algorithm implementation with offset correction and a weighted residual map.

Parameters:
Hazy image: I(x), Atmospheric light: A, Number of pixels: MN

Procedures:
• Estimation of transmission

- Calculate the dark channel Idark(x):
Idark(x) = minc∈{r,g,b}

{
miny∈Ω(x)

[
IC(y)

]}
- Calculate the full scene prior α(x):

µcen =
∑
x

Idark(x)

MN
α(x) = max

[
Idark(x)− µcen, 0

]
- Calculate the offset-corrected transmission t̃(x):

t̃(x) =
1− min

C∈{r,g,b}

{
min

y∈Ω(x)

[
IC (y)

AC

]}
1− min

C∈{r,g,b}
α(x)
AC

• Estimation of dehazed image
- Estimate the dehazed image J̃(x) by the offset-correcting approach:

J̃(x) = I(x)−A
t̃(x)

+ A

- Calculate the residual map Rresidual(x):
Rresidual(x) = I(x)− J̃(x)

- Calculate the final dehazed image J(x):
J(x) = J̃(x)− t̃(x)Rresidual(x)
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(a) (b) (c)

Figure 2. Effect of the residual-based approach. (a) The residual map; (b) the weighted residual map;
(c) our final result.

Figure 2 shows an example of residual-based dehazing. To illustrate the effect, Figure 1a still serves
as the input. Compared with the results in Figure 1c,e, the quality of the recovered image in Figure 2c,
which has clearer edges and more natural colors, is further improved by this residual-based approach.

3. Results and Discussion

In this section, we conduct various experiments on both real-world images and the synthetic
dataset to demonstrate the effectiveness of the proposed method. Moreover, we do an ablation study
to demonstrate the effectiveness of our offset correction and the weighted residual map.

3.1. Ablation Study

To better reveal the effectiveness of offset correction in transmission estimation and the weighted
residual map, we conduct an ablation study on images with or without sky regions. We compare
our apprach with DCPin Figures 3 and 4. In Figure 3, due to underestimating the transmission of
extensive bright regions, the results of DCP show oversaturation and artifacts in sky regions in Figure 3c.
Figure 3d,e demonstrate that our offset correction method works well in these regions.

In Figure 4, although there is no significant difference between the transmission estimation of DCP
in Figure 4b and our transmission estimation in Figure 4d for image without sky regions, the weighted
residual map can further enhance final results by capturing fine structural details. As shown in Figures 3
and 4e,g, we observe that whether there are whiteish regions or not, the weighted residual map can
take effect on improving image clarity.

The ablation study demonstrates that offset correction in transmission estimation and the weighted
residual map are effective for image dehazing.
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(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) (e)

(f) (g)

Figure 3. Dehazing example on a image with sky regions. (a) Hazy image; (b) the transmission of
DCP; (c) the result of DCP; (d) our offset-corrected transmission; (e) our result with offset correction;
(f) our weighted residual map; (g) our final result.

3.2. Performance on Real-World Hazy Images

To display the performance of offset correction and a weighed residual map on haze removal, we
apply our dehazing algorithm on both real-world hazy “Florence”, “Community”, and “Buildings”
images containing a large grayish white sky or objects and real-world hazy “Flags”, “Forest” and
“Girls” images whithout sky regions.

In Figure 5, we compare the proposed method with the algorithms proposed by DCP,
Berman et al. [13], Bui et al. [17], DCPDN [29], Zhu et al. [16] and Golts et al. [18]. In DCP, the colors of
restored images are often oversaturated, especially in the sky areas, as the transmission is underestimated.
Berman et al.’s results contain some saturated or dark pixels, and haze may not be sufficiently removed in
some regions, for instance, in the buildings in the lower left corner of “Community” and “Buildings”.
Bui et al.’s results have greater contrast and fewer halo artifacts, but some pixels are oversaturated. Due to
the needs of the network, Zhang et al.’s algorithm resizes hazy images to 512× 512 and generates images
of the same size. In order to facilitate comparison, we resize Zhang et al.’s results to the original image
size. In Zhang et al.’s results, the color is natural but the clarity is compromised. Zhu et al.’s [16] method
and Golts et al.’s method leave haze in the results, as seen in the “Community” and “Flags”. However,
our approach can restore images with clearer structures and enhanced details.
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(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) (e)

(f) (g)

Figure 4. Dehazing example on a image without sky regions. (a) Hazy image; (b) the transmission of
DCP; (c) the result of DCP; (d) our offset-corrected transmission; (e) our result with offset correction;
(f) our weighted residual map; (g) our final result.

3.3. Performance on Synthetic Dataset

To further illustrate the effectiveness of the proposed algorithm, we use the large-scale RESIDE
(REalistic Single Image DEhazing) test dataset [22] which contains 1000 synthetic images to test dehazing
effects. The RESIDE test dataset is divided into indoor and outdoor parts, called “SOTS-indoor” and
“SOTS-outdoor”. In addition, we use the Peak Signal to Noise Ratio (PSNR) and the Mean Squared
Error (MSE) to evaluate dehazed images. The PSNR of restored images is calculated to show objective
evaluation results. The PSNR is obtained by calculating the logarithmic function of the MSE of two
images to measure the image error. The larger the PSNR, the smaller the distortion. The subjective quality
assessment test was conducted among thirty subjects, most of them were college students. The subjects
were asked to assign each image a score between 1 and 5. 5 represents the best quality and 1 the worst.
The 30 scores of each image were averaged to a final MOS of the image.

From Figures 6–11, it can be observed that even though DCP, Berman et al.’s [13] method and
Zhu et al.’s [16] method, which are based on the atmospheric scattering model such as ours, can recover
dehazed images, they tend to lead to either saturation or color shifting. It can also be found that
DCPDN [29] and Golts et al.’s [18] method which are learning-based method are able to recover images
with more natural colors. However, DCPDN tends to generate overexposed images, Golts et al.’s [18]
method cannot fully remove heavier haze. In contrast, it can be observed from our results that they
preserve more details and sharper contours.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5. Dehazing results.(recommended viewing color pictures on display). (a) Hazy images;
(b) results of DCP; (c) Berman et al.’s results; (d) Bui et al.’s results; (e) results of DCPDN;
(f) Zhu et al.’s results; (g) Golts et al.’s [18] results; (h) our result.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Desk of the SOTS-indoor dataset. (a) Ground truth image. (b) input blur image. (c) DCP;
(d) Berman; (e) DCPDN; (f) lZhu; (g) Golts; (h) Ours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Drawing room of the SOTS-indoor dataset. (a) Ground truth image. (b) input blur image.
(c) DCP; (d) Berman; (e) DCPDN; (f) Zhu; (g) Golts; (h) Ours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Sunlight of the SOTS-outdoor dataset.(a) Ground truth image. (b) input blur image. (c) DCP;
(d) Berman; (e) DCPDN; (f) Zhu; (g) Golts; (h) Ours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Bank of the SOTS-outdoor dataset.(a) Ground truth image. (b) input blur image. (c) DCP;
(d) Berman; (e) DCPDN; (f) Zhu; (g) Golts; (h) Ours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Buildings of the SOTS-outdoor dataset. (a) Buildings. (b) input blur image. (c) DCP; (d) Berman;
(e) DCPDN; (f) Zhu; (g) Golts; (h) Ours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Bird’s Nest stadium of the SOTS-outdoor dataset. (a) Ground truth image. (b) input blur
image. (c) DCP; (d) Berman; (e) DCPDN ; (f) Zhu; (g) Golts [18]; (h) Ours.

The comparison results are shown in Tables 2 and 3 in which the values are PSNR and MOS of
the defogged images from Figures 6–11, respectively. The bold fonts indicate the optimal value of each
set of results.

Table 4 shows the average PSNR of the dehazed images of the RESIDE test dataset. The quantitative
results of each part are shown in Figure 12. From Tables 2–4 and Figure 12, it can be observed that
our results have higher PSNR and MOS, which indicates that our method performs well on subjective
visual effects and can recover more information and edges from hazy images, and that our resulting
images have a higher contrast.

Table 2. Comparison of PSNR of the dehazed images from Figures 6–11.

Method Desk Drawing Room Sunlight Bank Buildings Bird’s Nest Stadium

DCP 16.3196 17.6363 16.7733 17.5155 16.9791 16.1003
Berman et al. 14.4116 15.7852 20.6931 13.8929 21.2273 14.9177

DCPDN 18.4555 14.2824 19.5346 18.5636 10.8738 14.5544
Zhu et al. 16.2172 20.0551 17.7547 15.9751 17.2879 19.1754
Golts et al. 14.0569 14.7816 18.1528 19.5449 23.4645 17.6003
Our study 18.2516 20.5433 20.7599 22.0458 21.1791 22.0905

Table 3. Comparison of MOS of the dehazed images from Figures 6–11.

Method Desk Drawing Room Sunlight Bank Buildings Bird’s Nest Stadium

DCP 4.1469 3.9854 4.2557 3.6922 3.6805 3.6869
Berman et al. 3.7576 3.9218 3.6357 3.4712 3.8265 3.9898

DCPDN 4.5575 4.2922 4.4491 4.1431 3.3413 3.9456
Zhu et al. 4.5649 4.4157 4.5340 3.9555 3.7579 4.1463
Golts et al. 4.5572 3.6419 4.2787 4.1060 4.2186 4.2094
Our study 4.5706 4.3003 4.5595 4.1577 4.4403 4.2952
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Table 4. The average PSNR of dehazed images in the RESIDE test dataset.

Method PSNR

DCP 18.7392
Berman et al. 17.3103

DCPDN 16.7077
Zhu et al. 19.4270
Golts et al. 19.3258
Our study 20.5538

Figure 12. The quantitative results of dehazed images in the RESIDE test dataset.

4. Conclusions

In this paper, we proposed an improved dehazing algorithm based on the dark channel prior.
This haze removal algorithm adapts an offset-correcting scheme, which is built on the assumption that
the intensity of the dark channel in bad weather has the same increment owing to the haze. This is
achieved by approximating the increment with the expected value of this dark channel to update the
transmission in bright regions. Subsequently, a weighted residual map is introduced to recover more
details and improve contrast. The results of our method show that a combination of offset correction
and residual map does not just reduce color oversaturation but also enhances details in dehazed
images. Besides having practical effects, from the perspective of image understanding, this method
focuses on the residual information in images and uses it to improve the quality of recovered images.

Similar to other dehazing algorithms using the atmospheric scattering model, our method also
suffers from the drawback of color shifting in defogged images. More advanced methods [34] focus on
color shifting and preserve color information. In the future, we intend to investigate dehazing models
and color balance algorithms [35] to address color shifting.
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