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Abstract: In recent years, there has been a desire to improve electricity generation and consumption,
to reach sustainability. Technological solutions today allow a rational use of electricity with good
overall performance. Traditionally, from production to distribution, electrical energy is AC-supported
for compatibility reasons and easy voltage level transformation. However, nowadays most electric
loads need DC power to work properly. A single high-efficiency central AC-DC power converter
may be advantageous in eliminating several less efficient AC-DC embedded converters, distributed
all over a residential area. This paper presents a new single-phase AC-DC converter using one active
bridge (most isolated topologies are based on the dual active bridge concept) and a high-frequency
isolation transformer with low-value non-electrolytic capacitors, together with its control system
design. The converter can be introduced into future low-voltage DC microgrids for residential
buildings, as an alternative to several embedded AC-DC converters. Non-linear control techniques
(sliding mode control and the Lyapunov direct method) are employed to guarantee stability in the
output DC low voltage with near unity power factor compensation in the AC grid. The designed
converter and controllers were simulated using Matlab/Simulink and tested in a lab experimental
prototype using digital signal processing (DSP) to evaluate system performance.

Keywords: single-phase AC-DC converters; isolated PFC rectifier; sliding mode control; Lyapunov
direct method; DC residential microgrids; DSP TMS320F28379D

1. Introduction

In a growing and economically interconnected society, the availability of energy enhances economic
growth. Besides the scarcity of natural energy resources, such as oil and coal [1], the use of these
non-renewable energy sources might contribute to climate change. Several strategies have been
deployed to encourage the use of renewable resources in a sustainable way, ensuring diversity and
viability using environmentally friendly energy systems, with quality, safety and attractive costs
to the final consumers [2,3]. Using clean and renewable energies in generation, combined with
efficient end-use equipment, significantly contributes to reduce environmental pollution problems.
Decentralized energy production (photovoltaic panels and wind turbines) reduces transmission energy
losses, as energy transmission system losses increase when consumption is far from the generation
units. Solar photovoltaics (PV) and wind turbines produce energy with different voltage levels at
direct current or alternating current. This implies their adaptation using electronic power converters to
enable the connection to local home networks or even to utility main networks. These networks are
typically in AC with well-defined and standardized characteristics.
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Modern equipment in the residential environment needs a direct current to perform properly,
such as lighting systems, small appliances, mobile devices, air conditioning systems and, more recently,
the charger systems for electric mobility devices. Battery chargers have a significant weight in modern
residential electrical systems, as the amount of energy that they have to deal is significant when
compared to the remaining equipment at home. In terms of energy savings, DC networks present a
better overall efficiency compared to the traditional AC networks [4]. Even if it is necessary to adapt the
voltage levels, the DC-DC converter is simple and efficient compared to the typical AC-DC converters.

With the recent progress in semiconductor technologies, for example, Gallium Nitride (GaN)
high-electron mobility transistors (HEMT) or Silicon Carbide (SiC) Metal Oxide Field Effect Transistors
(MOSFETs), a single high-efficiency central AC-DC converter could be advantageous in eliminating
several less reliable and less efficient AC-DC embedded converters. In DC networks, there is no
reactive power compensation, no need to synchronize generators to the network frequency, no skin
effect and easier power failure mitigation if combined with energy storage systems [5]. To achieve
better energy efficiency, domestic equipment such as refrigerators, washing machines and similar
appliances, needing electrical machines, should use high-efficiency electrical machines (permanent
magnet synchronous machines (PMSM)), which normally implies the use of built-in electronics to
meet the requirements of high energy classification. PMSMs cannot be directly connected to an AC
network and therefore converters are mandatory, unlike in traditional electric machines (asynchronous
induction machines).

To ensure the equipment’s operating requirements, the choice of voltage level on the DC bus is a
crucial factor to achieve energy efficiency. The DC network distribution system presents implementation
challenges that have yet to be standardized in the domestic case [6]. The voltage level to be adopted
on the DC bus should be selected, as a low DC voltage will require high currents for a given power,
increasing the losses or the need to use costly section cables [7]. It is necessary to choose a voltage high
enough to satisfy most loads without significantly increasing the current in the cables, while maintaining
the safety in the electrical system. Consensus exists on using the level around 400 Vdc to cover different
types of loads, mainly electric vehicles and their requirements, a value advocated by associations
of equipment producers, which may possibly be adopted in the new regulations for the residential
and commercial DC distribution networks [8]. For example, the Emerge Alliance’s [9] standards
recommend 24 Vdc for the occupied space standard (low-power appliances and lighting, typically in
bedrooms and living rooms, guaranteed safety and efficiency at lower voltage) and 380 Vdc for the
data and telecom center standard (high-power loads, kitchen appliances, air conditioning systems
for residential air conditioning and electric vehicles). Values in the order of 48, 120 and 230 Vdc have
also been considered [10]. Well-accepted DC systems are the USB sockets already common in modern
residential installations and office spaces. Its standardized version 3.1 can supply small loads up to
100 W [11]. In residential distribution systems, there are also systems that adopt two voltage levels in
DC and systems called hybrids with the possibility of coexisting with both AC and DC systems to
satisfy certain equipment requirements. In virtually all these cases, the connection to an electric power
supplier is normally done to an AC distribution network. This connection implies the use of at least
one electronic AC-DC converter with power factor compensation to meet the strict requirement of grid
compatibility, safety and power quality standards [12].

The AC-DC converters with power factor compensator (PFC) characteristics can be classified as
isolated and non-isolated. The non-isolated topologies in their simplest version are classified according
to the use of complete rectifier diode bridges. When a topology does not require one or more diode
bridges, it is recognized as bridgeless [13]. In this case, they generally exhibit better performance due to
the reduced number of semiconductor elements. Isolated topologies present an extra protection against
direct and indirect electric shocks because the phase wire is never directly connected to the output
DC bus, offering galvanic isolation. This topology is preferred when it is needed to connect several
sources and different loads. Typically, in isolated converters, transformers are used that can operate
at relatively high frequency, which means a reduction in the manufacturing cost, size and weight of
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the transformer and entire converter. Power converters can also be classified as unidirectional and
bidirectional due to the direction of the energy flow [14–17].

Considering the choice of topology for a central converter to feed the DC network in conjunction
with other converters distributed in the network, inherent to the end-use devices, the entire system
presents an estimate of energy savings of up to 5% in the case of non-storage systems and up to 14%
when combined with storage systems [18,19]. In more optimistic scenarios, it can reach an energy
saving of around 30% [20–22].

Most topologies use passive elements in their essence that act as filters for harmonic content
caused by the switching of the semiconductors and, in the particular case of single-phase converters,
the occurrence of ripple at the double of the line frequency in the output current, which can cause
instability in the dc network [23]. This problem is usually solved by adding extra capacity value
to the output filter or is naturally diminished when connected directly to batteries when there is
energy storage. However, in both cases they suffer from dynamic stress caused by the ripple of
the current. As a consequence, the useful lifetime of capacitors (usually electrolytic) or batteries
is reduced. Currently, there has been interest in studying alternatives for reducing the value of
capacitors’ output and using capacitors with greater efficiency, such as film or ceramic capacitors,
for power decoupling and achieving better results when combined with the appropriate control
techniques [12,23,24]. The addition of dynamic voltage restorers or active power decoupling are
discussed in [25], with the advantage of improving energy efficiency and reducing the ripple of the
output voltage.

There are several topologies for AC-DC isolated converters with PFC characteristics using different
control techniques as described in [26]. Several topologies are derived from solid-state transformers [27]
and from DC-DC converters for a low-voltage direct current (LVDC) [28]. Non-linear control techniques
applied in LVDC residential microgrids are described and compared in [28,29]. Non-linear controllers
range from feedback linearization, used to guarantee robustness against parameter changes [28],
to hysteresis current controllers for the inner loop and Lyapunov stabilized non-linear output DC
voltage controller [29]. References [28,29] also present comparisons to several alternative linear
and non-linear controllers, both references reaching the conclusion that linear feedback controllers
show lower performance in LVDCs with constant power loads, when compared to sliding mode and
Lyapunov stabilized methods [28,29]. However, the non-linear controllers presented in [28,29] were
applied to simple DC-DC buck non-isolated converters. This paper proposes sliding mode and the
use of quadratic quantities to achieve linearization and Lyapunov stability methods for the AC-DC
isolated converter herein proposed. High- and low-frequency dynamics are separated, and an integral
term is added in the internal current controller to guarantee zero steady-state error and robustness
against parameter variation.

For the implementation of control systems, currently the preferred choice is to use digital control
for the rapid development prototypes in power electronics converters with strict real-time control
restrictions at low cost. In addition, a fast processing capacity is also required as a fast response at
the peripheral level, such as signal conditioners (voltage and current demands) and semiconductor
drivers, especially in control loops with critical times. The pulse modulation signals (PWM) are
generated directly from the digital unit control system without a specific hardware specification
requirement. Digital signal processors (DSPs) are commercially available and specifically designed
to control electronic power converters and software tools for rapidly developing applications for
real-time control systems, including all the peripherals normally needed for this type of application in
a single chip.

This paper presents and designs the converter topology and the digital control system for
a single-phase AC-DC converter using a high-frequency isolation transformer with low-value
non-electrolytic capacitors to be introduced into a future low-voltage DC network in residential
buildings, as an alternative to traditional AC networks. Sliding mode control and Lyapunov direct
stability method control are employed in the proposed converter to guarantee stability and disturbance
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robustness to the output DC low-voltage network with power factor compensation to the main utility
AC grid.

This paper introduces three main contributions. First, the circuit topology using one active bridge
with the ability to control the current of the main AC grid and at the same time manage the energy flow
to the output LVDC side, using a low-capacity intermediate DC bus, presenting a different alternative
to the typical isolated dual active bridge (DAB). Second, the control strategy assumes the converter
dynamics can be separated, then uses non-linear approaches, such as sliding mode and the Lyapunov
second method of stability, to step back the control from the DC output to the AC 50 Hz input current
that interfaces the DC nanogrid to the AC grid, using square quantities. To prevent the effects of
measuring errors and parameter mismatch, the input current non-linear controller includes an integral
term. An internal auxiliary control ensures the AC high-frequency voltage in the isolating transformer
has zero average value. Third, a new approach is used to reduce dynamic current stress caused by
the natural 100 Hz ripple output, using low-valued film capacitors, presented as an alternative to the
voltage restored and voltage drop compensators, based on high-valued electrolytic capacitors.

The designed controller performance was simulated using Matlab/Simulink and an experimental
prototype is implemented using a low-cost DSP (TMS320F28379D) from Texas Instruments to verify
and evaluate the performance of the proposed control.

2. Converter Model and Control

2.1. Description of the Proposed Converter

The proposed topology of the single-phase AC-DC converter with a high-frequency transformer,
power factor compensation and low-distortion AC input current is depicted in Figure 1 to provide
energy to a DC low-voltage network. The proposed converter is unidirectional with active power
decoupling at the output to significantly reduce the capacitor value of the DC voltage bus. This circuit
is composed of one inductor LS at the input connecting to the main AC utility grid uS. After the input
inductor, a full-bridge rectifier containing four diodes, D1, D2, D3 and D4, and a capacitor C1, with the
function of rectifying the input current and at the same time filtering the harmonic content of the
current iR1 caused by the switching of semiconductors, S1, S2, S3 and S4, assembled in a full-bridge
inverter topology based in GaN-controlled high-electron mobility transistors (HEMT) (GS66516B).
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Figure 1. Proposed isolated AC-DC for DC low-voltage residential networks.

The inverter is connected to the transformer primary (uT1), with the purpose to generate a
high-frequency alternating current iT1 for the transformer and simultaneously control the voltage
uC1 at capacitor C1. On the secondary side (uT2), a high-frequency diode full-bridge rectifier, D5, D6,
D7 and D8 feed the output boost-type converter with inductor L0, capacitor C0 and one GaN HEMT
device S5 (GS66516B) and diode D9, with the function of reducing the ripple in the output voltage u0

and reducing the value of capacitor C0.
Converter modeling can be obtained considering that all semiconductors’ devices are ideal,

while neglecting the losses of the inductors and capacitors. The semiconductors’ states can be
represented by switching variables δ1(t), (1), and δ2(t), (2), supposing ideal HEMTs.
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Switching variables δ1(t) and δ2(t) are the control inputs, while the control outputs are the output
voltage u0 and the amplitude of the quasi-sinusoidal (low-distortion) AC input current iLs . As the
output is DC, and the input iLs is AC 50 Hz, while the intermediate inverter/transformer operates at a
high switching frequency (kHz), the control strategy is devised supposing the three different converter
dynamics associated with DC, 50 Hz and kHz can be separated.

δ1(t) =


+1→ (S1, S4 ON)

0→ (S1, S3 ON or S2, S4 ON)

−1→ (S2, S3 ON)

(1)

δ2(t) =
{

0→ (S5 ON)

1→ (D9 ON)
(2)

Therefore, the control strategy starts with the tracking of the output voltage u0 to define δ2(t),
supposing a regulated value iL0 > 0. Then, the control design progresses to define the needed reference
value of the AC input current iLs , using the converter input–output power balance. As the switching
variable δ1(t) is useful to impose the uC1 voltage, then the necessary uC1 voltage is computed so that
the AC 50 Hz input iLs tracks the ire f

Ls
reference value. The necessary uC1 voltage to enforce the iLs

current is then tracked using δ1(t). In Figure 2, the simplified control scheme for the proposed isolated
AC-DC converter is presented.
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2.2. Sliding Mode Control for Voltage u0

Supposing continuous conduction mode (iL0 > 0), the dynamic model (3) of voltage u0 can be
obtained from the circuit analysis by applying Kirchhoff laws to the circuit in Figure 1.

du0

dt
=

1
C0

(
(1− δ2(t))iL0 − i0

)
(3)

The first-time derivative of u0 contains the control action δ2(t), thus the strong relative degree of
u0 is one [30], and a suitable sliding surface can be obtained as a linear combination of the control error
eu0 = ure f

0 − u0, where ure f
0 is the reference value to be tracked by the u0 voltage. Considering a positive

gain k1, valued to bound the semiconductors’ switching frequency, a suitable sliding surface is defined
by S(eu0 , t) = k1eu0 = ∆u0 → 0 [30–35]. The switching strategy is achieved by applying the sliding
mode stability condition S(eu0 , t)

.
S(eu0 , t) < 0. The sliding surface derivative

.
S(eu0 , t) is given in (4).

.
S(eu0 , t) = k1

dure f
0

dt
−
(1− δ2(t))iL0 − i0

C0

 (4)
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From (4), to ensure stability, the control strategy is defined in (5). i f S(eu0 , t) > 0, then
.
S(eu0 , t) < 0→

dure f
0

dt −
(1−δ2(t))iL0−i0

C0
< 0

i f S(eu0 , t)< 0, then
.
S(eu0 , t) >0→

dure f
0

dt −
(1−δ2(t))iL0−i0

C0
> 0

(5)

It is necessary to satisfy the inequalities in (5) to guarantee the sliding mode stability, giving the
reaching condition written in (6).

δ2(t)iL0

C0
> MAX

 iL0 − i0
C0

−
dure f

0

dt

 (6)

To impose a finite switching frequency, the ripple ∆u0 voltage must be considered and k1 selected
to ensure stability and a fast response. From (5), the control law in (7) defines the value of the switching
variable δ2(t).  i f S(eu0 , t) > ∆u0

2 , then
.
S(eu0 , t) < 0 → δ2(t) = 0

i f S(eu0 , t)< −∆u0
2 , then

.
S(eu0 , t) >0 → δ2(t) = 1

(7)

The reaching condition is verified by assuming the current iL0 as an independent source, with the

value imposed by another controller doing ire f
L0

= i0k2 and considering k2 >
(
1 +

∆iL0
2i0

)
with ∆iL0 ,

the double AC network frequency current ripple. The control law (7) is not dependent on system
parameters or quantities other than the controlled quantity, ensuring the control loop robustness.

2.3. Control Using the Lyapunov Direct Method of Stability to Obtain the Reference for Current ire f
Ls

(t)

Analysing the circuit presented in Figure 1, the dynamic model for the current iL0 is (8), where the
switching variable δ2(t) is also present. However, it cannot be used as a control input as it is already in
use to control the u0 output in (7).

diL0

dt
=

1
L0

(ur0 − (1− δ2(t))u0) (8)

As ur0 is not a state variable, it cannot be used as a virtual control input. To choose a virtual
control input from one AC input state variable, the converter input–output power balance is applied.
Therefore, assuming, as system parameters, the efficiency η of the converter, the power PS at the AC
network, the power Pur0 at the diode full-bridge rectifier, D5, D6, D7 and D8, Pur0 = iL0ur0 = Usrms ILsrms

η,
then the output inductor L0 current is iL0 = i0/(1− δ2(t)),. The delivered output power P0 = i0u0,
is given as P0 = iL0(1− δ2(t))u0. Therefore, the linear dynamic model (9) is received from (8), where
the control variable i2L0

is the square of iL0 and the control input is the state variable AC current ILsrms
.

di2L0

dt
=

2
L0

(
Usrms ILsrms

η− P0
)

(9)

Consider the model (9) and define the control objective to be ei2L0
= 0, the tracking error being

ei2L0
= ire f 2

L0
− i2L0

. To guarantee zero steady-state error, even when the efficiency η and the delivered

output power P0 are unknowns, add the integral of the tracking error e1 =
∫

ei2L0
dt to ensure the
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convergence to the origin, in steady-state, even with non-modeled disturbances and parameter
uncertainty. Choose a positive definite Lyapunov function V2 with k3 > 0 written in (10) [36].

V2 =
1
2

k3e2
1 +

(
ei2L0

)2

2
(10)

From the Lyapunov direct method of stability, the time derivative of V2

(
ei2L0

, t
)

must be negative to

guaranty stability. Therefore, as V2
.

V2 < 0, then
.

V2 = −k4

(
ei2L0

)2

, k4 > 0, leading to Equation (11) from

(9) and (10).

k3e1ei2L0
+ ei2L0

dire f 2

L0

dt
−

2
C0

(
Usrms ILsrms

η− P0
) = −k4

(
ei2L0

)2

(11)

Knowing that ire f
Ls

= ILsrms

√
2 sen(ωt + ϕ) and considering (11), the virtual control equation for

ire f
Ls

is a function of the output inductor current ire f 2

L0
:

ire f
Ls

(t) =
L0
√

2 sen(ωt + ϕ)

2ηUsrms

(
k3e1 + k4

(
ire f 2

L0
− i2L0

)
+

2P0

L0

)
(12)

The k3 and k4 constants must be selected to obtain a slow enough response for the input AC
current ire f

Ls
in order to avoid harmonic distortion in the input current iLs . This condition enables the

control using separated low-frequency and high-frequency dynamics.

2.4. Lyapunov Control for Current iLS to Track the Reference ire f
Ls

(t)

It is intended to control the current iLS by applying again the Lyapunov direct method of stability
to obtain a low THD iLS current and iLS in phase with the voltage uS for the unity power factor. The
iLSrms value is regulated according to the load power needs. Analyzing Figure 1, the dynamic model for
current iLS considering the control variable uC1 is written in (13), where sgn

(
iLS

)
uC1 = uS1 .

diLS

dt
=

1
LS

(
uS − sgn

(
iLS

)
uC1

)
(13)

From (13), the voltage uC1 is the control input for the iLS current. To control iLS , uC1 can be enforced

to follow the reference ure f
C1

, determined so that iLS = ire f
Ls

(t). Defining the control objective eiLs
= 0,

the tracking error is eiLS
= ire f

Ls
− iLs , and a candidate positive definite Lyapunov function can be selected

as (14) to be V1(iLs , t) > 0.

V1(iLs , t) =
e2

iLs

2
(14)

The time derivative of V1
(
eiLs

, t
)

must be negatively definite for all (iLs , t), according to V1
.

V1 < 0.

Considering
.

V1 = −k5eiLs
, with k5 > 0, the virtual control ure f

C1
in (15) is obtained considering also (13).

ure f
C1

= sgn
(
iLS

)us − k5Ls
(
ire f
Ls
− iLs

)
−

dire f
Ls

dt
Ls

 (15)
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2.5. Sliding Mode Control for Voltage uC1 to Track the Reference ure f
C1

Analyzing the circuit presented in Figure 1, the dynamic model for voltage uC1 is

duC1

dt
=

1
C1

(∣∣∣iLs

∣∣∣− δ1(t)
2iL0 /n

)
(16)

The first-time derivative of uC1 contains the control action δ1(t), thus the strong relative degree of
u0 is one [30], and a suitable sliding surface S1 can be obtained as a linear combination of the control
error euC1 = ure f

C1
− uC1 where ure f

C1
is the reference value to be tracked by the uC1 voltage. Considering a

positive gain k6, used to bound the semiconductors’ switching frequency, a suitable sliding surface is
defined by S1

(
euC1 , t

)
= k6euC1 = ∆uC1 → 0 [30–35]. The switching strategy is achieved by applying the

sliding mode stability condition S1
(
euC1 , t

) .
S1

(
euC1 , t

)
< 0. The derivative of the switching surface is (17).

.
S1

(
euC1

, t
)
= k6

dure f
C1

dt
−

∣∣∣iLs

∣∣∣
C1

+
δ1(t)

2iL0 /n
C1

 (17)

From (17), the control strategy is defined in (18). i f S1
(
euC1 , t

)
> 0, then

.
S1

(
euC1 , t

)
< 0→

dure f
C1

dt −
|iLs |
C1

+
δ1(t)

2iL0 /n
C1

< 0

i f S1
(
euC1 , t

)
< 0, then

.
S1

(
euC1 , t

)
>0→

dure f
C1

dt −
|iLs |
C1

+
δ1(t)

2iL0 /n
C1

> 0
(18)

To guarantee stability, it is necessary to satisfy the reaching condition (19).

δ1(t)
2iL0 /n
C1

> MAX


∣∣∣iLs

∣∣∣
C1
−

dure f
C1

dt

 (19)

To impose a finite switching frequency, the ripple ∆uC1 voltage must be considered and k6 selected
to ensure a fast enough response. From (18), the robust control action (switching variable) for δ1(t) is
given in (20).  i f S1

(
euC1 , t

)
>

∆uC1
2 , then

.
S1

(
euC1 , t

)
< 0 → δ1(t) = 0

i f S1
(
euC1 , t

)
< −

∆uC1
2 , then

.
S1

(
euC1 , t

)
>0→ δ1(t) = −1 or δ1(t) = 1

(20)

The condition (19) is satisfied mainly as long as iL0 /n >
∣∣∣iLs

∣∣∣ is verified.
To avoid magnetic saturation of the transformer core, an auxiliary control signal takes advantage

of the redundancy presented in (20) to ensure transformer primary voltages with zero average value.

3. Simulation Results

Characteristics of the Converter

The proposed isolated converter topology for the AC-DC converter (Figure 1) is simulated using
Matlab/Simulink software. The control block diagram and the power circuit are assembled in Simulink
with SimPower Systems Toolbox. The simulation contains the semiconductor models, including the
effects of switching and on-state losses. The parameters for simulations are presented in Table 1.



Electronics 2020, 9, 1401 9 of 19

Table 1. Parameters inherent to the AC-DC converter to validate the proposed model.

Symbol Description Value Symbol Description Value

uS AC peak voltage 110 V ∆uC1 Ripple of uC1 4 V
fS AC frequency 50 Hz ∆iLs Ripple of iLs 0.1 A
u0 DC voltage 24 V ∆u0 Ripple of u0 0.4 V
P0 Power of load 120 W ∆iL0 Ripple of iL0 3 A
η Proposed efficiency 90 % n Transformer ratio 1.6

Ls Input inductor 1.2 mH L0 Output inductor 25 mH
C1 Input capacitor 8 µF C0 DC-bus capacitor 200 µF

The simulation is performed at a given power in order to obtain results that can be compared
with the experimental prototype developed in the laboratory. In addition, the calculation step in the
simulation was adjusted to 5 µs to approximate the sample time of the control loop implemented in
DSP, remembering that the loop time affects the switching frequency of semiconductors as the sliding
mode controller will work at a slightly variable frequency determined mainly by the digital hysteretic
comparators (7) and (20). Figure 3 represents the simulated waveforms of the main variables in the
converter for one 50 Hz cycle of the AC power supply.
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The simulation results show the performance of the converter controllers maintaining the current
iLS in phase with the grid voltage us (Figure 3a top). The output voltage is constant at 24 V besides the
strong ripple in uRo and in iL0 (Figure 3b top). The action of the internal loop controller uC1 is responsible
for imposing the capacitor C1 voltage (Figure 3a middle), its double rectified shape, amplitude and
phase relative to the voltage of the AC source to enforce the iLS current (see Section 2.5). The iLs control

loop (see Section 2.4) generates the variable of the voltage reference ure f
C1 necessary to obtain the desired

main current at the input iLs with a low harmonic content.
In this simulation, it is also shown the possibility of achieving low total harmonic distortion for

the iLS input current. In the MatLab analysis tool (FFT analysis), the obtained THD was 3.9% for iLs .
The improvement in the reduction of the input current iLs THD, when compared to hysteresis current
controllers, is due to the fact that the controllers first define a virtual control variable uC1 (showing a
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higher ripple, Figure 3a middle) that indirectly enforces the input current via the second order input
filter, instead of directly controlling the current iLs .

The control design uses sliding mode control in internal loops to offer robustness and a fast
response with a slightly variable frequency, as (7) and (20) do not depend on system parameters.
This robust implementation is nevertheless limited by the sample time.

The primary of the transformer is driven by the high-frequency voltage uT1 (Figure 3a bottom)
around 12 kHz at the maximum value of the amplitude of voltage uC1 .

The transformer secondary side includes the high-frequency rectified voltage ur0 and the waveform
of the current iL0 (Figure 3b top) presents the expected oscillation around its average value reference

ire f
L0

(see Section 2.3), as the AC power is not constant within an AC 50 Hz cycle, while the DC power
may be constant. The load voltage u0 (Figure 3b bottom) maintains a constant value over a period of
the AC network as well as the current i0 (see Section 2.2), according to the desired output power.

To evaluate the regulation of the converter output voltage, two simulations (Figure 4) are considered
with different voltage values under the same conditions indicated in Table 1. For example, ure f

0 = 12 V

for server power supplies applications [37,38] and ure f
0 = 28 V for aircraft avionics applications [39,40].Electronics 2020, 9, x FOR PEER REVIEW 10 of 19 
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0 = 12 V; (b) ure f

0 = 28 V.

It is verified that the output load voltage remains constant over one cycle period of AC power.
The current iLS stays in phase with the grid voltage us identical to Figure 3a top with THD at 4.0% in
both cases. The output voltage ripple u0 (in blue) at 12 V and 28 V is the same (∆u0 ≈ 0.6 V) due to the
voltage-independent sliding mode controller.

Another simulation is made by considering a variation in the amplitude of the AC mains voltage
(25%) with a duration time of 0.6 s (Figure 5 top) to check if the design converter and controller can
supply the requested constant power load. The output voltage response is presented in Figure 5
bottom, revealing a perfectly controlled 24 V DC voltage.
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To test the performance of the proposed controller in transient conditions, 25% of the load nominal
power changes are considered. Figure 6 presents the time evolution in transient conditions.
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The presented results confirm that the proposed converter and control method maintains the
power factor close to unity in transient conditions. The voltage applied at the transformer primary side
presents symmetry and zero average value, using the redundancy present in the voltage control uC1

(20), implemented in the auxiliary controller, to avoid core saturation of the high-frequency transformer.
At variable load conditions (adding a transient condition at time 0.2 s and removing at time 0.4 s)

for a load step power increase of 25%, the output voltage u0 shows in this case no voltage droop or
perceptible voltage disturbances.

4. Experimental Results

4.1. Converter Prototype and Experimental Setup

A prototype of the isolated AC-DC converter was built in the laboratory to experimentally evaluate
the methodology of the proposed control technique. The prototype contains the main power converter,
with component values shown in Table 1, and a digital control system. The prototype is connected to
the laboratory low-voltage AC network using a single-phase auto-transformer. The converter primary
side includes one full-bridge rectifying based on diodes VS-80APS12-M3 from Vishay and one board
GSP65MB-EVB from GaN Systems with two GSP65R25HB-EVBs configured as a full-bridge inverter
topology. The isolated high-frequency transformer was built using an iron base amorphous alloy from
Metglas type 2605SA1 in size AMCC 32, designed for a maximum power of 3 kW and frequency up to
20 kHz with a 1.6:1 ratio. The converter secondary side includes a full-bridge high-frequency rectifier
with diodes C5D50065D from Wolfspeed/Cree and one board GSP65MB-EVB from GaN Systems with
one GSP65R25HB-EVB. To sample the needed currents, Hall effect sensors LA100-P/SP3 are used.
Needed voltages are sampled using differential isolated amplifiers SI8920 from Silicon Labs. For the
critical uC1 voltage control loop, one differential probe was used with high input impedance developed
to connect to the DSP (based in LMH6609MF from Texas Instruments), to reduce the delay time in the
voltage reading process, when compared to the isolated SI8920.

A picture of the experimental prototype workbench benchmark is depicted in Figure 7.
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Simulink environment and the code automatically generated and downloaded to the development 
TI DSP board. 

Figure 7. Experimental prototype workbench: (a) the main primary side; (b) secondary side.

The digital control circuit is composed of the Texas Instruments DSP model Delfino MCU
TMS320F28379D launchpad development kit which features a 200 MHz dual core microcontroller (Core
1 and Core 2) and dual real-time control co-processors (CLA), a 32-bit floating point, 12/16 bits ADCs at
3.5/1.1 MSPS, comparators, PWM and other peripherals which boost rapid prototyping development.
All algorithms are programmed in the MatLab/Simulink environment using the toolbox embedded
coder support package for TI C2000. The digital algorithm was debugged in the Simulink environment
and the code automatically generated and downloaded to the development TI DSP board.

4.2. Digital Control Implementation

To implement the control algorithms obtained in Section 2 in the TI DSP, the block diagram
capabilities of Simulink using the C2000 Embedded Target Library were used. The Simulink C2000
Target Library includes models and algorithms for the specific peripherals of the TI DSP.

The critical voltage control loop of the capacitor voltage uC1 was the first digital control loop to
be developed. It was implemented in Core 1, used just for that purpose, with a 5 µs sample time.
The digital algorithm was optimized by selecting suitable discrete Matlab functions, function calls or
using convenient data types. The digital control (Figure 8) block diagram performs the sampling of the
ADC of voltage uC1 . Then, it compares the sampled uC1 to the reference ure f

C1
(Section 2.5), which is

received from Core 2 using the IPC receive block. To avoid core saturation of the high-frequency
transformer, an auxiliary control loop is included. It uses a digital integrator and comparator to
compute a running average of the transformer primary voltage. The control outputs are the digital
signals to command the gates’ drivers of full-bridge GaN HEMTs (Figure 8).
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Core 2 was used to program the remaining controllers (Figure 9a–c), the control laws obtained
in (7), (12) and (15) respectively relating to controls for u0, iL0 and iLs . The sampling period is 50 µs.
Programming using explicitly the two Cores has the advantage of reducing the time implementation
of the models, which is essential for high-frequency converters. In addition, other common MatLab
blocks can be used, as long as they are discrete block sets with special IQ math and motor control
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blocks located in the optimization subgroup, including Clark transformation, Park transformation,
speed measurement and space vector generator and more. For the output voltage controller u0, another
auxiliary DSP with the same characteristics is used for implementing the algorithms of Section 2.2,
working independently.
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4.3. Lab Prototype Results

Simulation and experimental results are compared and presented in Figures 10–12, illustrating
the operation of the AC-DC isolated converter controller by the TI DSP under Table 1’s conditions.

Figure 10a presents the simulation waveform of the main AC utility grid with a voltage us of
110 Vpeak (0% of THD). A current iLS of 2.85 Apeak was obtained with 3.9% of THD measured using
the FFT analysis tool in MatLab. For comparison, the experimental result is illustrated in Figure 10b,
where the waveform of the main AC utility grid voltage us with 104 Vpeak (1.4% of THD) is presented,
as well as the waveform of the current iLS with 3.0 Apeak. The current iLS has a near sinusoidal shape
with 4.7% of THD (all experimental THD values were measured with a Fluke 39 power meter).

Figure 10d shows the time evolution of the capacitor voltage uC1 during one period of the mains
grid with the high frequency ripple (maximum 24 kHz) characteristic of the non-linear control systems
measuring 6 V of ripple of uC1 , while in the simulation, 5 V was obtained as illustrated in Figure 10c.
The difference in these values is due to the finite step-time for the simulation and the digital processing
time for the experiments (both set to 5 µs), but experimental results have an extra delay time (1 µs) due
to the delay of circuits measuring voltage uC1 . Figure 10e depicts the time behaviour of current iLS and
shows also the symmetry of the voltage uT1 applied to the primary of the transformer, with the zero
average value avoiding core saturation (detailed in the Figure 11a). The experimental results shown in
Figure 10f closely match the simulation results of Figure 10e.

Figure 11b shows, in detail, the experimental result of switching the voltage uT1 and the current
in the primary of the high-frequency transformer at the maximum voltage amplitude situation.
The waveform voltage and current present a near rectangular shape with a variable frequency and
duty cycle, due the control technique, reaching around 12 kHz in this case, which differs to the values
measured in the simulation results (Figure 11a), which are around 14 kHz due to the uC1 voltage
measuring delay.
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Figure 10. Waveforms at primary side of the AC-DC converter: (a) simulation results of voltage
us and current iLS ; (b) experimental results of voltage us and current iLS ; (c) simulation results of
voltage uC1 ; (d) experimental results of voltage uC1 ; (e) simulation results of voltage uT1 and current iLS ;
(f) experimental results of voltage uT1 and current iLS .
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Figure 11. Waveforms in the AC-DC converter: (a) simulation results of voltage uT1 and current iT1 ;
(b) experimental results of voltage uT1 and current iT1 ; (c) simulation results of voltage ur0 and current
iL0 ; (d) experimental results of voltage ur0 and current iL0 .

In Figure 11c, the simulation results of the high-frequency rectified voltage ur0 with 63 Vpeak and
current iL0 are presented to be comparable with the experimental results in Figure 11d with voltage ur0

with 60 Vpeak.
Figure 12a shows the direct current iL0 of the simulation with significant oscillation of 2.5 A around

the average value reference ire f
L0

of 7.5 A, similar to the experimental results presented in Figure 12b,
with 2.4 and 7.5 A, respectively. Figure 12c shows the waveforms’ voltage u0 with 24 V and current i0
with 5 A for simulation, while in the experimental results (Figure 12d), the same voltage and current
values were obtained. The difference between these two results’ waveforms is in the ripple value of
the voltage, which in the simulation case presents about ∆u0 = 0.6 V and for the experimental case
present around ∆u0 = 1.2 V. The experimental results have an extra delay time due to the voltage u0

measuring circuits. This delay time was not considered in the simulation. The output voltage remains
constant throughout the one cycle of the AC network.
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5. Conclusions 
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current i0; (b) experimental results of current iL0 and current i0; (c) simulation results of voltage u0 and
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5. Conclusions

This paper presented the design of digital controllers for a single-phase AC-DC converter, including
a high-frequency isolation transformer and low-value non-electrolytic capacitors, to be introduced
into a future low-voltage DC network for residential buildings, as an alternative to traditional AC
power networks. Control using sliding mode (for binary variables) and the Lyapunov direct method of
stability (for sampled quantities), together with separation of fast and slow dynamics, were shown as
viable choices for the digital control of a fourth order dynamics isolated AC-DC converter. The designed
controllers were able to guarantee the stability and the robustness of the sliding mode controllers
ensured almost zero error tracking of the output voltage, while ensuring near unity power factor
operation. This unidirectional converter can be applied to a residential low-DC voltage network without
energy generation with the benefit of avoiding current stresses in the low-value non-electrolytic output
capacitors of the DC bus, which is achieved using the described control techniques. The converter can
be used in DC buses with energy storage, where it can increase the battery lifetime, by reducing the
charging current ripple. The analysis of the results shows the converter has fast enough response times
(disturbances smaller than the switching ripple), even in situations of greater dynamic load demand,
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tested for abrupt variations of 25% of the nominal power with a minimum impact in the AC network,
since the unity power factor operation is guaranteed in transient operation.

The digital implementation in a dual CPU DSP was programmed via Matlab/Simulink, with the
explicit usage of each Core for a specific control task. The low-cost TI CPU selected has a
good development tool for a fast prototyping control system needed in high-frequency power
electronic converters.
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