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Abstract: The IEEE 1588 precision time protocol (PTP) is used by many time-sensitive applications 
and systems, as it achieves sub-microsecond time synchronization between computer clocks. 
However, a PTP network is vulnerable to cyber-attacks that can reduce the protocol accuracy to 
unacceptable levels for some or all clocks in a network with potentially devastating consequences. 
Of particular concern are advanced persistent threats (APT), where an actor infiltrates a network 
and operates stealthily and over extended periods of time before being discovered. This paper 
investigates the impact of the most important APT strategies on a PTP network, i.e., the delay attack, 
packet modification or transparent clock attack, and time reference attack, using a fully programable 
and customizable man in the middle device, thereby considering the two most popular PTP slave 
daemons PTPd and PTP4l. In doing so, it determines suitable attack patterns and parameters to 
compromise the time synchronization covertly. 

Keywords: cyber-attacks; internal attacks; precision time protocol; security; time synchronization 
 

1. Introduction 

The precision time protocol (PTP) has importance for time-sensitive domains such as 
telecommunications, financial services, and industrial control. It is deployed in infrastructure 
networks, i.e., well-managed packet switch networks (PSNs) that often use dedicated (PTP-aware) 
hardware, thereby providing computer clock synchronization accuracy down to microsecond and 
even nanosecond level [1]. This accuracy is required by many financial markets and leading 
exchanges such as Eurex, The New York Stock Exchange (NYSE), and International Marketmakers 
Combination (IMC) that allow PTP time synchronization from their systems with market 
client/participants, so that they can synchronize their clocks with the exchange [2]. 

PTP is vulnerable to cyberattacks, which cause a significant hazard to many time-sensitive 
application areas [3]. Advanced persistent threats (APTs) [4], similar to the Stuxnet attack of 2010 on 
industrial control systems [5], are of particular concern. Stuxnet’s apparent target was the Natanz 
uranium enrichment facility, and it stealthily spread there across programmable logical controller 
(PLC) and supervisory control and data acquisition (SCADA) systems, subsequently compromising 
the operation of this facility for many months before its discovery. Stuxnet did not require an Internet 
connection to reach its target; instead, it entered the facility via a removable flash drive brought in by 
an employee [6]. A Stuxnet-like attack on a time synchronization network could similarly target PTP 
infrastructure components, slowly interfere with the clock synchronization of endpoints, therefore 
stealthily undermine proper system and application operation, like for example manipulating the 
timestamps of high-frequency trading transactions. 

The first version of PTP did not provide a security extension, and as a result, there have been 
various approaches over the last decade to combine it with security protocol extensions or 
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infrastructure enhancements. This includes the experimental security extension Annex K (introduced 
with the IEEE 1588 version 2) in 2008, which has been proven to be insufficient [7,8]. PTP version 2.1 
(IEEE 1588-2019) [9], was recently released in 2020; it includes a new security extension called Annex 
P. Annex P consist of four prongs as follows [10]: 

• Prong A (integrated security mechanism) specifies an authentication type-length-value (TLV) to 
protect PTP messages using a symmetric key. More details of implementing Prong A on power 
profile using PTP daemon (PTPd) can be found in [11]; 

• Prong B (PTP external transport security mechanisms) describes external security extensions, 
i.e., Media Access Control Security (MACsec) and IP Security (IPsec) that can be used to protect 
the PTP messages; 

• Prong C (architecture guidance) describes various redundancy approaches, i.e., redundant time 
system, redundant grandmaster, and redundant paths; 

• Prong D (monitoring and management guidance) describes a monitoring system to observe the 
PTP slave behavior. 

However, it has been shown that state-of-the-art cryptographic security protocols (i.e., Prong A 
and Prong B) can only deter a subset of potential attacks [3], while Prong C (i.e., multiple paths, 
redundant grandmaster and protocol redundancy) do not provide a provable secure way to prevent 
an attacker from exploiting PTP vulnerabilities either [12]. 

An in-depth analysis of potential APT attack strategies on PTP networks, including attacker 
types (i.e., man in the middle or injector), their location within a network, their impact on clock 
synchronization (i.e., clock manipulation, versus clock free-running), and the impact range (i.e., 
affecting all slaves, a subset of slaves or a single slave) in the presence of protocol security extensions 
and infrastructure redundancy including Annex P was presented in [12], therefore extending prior 
research conducted by [3,8]. This paper will build on these findings and present the results of the 
experimental proof-of-concept implementations of the most far-reaching APT attacks identified, 
therefore making the following contributions: (1) an analysis of the time correction algorithms (and 
their characteristics/weaknesses) implemented in two popular PTP daemons (i.e., PTP4l and PTPd), 
(2) prototyping of a PTP hardware “sandbox” testbed that is able to perform various of man in the 
middle (MitM) attacks, namely delay, time source, and packet modification attacks, (3) determining 
suitable attack patterns and parameters, and (4) analyzing the effect of such attacks on slave clock 
synchronization, operation and behavior. The MitM implementation goes beyond existing research 
in [13–15], as this paper simulates the APT behavior using a hardware-based programmable MitM 
that can manipulate PTP packets and change the attack parameters dynamically over time. In doing 
so, it determines suitable attack patterns and parameters to compromise the time synchronization 
covertly. 

The rest of this paper is structured as follows: Section 2 provides an overview of PTP, PTP 
software daemons, and a summary of security concerns. Section 3 describes an experimental testbed 
based on different PTP devices (i.e., slaves, switches, grandmaster—GM and transparent clock—TC), 
presents the MitM device, and characterizes different slave clocks. The experimental result of packet 
propagation attacks (i.e., delay and transparent clock attacks), and time reference attack will be 
shown in Section 4, followed by the outline of a proposed attack detection system in Section 5 and 
conclusions and future work in Section 6. 

2. The Precision Time Protocol and Security Concerns 

2.1. PTP Overview 

IEEE 1588 (PTP) is a protocol used to synchronize a clock or group of clocks (slaves) to the most 
accurate clock in a network (grandmaster—GM). It can achieve sub-microsecond time 
synchronization between these clocks. A PTP network may contain different PTP entities (i.e., a single 
grandmaster clock, slave clock(s), boundary clock(s), and transparent clock(s)) beside the ordinary 
network infrastructure that includes switches or/and routers. The grandmaster clock and slave clocks 
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are ordinary clocks with different clock attributes. These attributes are used by the best master clock 
algorithm (BMCA) to determine which clock makes the most suitable grandmaster (i.e., the best clock 
in the network), forcing the other clocks to go into slave mode or a passive state. The grandmaster 
clock provides the (root) time reference for all other clocks. Boundary clocks (BC) and transparent 
clocks (TC) have multiple ports, and they deal with PTP messages in different ways. All boundary 
clock ports will act as a master to other slaves connected to them, except for one port that will act as 
a slave to the grandmaster or another master port of a different boundary clock. In contrast, a 
transparent clock computes the residence time of certain types of PTP messages and adds this value 
to the correctionField in the PTP message, allowing for a more accurate estimation of uplink and 
downlink delays. PTP provides two different delay mechanisms (end-to-end and peer-to-peer) and 
two different mode operations (one-step and two-step). This paper will focus on the end-to-end delay 
mechanism and the two-step mode operation. More details on PTP and its different delay 
mechanisms can be found in [1]. 

In the end-to-end delay mechanism there are four timestamps required to calculate the offset 
(the time difference between a slave and the master) in slave clocks. They are exchanged between the 
master and slaves as shown in Figure 1 [7]: a slave measures T2 and T3 itself, while receiving 
timestamps T1 and T4 as packet payloads sent by the master clock. In addition, if a TC is located 
between the master and a slave, the TC timestamps the Sync (S), Follow_Up (F) and Delay_Resp (D) 
messages on ingress (i.e., Si, Fi and Di) and egress (i.e., Se, Fe and De), and computes the time taken 
(C1, C2 and C3) for these messages to traverse the node by subtracting the egress and ingress values 
[16]. PTP clock synchronization assumes that the network delay between slaves and their master is 
symmetric. So, the offset and mean path delay (the average of time taken for a PTP message to 
traverse from a master to slave and vice versa) are computed as shown in Equations (1) and (2): 

offset = ((T2 − T1 − C1 − C2) − (T4 − T3 − C3))/2 (1) 

meanPathDelay = ((T2 − T1 − C1 − C2) + (T4 − T3 − C3))/2 (2) 

where C1 = Se − Si, C2 = Fe − Fi and C3 = De − Di. 

 

Figure 1. Precision time protocol (PTP) timestamps and time synchronization messages in transparent 
clock end–to-end mode. 

Finally, the PTP uses the calculated offset to update the slave clock. In addition, PTP provides a 
method to syntonize a clock (e.g., a TC) to the grandmaster clock, where its clock frequency follows 
the grandmaster clock frequency, by introducing a dynamic clock correction factor, which is 
subsequently multiplied with local timestamps. It is calculated as follows [1]: 

correction factor = ((T2)n − (T2)0)/((T1+ meanPathDelay + C1 + C2)n − (T1 + meanPathDelay + C1 + 

C2)0) 

(3) 

with n (n > 0) is the number of sync intervals separating the timestamps, e.g., (T2)n versus (T2)0. 
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2.2. Existing PTP Software Daemons 

There are many PTP implementations that work on different platforms [17]. This paper will 
focus on two popular open-source PTP slave software implementations, namely linuxptp (also called 
PTP4l) and PTPd. PTP4l is a Linux client [18], whereas PTPd is available for Linux, FreeBSD and Mac 
OS X [19]. While both implementations follow the message sequence as shown in Figure 1, in practice 
the GM and the slave clocks send out Sync/Follow_Up and Delay_Req messages independently from 
each other at configurable rates, i.e., the transmission of a Delay_Req message is not triggered by the 
reception of a Follow_Up message. The delay request measurements are only done on a best effort 
basis and may not be executed in a timely manner. 

2.2.1. PTP Daemon (PTPd)—Version 2.3.2  

PTPd [20] records the time arrival of each Sync message (T2) as well as the content of its 
correctionField (C1). It then extracts the preciseOriginTimestamp field value (T1) and the correctionField 
value (C2) of the corresponding Follow_Up message (that matches the sequenceID of the Sync message). 
After that, the daemon calculates the delay between the master and the slave: 

MSdelay = T2 − T1 − (C1 + C2) (4) 
The daemon then records the departure time of a Delay_Req message (T3), and eventually 

receives the corresponding Delay_Resp message (with identical sequenceID). It extracts the 
receiveTimestamp field value (T4) and the correctionField value (C3) of this message. The software now 
calculates the delay between slave and master: 

SMdelay = T4 − T3 (5) 
and the mean path delay via 

meanPathDelay = ((MSdelay + SMdelay) − C3)/2 (6) 
If the meanPathDelay value is greater than one second or a negative value, it is replaced by the 

last valid delay value, before the offset is calculated: 
offsetFromMaster = MSdelay − meanPathDelay (7) 

Finally, PTPd calculates the average of this offset and the previous offset, before updating the 
system clock. The overall offset equation (without averaging) is as follows: 

Offset = (T2 − T1 − (C1 + C2)) − (((T2 − T1 − (C1 + C2)) + (T4 − T3)) − C3)/2 (8) 
More details on PTPd can be found in [21]. 

2.2.2. Linuxptp (PTP4l) Version (2.0)  

PTP4l [22] records the arrival time of the Sync message (T2), extracts its correctionField value (C1), 
waits for the arrival of the corresponding Follow_Up message (with identical sequenceID) and extracts 
the preciseOriginTimestamp (T1) as well as the correctionField value (C2). It records the transmission 
time (T3) of a Delay_Req message and extracts its arrival (T4) and its correctionField (C3) from the 
corresponding Delay_Resp message. PTP4l has provisions for calculating the time difference 
(delayAsymmetry) between the transmitting and receiving path (which is positive when the master-
to-slave propagation time is longer and negative when the slave-to-master time is longer). However, 
a default value of zero is hard-coded into the software. PTP4l computes the ratio and frequency 
deviation of the local clock in relation to the master clock by using the last two values of T2 and two 
corrected values of T1 (including the path delay), as follows: 

ratio = (T2n − T2n−1)/(T1n − T1n−1) (9) 

frequency = (1.0 − ratio) * 109 (10) 

The final offset and delay equations are as follows: 

Offset = (T2 − (T1+C1+ delayAsymmetry +C2)) − ((T2 − T3) * frequency + (T4 − C3 − (T1 + C1 + 

delayAsymmetry + C2)))/2 

(11) 

meanPathDelay = (((T2 − T3) * ratio) + ((T4 − C3) − (T1 + C1 + C2))) 2 (12) 
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It is worth noting that for both daemons the above methodologies/algorithms did not change 
between recent software versions. 

2.3. Slave Clock Adjustment 

Both PTP daemons use the calculated offset to update the slave clock by either resetting the 
clock, i.e., step the clock, or gradually adjusting the clock, i.e., add a small amount of time to the clock 
every second and/or change the clock frequency, using the following configuration options: 

• Disable/enable PTP clock adjustment: if the clock adjustment is disabled, the clock will be in free-
running mode. If enabled, both daemons use the time offset to calculate the frequency offset 
between the slave and its master, and gradually adjust the local clock tick duration to improve 
the local slave clock accuracy. Furthermore, PTPd updates the slave time by adding a small 
percentage of time to the slave clock depending on the calculated offset. 

• Maximum clock frequency adjustment: this is an upper threshold for the maximal permissible 
(positive or negative) frequency correction as calculated above. 

• Disable/enable clock reset: if disabled, local clock adjustments per synchronization cycle are 
limited to the above value. If enabled, the daemon resets the clock when synchronization starts 
and/or when a calculated offset is larger than a configurable threshold. Resetting the clock makes 
the slave time the same as the master time in one synchronization step. Further on, PTP4l will 
also adjust the slave clock frequency before doing a clock reset. 

The different offset/delay calculation/averaging mechanisms in both daemons result in 
variations of the offset/delay values range as shown in Figure 2. Here a slave computer ran both 
daemons concurrently over a four hours period using the same grandmaster. It can be seen that PTP4l 
has a higher offset/delay range in comparison to PTPd, which is a result of applying different filter 
mechanisms as described in the previous section B. For example, PTPd uses the average of the last 
two offsets calculated as a final offset result of the new synchronization cycle, while PTP4l uses the 
ratio and frequency deviation of the local clock in its offset calculation. This difference makes the 
offset range for PTPd smaller than for PTP4l. 

 
Figure 2. Offset and delay range of two PTP daemons running on the same machine. 

2.4. PTP Security Concerns 

Many applications require accurate time synchronization as provided by PTP, and the failure in 
providing such accuracy may lead to serious consequences. Two well documented incidents were 
reported by Eurex and the Bonneville Power Administration (BPA). Eurex requires PTP to accurately 
timestamp financial and stock transactions, including high-frequency trading, of its clients. The 
accuracy and synchronicity of these timestamps are essential to the exchange and its customers. 
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However, on 26 August 2013, a PTP infrastructure glitch happened that forced Eurex to postpone its 
market opening. It later turned out that an incorrect leap second calculation caused an erroneous 
synchronization of their critical systems [2].  In June 2016, Bonneville Power Administration reported 
losing two 500 kV lines 40 and 80 miles long. An investigation concluded that the synchrophasors 
responsible for the load monitoring along these powerlines were incorrectly synchronized because 
of erroneous GPS timestamps, resulting in incorrect line current differential readings. The GPS 
malfunction itself was caused by test procedures executed on the GPS satellites used by the 
synchrophasors [23]. 

The above incidents happened purely accidentally, but show the potential impact of a time 
synchronization malfunction. The Eurex failure was immediately detected, as slave clocks were 
suddenly off by one second. In contrast, the synchrophasors in the BSA example went gradually out 
of sync without detection, causing an increasing power imbalance on the grid, which eventually led 
to a full-scale powerline fault. 

An effective internal attack on a PTP network would be best conducted slowly over extended 
periods of time via an APT, after a successful penetration, reconnaissance, and the setup of command 
and control (C&C) communication. For example, an employee with sufficient privileges could 
unknowingly bring malware into the target organization (e.g., via phishing or an infected USB stick), 
which spreads within the internal PTP network to identify and reconnoiter the role of each connected 
PTP device (e.g., TC, BCs and the GM). After that, it would choose a node to be the C&C server for 
the attack, while manipulating the firmware or configuration parameters of other PTP devices (e.g., 
TC) pivotal for the attack, thereby rendering even infrastructure redundancy useless. In the 
subsequent attack phase, time synchronization of slaves would be gradually manipulated via subtle 
coordinated changes, therefore causing slave clocks to go slowly out of sync. The damage caused 
(e.g., out of sync trading transactions) could be unnoticed for a long time, similar to the way Stuxnet 
operated stealthily over many months in the Natanz facility. 

2.4.1. Summary of PTP Attack Strategies 

PTP clock synchronization assumes that the network delay between slaves and their master is 
symmetric, while relying on a single accurate time reference and correctly circulated timestamps. 
This makes PTP susceptible to a range of attack strategies: 

• Systematically modify PTP message content, i.e., timestamps T1, T4, C1, C2 and/or C3, in transit 
via a man-in-the-middle (MitM) attacker located in an intermediate node, such as a router, 
switch, or transparent clock. For example, Figure 3 shows the manipulation of the correctionField 
segment (that contains the transparent clock residence time) of PTP messages; 

• Selectively delay PTP message propagation by a MitM to induce an asymmetric 
uplink/downlink delay; 

• Directly manipulate the time reference by compromising the grandmaster clock, or by 
introducing a Byzantine master clock. The latter requires an ordinary clock to become a rogue 
master (a clock that pretends to be the best in the network) by circulating announce messages 
with overrated clock attributes such as the PriorityOne field with the aim to manipulate the 
BMCA [12]. Once the device becomes the grandmaster, it propagates inaccurate timestamps and 
desynchronize attached slaves, and ultimately desynchronize the entire network. 
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Figure 3. Manipulated residence time in transparent clock. 

This research excluded some PTP attacks (i.e., packet removal attack, master spoofing attack, 
slave spoofing attack, replay attack, and denial of service attack), as they may influence only 
individual PTP slaves or are easy to detect by PTP daemons. In contrast, the PTP attack strategies as 
listed above affect all slave clocks downstream from the location of the attacker, while not causing 
apparent changes in PTP network traffic patterns or packet content [12]. 

Previous research has evaluated or simulated some of these attacks. Ullmann [24] has analyzed 
the delay attack mathematically with a proposal to detect this attack by computing the uplink path 
(i.e., the delay between the master and its slave) at the beginning of synchronization and store it at 
the master side, while the slave computes and stores the downlink path delay. Here the attack can be 
detected when the new uplink/downlink path computed has a significant difference of the reference 
values. However, the Delay_Req message is not triggered by the arrival of a Sync message in the 
conventional PTP protocol and is processed on a best-effort basis, which may provide an unstable 
path delay over time and therefore false alarms could be triggered. Other researchers argued that 
redundant paths in a PTP network could detect the delay attack by comparing the offset values that 
are calculated by each port [14,15]. Nevertheless, APT can compromise all redundant paths, which 
may affect the offset values in both slave ports. Moussa [25] proposed a detection and mitigation 
method for the delay attack by using a redundant reference clock. However, their detection method 
works only for delayed Sync messages. Moussa [13] has simulated GM, TC, and asymmetric delay 
attacks, and they propose another network time reference to monitor the Sync messages as well as 
collect timestamps from slaves in order to detect an attack. However, the proposal fails in detecting 
some attacks if the attacker can manipulate the timestamp sent by slaves. The delay attack, packet 
modification attack, spoofing attack and denial of service attack have been simulated by [14], but 
without proposing a detection or mitigation method against these attacks. Itkin [8] has simulated 
some spoofing attacks as well as the BMCA attack. 

2.4.2. Summary of Existing PTP Security Measures 

Different protocol extensions to protect a PTP packet payload from deliberate manipulation have 
been introduced, but [26] has outlined the limited effectiveness of such cryptographic security 
protocol extensions to deflect attacks on PTP networks, particularly when orchestrated by an internal 
attacker that has access to network infrastructure or authentication/encryption keys. Reference [27] 
derives a set of conditions to secure the PTP network under the assumption that the attacker does not 
have access to cryptographic keys. Further on, while infrastructure redundancy [28–30] makes an 
attack more complex (as multiple/redundant system components need to be compromised, possibly 
in a synchronised fashion), it does not provide a provable secure way to protect PTP networks from 
manipulation [12]. Also, increasing the accuracy as introduced in PTP v2.1 (IEEE 1588-2019) [31] does 
not increase security. Girela-López [32] claims that increasing the accuracy can mitigate the 
asymmetric attack in normal operation, but this is not effective if an asymmetric delay is deliberately 
introduced. Overall, there is no comprehensive solution to this problem, and, while recent research 
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[13] proposed an extension to PTP that collects timestamps from different slaves and compared these 
timestamps with another time source in order to detect clock drifts; this approach reassembles a 
variation of infrastructure redundancy that can be compromised by an APT. 

3. Testbed and MITM Device 

The testbed as shown in Figure 4 contains one grandmaster clock (OMICRON OTMC 100-
antenna-integrated PTP Grandmaster Clock) and two different types of slave devices (Intel Galileo 
Gen 1 and Raspberry Pi 3 model B) that are interconnected by ordinary switches and one transparent 
clock (Hirschmann RSP20). The PTP4l daemon is used by the Galileo devices, whereas PTPd is 
installed on the Raspberry Pi. Since the slave devices do not support hardware timestamping, all 
experiments were conducted using two-step operation mode. In addition, the ordinary switches used 
do not support the peer delay mechanism, and hence the end-to-end mechanism was used. The data 
collector is an ordinary slave, which is always properly synced to the GM. Its primary role is to collect 
PTP data from nodes under attack while providing a correct time reference. All devices in the 
network are connected via CAT5e Ethernet cables with a data rate of 1000 Mbps. Also, the network 
only carries time synchronization traffic to minimize the network load, any non-deterministic packet 
delay, and jitter, while the CPU load of all devices is kept at a minimum. 

 
Figure 4. The PTP testbed. 

The MitM device is a Linux computer with two network ports. It is located in the path between 
a master and its slaves to intercept and manipulate PTP packets in transit. The two network ports are 
connected via a bridge, and the ebtables tool is used to intercept PTP packets. A user-space program 
written in C language manipulates the intercepted packets and forwards them to their destination. 
Therefore, the programmable MitM simulates the effect of APTs on time synchronization, as it allows 
to slowly manipulate PTP timestamps over time, for example with small increments in the order of 
microseconds. 

Table 1 shows the time synchronization baseline (i.e., offset and mean path delay) with orderly 
working PTP daemons after 20 min of operation with and without a programmable MitM device in 
the packet path. Here the MitM is added between the GM and TC as shown in Figure 4. Please note 
that all offset and delay values collected during this period were computed at the same slave and 
were used to calculate the statistics as shown in Table 1. It can be seen that the MitM device introduces 
a symmetric uplink/downlink delay in the PTP packet path, as well as some jitter, as it is not a fully 
deterministic soft real-time system, i.e., packets are internally processed on a best-effort basis. 
Nonetheless, it allows for mimicking an attacker, which would otherwise be located in a switch, a 
GM or a TC. 
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Table 1. Offset/Delay statistics. 

Configuration 

Clock Characteristics after 20 min 
Offset Mean Path Delay 

Average 
(µs) 

Standard Deviation 
(µs) 

Average 
(µs) 

Standard Deviation 
(µs) 

Galileo without MitM −0.066 15 424 3 
Galileo with MitM −0.031 30 537 6 

Raspberry without MitM 0.125 8 169 1 
Raspberry with MitM 0.065 14 280 2 

While slave (quartz-oscillator) hardware clocks are inherently unstable and tend to drift [33], 
there are subtle differences in their quality. This is shown in Figures 5 and 6, where both slave device 
types did run over an 8 h period (from 2 p.m. to 10 p.m.) in free-running mode and periodically sent 
timestamps to the GM-synchronized data collector device (as shown in Figure 4). The Galileo 
hardware clock shows have better stability compared to the Raspberry when exposed to different 
temperature conditions (24 degrees Celsius during the day dropping to 17 degrees Celsius at night), 
while the latter shows better accuracy. 

 
Figure 5. Galileo clock in free-running mode. 

 
Figure 6. Raspberry Pi clock in free-running mode. 
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4. Experimental Results 

Four different attack types, listed in Table 2, were mimicked by the appropriately positioned 
MitM device. All attacks need to be persistent and continuously executed in order to effectively 
desynchronize a slave. GM timestamp manipulation and Byzantine attack were combined in one 
experiment (time source attack), as both result in incorrect grandmaster timestamps. Similarly, 
delayed packet transmission and correctionField manipulation were combined under one attack 
category (packet propagation attacks), as both result in a false path delay measurement. All 
experiments were conducted by using the parameters and settings as shown in Table 3. These 
parameters and settings correspond to many PTP profiles such as the IEEE1588 Default profile [1], 
ITU-T Telecom G.8275.2 profile [34], and SMTPE ST-2059-2 profile [35]. Hence, all the attacks’ effects 
as described in this section will be applicable to any sector that use the aforementioned profiles. 

Table 2. Summary of investigated attacks. 

Attack Type Typical Attacker Location 
Delayed packet transmission Switch 
correctionField manipulation TC 

GM timestamp manipulation TC 
Byzantine attack GM 

Table 3. Experiments parameters and settings. 

Parameter Setting Comment 

Delay mechanism 
End-to-

End 
The ordinary switches used do not support peer delay mechanism 

Operation Mode Two-Step Slave NIC does not support HW timestamping 
IP protocol Version 4 - 

Log Sync Interval 0 The master sends a Sync message every 20 s 
Log Announce Interval 1 The master sends an Announce message each 21 s 

Announce receipt timeout 3 
After 3 unsuccessful announce intervals a slave clock will change 

into free-running mode 
Log delay request interval 0 The slave sends a new Delay_Req message every 20 s 

Clock Frequency 512 ppm 
Maximum absolute frequency change that can be applied to the 

clock servo 
Clock Adjustment enabled Slave clock update enabled 
Clock Reset & Step 
threshold (PTP4l) 

On start-
up 

Reset the clock only at the beginning of the synchronization 

Clock Reset & Step 
threshold (PTPd) 

offset >1 s 
Reset the clock only if the offset from the master is greater than 

one second 

All experiments in this section were conducted over relatively short time periods to cover 
different attack scenarios within a reasonable timeframe. However, in a real APT such attacks could 
be stretched over much longer time periods (e.g., via using smaller delay increments, as further 
described in this section), with the overall result being the same. 

4.1. Attack 1: Packet Propagation Attack 

4.1.1. Delayed Packet Transmission (Compromised Switch) 

Figure 7 shows the experimental setup to mimic this attack. The MitM systematically changes 
the residence time of synchronization packets either one-way (Sync or Delay_Req packets) or two-
ways (both Sync and Delay_Req packets), introducing therefore either an asymmetric or a symmetric 
delay that affects timestamps T2 (arrival time of a Sync message), T4 (arrival time of a Delay_Req 
message), or both. Delay values are either fixed or are incremented between synchronization cycles. 
Table 4 provides a summary of the conducted experiments. The accumulated slave clock drift is 
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calculated as the difference between the correctly set data collector device time and the timestamps 
received by the manipulated slaves plus the time taken to traverse these timestamps from the slaves 
to data collector. The latter also submits calculated offset and delay values, as shown in their PTP 
daemon’s log files. The offset and delay average calculations consider all reported values during an 
attack. 

 
Figure 7. The packet propagation attack. 

Table 4. Experiments and delay attack parameters. 

Experiment 
No 

Attack Parameters 

Delay Increment 
Between Cycles Interval Duration 

of Attack Delay Type PTP 
Daemon 

Accumulated 
Slave Clock 

Drift 

Offset 
Average 

Delay 
Average 

1 5 ms 1 s 200 s 
Asymmetric 

PTP4l 93 ms 226 ms 234 ms 
PTPd 101 ms 164 ms 74 ms 

Symmetric 
PTP4l 84 ms 24 ms 432 ms 
PTPd 61 ms 51 ms 187 ms 

2 10 µs 1 s 910 s 
Asymmetric 

PTP4l 5 ms 8.6 µs 2.8 ms 
PTPd 5 ms 13 µs 1 ms 

Symmetric 
PTP4l 0 13 µs 5 ms 
PTPd 0 −3.3 µs 2.4 ms 

3 
20 ms (once-off 

increment) 
- 910 s 

Asymmetric 
PTP4l 10 ms 135 µs 10 ms 
PTPd 10 ms 75 µs 9 ms 

Symmetric 
PTP4l 0 114 µs 20 ms 
PTPd 0 268 µs 17 ms 

An asymmetric delay (downlink or uplink) results in the following: 

Offset (PTPd) = ((T2 + delay) − T1 − (C1 + C2)) − ((((T2 + delay) − T1 − (C1 + C2)) + (T4 − T3)) − 
C3)/2 

(13) 

Offset (PTP4l) = ((T2 + delay) − (T1 + C1 + delayAsymmetry + C2)) − (((T2 + delay) − T3) * 
frequency + (T4 − C3 − (T1 + C1 + delayAsymmetry + C2)))/2 

(14) 

meanPathDelay (PTPd) = ((((T2 + delay) − T1 − (C1 + C2)) + (T4 − T3)) − C3)/2 (15) 

meanPathDelay (PTP4l) = ((((T2 + delay) − T3) * ratio) + ((T4 − C3) − (T1 + C1 + C2)))/2 (16) 

Offset (PTPd) = (T2 − T1 − (C1 + C2)) − (((T2 − T1 − (C1 + C2)) + ((T4 + delay) − T3)) − C3)/2 (17) 

Offset (PTP4l) = (T2 − (T1 + C1 + delayAsymmetry + C2)) − ((T2 − T3) * frequency + ((T4 + delay) 
− C3 − T1 + C1 + delayAsymmetry + C2)))/2 

(18) 

meanPathDelay (PTPd) = (((T2 − T1 − (C1 + C2)) + ((T4 + delay) − T3)) − C3)/2 (19) 

meanPathDelay (PTP4l) = (((T2 − T3) * ratio) + (((T4 + delay) − C3) − (T1 + C1 + C2)))/2 (20) 
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where delay represents the added delay introduced by an attacker. 
Equations (13)–(16) show how the offset and delay are affected (in both daemons) when an 

attacker increments the delay from the master to its slaves, while Equations (17)–(20) show the 
opposite effect i.e., increment the delay from the slaves to their master. 

Adding a notable fixed delay (i.e., in the order of milliseconds) to either the uplink or downlink 
path results in an instantaneous spike of the offset error, as shown in Figures 8 and 9, which can be 
easily picked up by a PTP slave daemon, while a single smaller fixed delay that blends in with 
normally occurring delay measurement fluctuations (i.e., in the order of microseconds) do not have 
a significant impact on slave clock desynchronization. This leads to the conclusion that a high-impact 
APT requires carefully selected incremental path delays over time. 

Figures 10 and 11 show the observed offset, delay and clock errors, when a (Galileo-PTP4l) and 
(Raspberry–PTPd) slaves were exposed to an asymmetric delay (where Sync message transmissions 
were delayed) with 5 ms increments per second from about 90 s into the experiment, resulting in a 
slave clock error of 93 ms (Galileo) and 101 ms (Raspberry) after 200 s of an attack. It is notable that 
the introduced delay increment is too large to be immediately compensated by slave clock frequency 
adjustments (which are limited to 512 ppm per synchronization cycle throughout all experiments), 
resulting in a noticeable cumulated offset error over time. This can be avoided, if the increment is 
limited to a compensable error as shown in Figures 12 and 13. Here the delay was reduced to 10 µs 
every second from about 90 s into the experiment, resulting in a slave clock error of around 5 ms after 
910 s of the attack and an observable delay drift, while the offset error remained unchanged. 

 
Figure 8. A single asymmetric delay increment of 20 ms (PTP4l). 

 
Figure 9. A single asymmetric delay increment of 20 ms (PTPd). 



Electronics 2020, 9, 1398 13 of 25 

 

 
Figure 10. Asymmetric delay attack with a 5 ms increment every second (PTP4l). 

 
Figure 11. Asymmetric delay attack with a 5 ms increment every second (PTPd). 

 
Figure 12. Asymmetric delay attack with a 10 µs increment every second (PTP4l). 

Manipulating a switch’s firmware to introduce delays only in one direction may not be feasible; 
therefore the impact of a symmetric delay attack was investigated, where a switch would apply a 
delay to all packets that cross it. Any fixed symmetric delay is naturally compensated by PTP (see 
(1)), as shown in Figures 14 and 15, while small symmetric delay increments have no effect either 
(Figures 16 and 17). However, introducing a symmetric delay increment of 5 ms per second shows 
some unexpected results, as the time synchronization error increased to around 84 ms (Galileo) and 
61 ms (Raspberry) after 200 s into the attack, also showing a delayed increase of the measured offset 
errors (Figures 18 and 19); here, the offset eventually starts drifting after the introduced delay amount 
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exceeds the delay request interval that was set to one second (Table 3). This behavior is a result of the 
PTP client software implementation mentioned before, where GM-initiated sync packets and slave-
initiated delay measurements are not synchronized and are affected by different delay increments. 

 
Figure 13. Asymmetric delay attack with a 10 µs increment every second (PTPd). 

 
Figure 14. A single symmetric delay increment of 20 ms (PTP4l). 

 
Figure 15. A single symmetric delay increment of 20 ms (PTPd). 
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Figure 16. Symmetric delay attack with a 10 µs increment every second (PTP4l). 

 
Figure 17. Symmetric delay attack with a 10 µs increment every second (PTPd). 

 
Figure 18. Symmetric delay attack with a 5 ms increment every second (PTP4l). 

It can be concluded that delay measurement variations could be a potential indicator to detect a 
delay attack, as Figures 10–13 and 18 show that the delay distribution follows the time error 
distribution. Also, Tables 1 and 4 show that the calculated delay averages are different and do change 
due to the attack. 
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Figure 19. Symmetric delay attack with a 5 ms increment every second (PTPd). 

In summary, an attacker can use the delay attack to desynchronize slave clocks efficiently as 
follows: 

1. Introduce an asymmetric delay in the path between the slaves and their master, resulting in a 
slave clock drift approximately half the maximum asymmetric delay (e.g., Figures 8 and 9 show 
how the slaves drift by 10 ms as a result of a 20 ms asymmetric delay). Here smaller increments 
result in a small adjustment in the clock frequency and less apparent fluctuations of a slave clock 
offset.  

2. Introduce a consecutive large delay in the uplink and downlink path between the master and its 
slaves that makes a slave clock always slew with the maximum frequency. Here, the value of the 
slave clock drift is variable and subject to the PTP daemon type and the filtering mechanism that 
is applied. Such an attack causes an increased slave clock offset over time, which makes the 
attack easy to be detectable. 

4.1.2. CorrectionField Manipulation (Compromised TC) 

Here the MitM attacker intercepts the Follow_Up and/or Delay_Resp messages and gradually 
changes their correction field value (as normally done by a TC) to provide a false path delay (see 
Figure 7). Providing a false C2 (correctionField of Follow_Up message) or/and C3 (correctionField of 
Delay_Resp message) introduces inaccurate offset and mean path delay values accordingly as follows: 

Offset (PTPd) = (T2 − T1 − (C1 + C2 + Err)) − (((T2 − T1 − (C1 + C2 + Err)) + (T4 − T3)) − C3)/2 (21) 

Offset (PTP4l) = (T2 − (T1 + C1 + delayAsymmetry +C2 + Err)) − ((T2−T3) * frequency + (T4 − C3 − 
(T1 + C1 + delayAsymmetry +C2 + Err)))/2 

(22) 

meanPathDelay (PTPd) = (((T2 − T1 − (C1 + C2 + Err)) + (T4 − T3)) − C3)/2 (23) 

meanPathDelay (PTP4l) = (((T2 − T3) * ratio) + ((T4 − C3) − (T1 + C1 + C2 + Err)))/2 (24) 

Offset (PTPd) = (T2 − T1 − (C1 + C2)) − (((T2 − T1 − (C1 + C2)) + (T4 − T3)) − (C3 + Err))/2 (25) 

Offset (PTP4l) = (T2 − (T1 + C1 + delayAsymmetry +C2)) − ((T2 − T3) * frequency + (T4 − (C3 + 
Err) − (T1 + C1 + delayAsymmetry + C2)))/2 

(26) 

meanPathDelay (PTPd) = (((T2 − T1 − (C1 + C2)) + (T4 − T3)) − (C3 + Err))/2 (27) 

meanPathDelay (PTP4l) = (((T2 − T3) * ratio) + ((T4 − (C3 + Err)) − (T1 + C1 + C2)))/2 (28) 

Offset (PTPd) = (T2 − T1 − (C1 + C2+ Err)) − (((T2 − T1 − (C1 + C2 + Err)) + (T4 − T3)) − (C3 + 
Err))/2 

(29) 

Offset (PTP4l) = (T2 − (T1 + C1 + delayAsymmetry + C2 + Err)) − ((T2−T3) * frequency + (T4 − (C3 
+ Err) − (T1 + C1 + delayAsymmetry + C2+ Err)))/2 

(30) 

meanPathDelay (PTPd) = (((T2 − T1 − (C1 + C2 +Err)) + (T4 − T3)) − (C3 + Err))/2 (31) 

meanPathDelay (PTP4l) = (((T2 − T3) * ratio) + ((T4 − (C3 + Err)) − (T1 + C1 + C2+ Err)))/2 (32) 
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where Err represents the added time value introduced by an attacker. 
Equations (21)–(24) show how the offset and delay are affected (in both daemons) when an 

attacker manipulates the correctionField value of Follow_Up messages, while Equations (25)–(28) show 
the opposite effect i.e., manipulates the correctionField of Delay_Resp messages. In contrast, the 
symmetric manipulation (i.e., the attacker manipulates the correctionField of Follow_Up and 
Delay_Resp messages with the same increment) are shown in Equations (29)–(32). 

Table 5 provides a summary of the conducted experiments. They were based on the experiments 
of the previous section with the difference that the MitM attacker manipulates only the correctionField 
of either the Follow_Up message or Delay_Resp message to provide an asymmetric manipulation, or 
manipulate both (Follow_Up and Delay_Resp) to provide a symmetric manipulation when they pass 
the MitM node as shown in Figure 7. In all experiments, Err was increased every 10 s, while the other 
attack parameters remained untouched. 

Table 5. Experiments and correctionField manipulation parameters. 

Experiment 
No 

Attack Parameters 
Correction Field 

Timestamp 
Increment 

between Cycles 

Interval 
Duration 
of Attack 

Increment 
Type 

PTP 
Daemon 

Accumulated 
Slave Clock 

Drift 

Offset 
Average 

Delay 
Average 

1 5 ms 10 s 200 s 
Asymmetric 

PTP4l −50 ms −1 ms −22.8 ms 
PTPd −98 ms −2.2 ms 116 µs 

Symmetric 
PTP4l −3 ms −0.807 µs −48 ms 
PTPd −75 ms −2.3 ms 28 µs 

2 10 µs 10 s 910 s 
Asymmetric 

PTP4l −230 µs 6 µs 388 µs 
PTPd −326 µs −0.802 µs 163 µs 

Symmetric 
PTP4l ≈ 0 −0.077 µs 108.5 µs 
PTPd −500 µs −0.822 114 µs 

Figures 20–23 show that an incremental correctionField offset in Follow_Up/Delay_Resp messages 
causes a proportional desynchronization of the affected slave. Resulting delays are compensated for 
by the aforementioned clock adjustment mechanisms, therefore the offset oscillations shown in the 
diagrams. 

Increasing the correctionField value of Follow_Up/ Delay_Resp messages may cause the calculated 
mean path delay to become smaller than zero. PTP4l accepts these values as shown in the figures, 
and can therefore be used as an indicator for this attack. In contrast, PTPd rejects any negative path 
delay (from master to slave or slave to master) and it uses the last valid non-negative mean path delay 
calculated instead as described in Section 2. This makes the mean path delay value keeping the last 
valid value calculated before the attack, therefore the delay appears as a straight line (see Figures 21 
and 23). As a result PTPd’s delay calculations cannot be used to indicate this attack, which is a major 
weakness that can be specifically exploited in a PTP attack. 

 
Figure 20. Asymmetric TC manipulation with a 5 ms increment every 10 s (PTP4l). 
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Figure 21. Asymmetric TC manipulation with a 5 ms increment every 10 s (PTPd). 

 
Figure 22. Asymmetric TC manipulation with a 10 µs increment every 10 s (PTP4l). 

 
Figure 23. Asymmetric TC manipulation with a 10 µs increment every 10 s (PTPd). 

Figures 24–27 show the impact of a symmetric TC attack on both clients with a similar ripple 
effect on offset values. PTP4l shows robustness against this attack with very small slave clock time 
deviations and easy detectable delay measurements. PTPd, in contrast, shows significant slave time 
errors and normal delay values. Again, this is a major weakness that can be specifically exploited in 
a PTP attack. This attack causes a time synchronization error ranging from hundreds of microseconds 
to 98 ms depending on the attack parameters and PTP daemon type as shown in Table 5. 
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Figure 24. Symmetric TC manipulation with a 5 ms increment every 10 s (PTP4l). 

 
Figure 25. Symmetric TC manipulation with a 5 ms increment every 10 s (PTPd). 

 
Figure 26. Symmetric TC manipulation with a 10 µs increment every 10 s (PTP4l). 

In summary, an attacker can use the correctionField attack to desynchronize slave clocks 
efficiently as follows: 

1. In the case of PTPd, introduce an asymmetric/symmetric incremental correctionField offset in the 
path between the slaves and their master. Here smaller increments result in a small adjustment 
in the clock frequency and less apparent fluctuations of a slave clock offset and delay value. 
PTPd is not only vulnerable to both symmetric and asymmetric TC attacks, but its delay values 
are not correctly reported, making the daemon blind for these attacks. 

2. In the case of PTP4l, introduce an incremental asymmetric correctionField offset in the path 
between the slaves and their master. Here the small increment will not affect the offset values, 
but the delay values will decrease over time, therefore providing an indicator for this attack. 
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Figure 27. Symmetric TC manipulation with a 10 µs increment every 10 s (PTPd). 

4.2. Attack 2: Time Reference Attack (Compromised TC or GM) 

In this attack GM timestamps T1 and T4 are falsified by the MitM device (Figure 28), emulating 
a manipulation either at source by the GM itself (as a result of a Byzantine attack) or in transit by a 
manipulated TC. This is done by manipulating the preciseOriginTimestamp of Follow_Up messages (T1) 
and receiveTimestamp of Delay_Resp messages (T4), whereby T1 and T4 are synchronously and 
gradually incremented/decremented. This leads to inaccurate offset and mean path delay values as 
follows:  

Offset (PTPd) = (T2 − (T1 ± Err) − (C1 + C2)) − (((T2 − (T1 ± Err) − (C1 + C2)) + ((T4 ± Err) − 

T3)) − C3)/2 

(33) 

Offset (PTP4l) = (T2 − ((T1 ± Err) + C1 + delayAsymmetry +C2)) − ((T2 − T3) * frequency + ((T4 

± Err) − C3 − ((T1 ± Err) + C1 + delayAsymmetry + C2)))/2 

(34) 

meanPathDelay (PTPd) = (((T2 − (T1 ± Err) − (C1 + C2) + ((T4 ± Err) − T3)) − C3)/2 (35) 

meanPathDelay (PTP4l) = (((T2 − T3) * ratio) + (((T4 ± Err) − C3) − ((T1 ± Err) + C1 + C2)))/2 (36) 

where Err represents the manipulated timestamp introduced by an attacker. 

 
Figure 28. Grandmaster (GM) attack setup. 

Table 6, Figures 29–32 show how both PTP daemons behave in the presence of this attack. As 
already seen in previous experiments, large introduced time errors leave a slave clock slew with the 
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maximum frequency, causing a graduate compensation of offset values as shown in the oscillations 
in Figures 29 and 31, while small errors have less apparent effects (Figures 30 and 32). 

Table 6. Experiments and timestamp manipulation parameters. 

Experiment 
No 

Attack Parameters 
Grandmaster 
Timestamp 

Increment between 
Cycles 

Interval 
Duration 
of Attack 

Increment 
Type 

PTP 
Daemon 

Accumulated 
Slave Clock 

Drift 

Offset 
Average 

Delay 
Average 

1 5 ms 10 s 200 s 
Symmetric 

PTP4l −92 ms −3.2 ms 452 µ 
PTPd −101 ms −2.3 ms 310 µ 

2 10 µs 10 s 910 s 
PTP4l −910 µ −0.913 µ 583 µ 
PTPd −910 µ −16 µ 315 µ 

 
Figure 29. GM timestamp increment of 5 ms every 10 s (PTP4l). 

 
Figure 30. GM timestamp increment of 10 µs every 10 s (PTP4l). 

However, this attack does not directly manipulate the delay path and causes only unassuming 
variations in delay calculations, as shown in Table 6. This makes the time reference attack very 
devious and hard to detect. It is worth noting that this attack cannot be mitigated via redundant GMs 
(as the attacker can be positioned in a TC), while infrastructure redundancy can be cancelled if 
parallel working TCs are manipulated synchronously. 
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Figure 31. GM timestamp increment of 5 ms every 10 s (PTPd). 

 
Figure 32. GM timestamp increment of 10 µs every 10 s (PTPd). 

5. Proposed Attack Detection System 

In line with the ideas of Annex P Prong D, we propose introducing a monitor node called the 
trusted supervisor node (TSN) that monitors and analyzes clock offsets and delay values provided 
by slave devices in a network. The underlying idea is that, while individual slave clocks are 
intrinsically inaccurate and likely to drift, a group of slaves might show a statistically significant 
deviation in their offset or delay values if they are exposed to manipulated time packets [7]. 

Our experiments have already shown that all attacks lead to some increments or oscillations of 
delay and offset values, respectively, which correlate to the size of the introduced error and the 
maximum absolute frequency change that can be applied to the clock servo to compensate for local 
clock errors. Further work will be required to determine if a time-series analysis (conducted by the 
TSN) of offset and delay values reported by one or more slaves can be used to reliably detect such 
APTs, therefore complementing recommendations of IEEE 1588 Annex P. 

6. Summary and Future Work 

This paper provides an experimental validation and characterization on the four most important 
APTs on PTP networks, comparing the behavior of the two widely used PTP clients PTPd and PTP4l. 
It presents a testbed and a programmable hardware MitM device that allows conducting a variety of 
attacks on time synchronization networks. 

The experiments show that both clients are vulnerable to the attacks presented and that the 
resulting time synchronization errors as well as fluctuations of delay and offset values correlate with 
the chosen attack parameters, i.e., delay or error increments. Their behavior concurs with their 
specific implementations, which are also outlined and contrasted. 
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A delayed packet transmission attack can be picked up by both PTP clients by simply observing 
monotonic increases of delay measurements. A TC (i.e., correctionField) attack, in contrast, can only 
be reliably detected via delay measurements by PTP4l, while PTPd presents incorrect and 
unassuming delay values during such an attack. This daemon can also be manipulated via a 
symmetric correctionField attack, making it therefore even more vulnerable. 

In contrast, a time source attack (either implemented in a GM or a TC) does not result in 
incremental delay calculations, but in oscillating offset values for either daemon, and is, therefore, 
more difficult to detect. This makes it the most suitable PTP exploit for a high impact APT. 

While this paper outlines at attack detection mechanism based on a single monitoring node, 
further work will be required to determine suitable time-series analysis methods and their limitations 
with regard to sensitivity and specificity, which depend on the attack type, the duration of the attack, 
the attack parameters and the number of slaves affected. However, any detection system could be 
targeted by an APT as well. Therefore, such a solution should be part of a comprehensive defense-in-
depth architecture, complemented by other recommendations and best practices as for example 
outlined by IEEE 1588 Annex P. 
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