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Abstract: To support evidence-based precision medicine and clinical decision-making, we need to
identify accurate, appropriate, and clinically relevant studies from voluminous biomedical literature.
To address the issue of accurate identification of high impact relevant articles, we propose a novel
approach of attention-based deep learning for finding and ranking relevant studies against a topic of
interest. For learning the proposed model, we collect data consisting of 240,324 clinical articles from
the 2018 Precision Medicine track in Text REtrieval Conference (TREC) to identify and rank relevant
documents matched with the user query. We built a BERT (Bidirectional Encoder Representations from
Transformers) based classification model to classify high and low impact articles. We contextualized
word embedding to create vectors of the documents, and user queries combined with genetic
information to find contextual similarity for determining the relevancy score to rank the articles.
We compare our proposed model results with existing approaches and obtain a higher accuracy of
95.44% as compared to 94.57% (the next best performer) and get a higher precision by about 14% at
P@5 (precision at 5) and about 12% at P@10 (precision at 10). The contextually viable and competitive
outcomes of the proposed model confirm the suitability of our proposed model for use in domains
like evidence-based precision medicine.

Keywords: machine learning; deep learning; precision medicine; clinical decision support; healthcare;
health management; health communication

1. Introduction

Plenty of research has been dedicated to designing solutions to obtain a better score in the
identification of high impact studies in PubMed literature [1–3] and on the topic of matching
query-document pairs to encourage the document ranking results [3,4]. The recent development in
modern medicine compelled medical professionals to look for relevant information in the secondary
databases. However, doubts regarding the inaccurate results of searching and retrieval prevent them
from adapting using such solutions in their usual clinical practices. Notably, in precision medicine,
the automatic identification of expressed genes and the studies in which they are reported to become
more critical for tailored diagnosis, prognosis, and treatment strategies. The search for medical
documents on a patient’s disease or condition has been around for quite some time. However, there are
two problems with traditional medical document retrieval methods compared to document retrieval
required by precision medicine. The first is the correct identification of disease one is looking for,
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and the second is the exact identification of demographics of the patient associated with a specific gene.
The accuracy of finding medical documents that are appropriate for the individual needs of precision
medicine may be reduced without classifying them based on disease.

This study aims to identify the relevant medical documents related to the disease by classifying
documents into health condition groups, followed by searching for gene and patient demographics.
More specifically, the objectives of this work are; (a) explore the effectiveness of attention-based deep
learning models for the classification and feature vector creation tasks in the biomedical domain and (b)
investigate whether additional considerations of query matching with documents would affect search
results and performance. We propose a Bidirectional Encoder Representation from Transformers (BERT)
based model, train on a dataset consisting of 240,324 clinical articles, which is collected from 2018
Precision Medicine track in Text REtrieval Conference (TREC) to identify and rank relevant documents
that matched the query. First, prior to searching through a query, a pre-classification was performed,
the data was divided into five health condition classes. For classification, we use two textual features:
title and abstract. Second, we used vectorized document titles and abstracts using contextualized word
embedding and then match user queries with text using contextual similarity. Third, we employed the
Okapi best matching algorithm called BM25 to calculate the importance of genetic information in each
document that corresponds to the topics of interest provided by TREC. Finally, we calculated the final
ranking score by summing the contextual similarity score and BM25 score.

In summary, the main research contributions of this work are: (a) design of a sequential two-stage
approach of identifying relevant articles in a large corpus of biomedical articles, (b) implementation
of a self-learning-based deep learning model using BERT pre-trained classification, (c) automatic
generation of queries containing gene and demographic information, and (d) semantic matching of
query and text using contextual word embeddings for relevant document ranking.

2. Background and State of the Art

This work is conducted to identify relevant articles for a given set of topics in the data provided
by TREC 2018 Precision Medicine Track. TREC, co-sponsored by the National Institute of Standards
and Technology (NIST) and U.S. Department of Defense, was started in 1992 to support research
within the information retrieval community by providing the infrastructure necessary for large-scale
evaluation of text retrieval methodologies [5]. Every year it organizes a workshop consisting of a
set of tracks, areas of focus in which particular retrieval tasks are defined. Our work considers the
precision medicine track offered in 2018, which focuses on a critical use case in clinical decision support:
providing useful precision medicine-related information to clinicians treating cancer patients. It uses
synthetic examples created by precision oncologists at the University of Texas MD Anderson Cancer
Center. Each case describes the patient’s disease (e.g., a type of cancer), the relevant genetic variants
(which genes), and basic demographic information (age, sex). The cases are semi-structured and require
minimal natural language processing. The challenge of this track is to retrieve biomedical documents
in the form of article abstracts to address relevant treatment information for the given patient.

2.1. TREC Evaluation

The TREC evaluation named “trec_eval” is a standard tool used to evaluate the ranking of
documents based on relevance [6]. The assessment is based on two files; the first file, known as “qrels”
(query relevance), lists the relevant decisions for each query. The second is a “result” file containing
the ranking of the documents returned from the information retrieval (IR) system. The “qrels” file is
the correct answer file provided by TREC that contains a list of documents that are considered relevant
for each query. This file can be regarded as the “correct answer” as the human makes it, and the
documents retrieved by the IR system should match the maximum to it. The resulting file contains the
relevance ranking of the documents generated by the IR system being evaluated. This file is evaluated
by trec_eval based on the “correct answer” provided by the first file. The final field score is an integer
or floating-point value that indicates the similarity between a document and a query, so the most
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relevant document has the highest score. Different measurement techniques can be used to verify the
results, and in this study, we opted for precision at the top 5, 10, 15, 20, 30, and 100.

2.2. Pre-Trained Text Classification

Text document classification is a classic problem in natural language processing (NLP). Historically,
various neural models were used to learn text representations, including convolutional models such as
sentences model [7], character level [8], very deep convolutional neural network (CNN) [9], and deep
pyramid CNN [10]. Recurrent models [11] and attention mechanism models [12] were also studied.
However, recent research conducted reveals that pre-trained models for large populations show
excellent performance in text classification and multiple NLP tasks, without having to train new models
from scratch [13]. Using large amounts of unlabeled data, OpenAI GPT (Open Artificial Intelligence
Generative Pre-Training) [14] and BERT [15], show that pre-trained language models can help learn
common language expressions.

Language models have a history, and several studies have discussed various language models.
For instance, the n-gram language model [16] assumes that the current word can be predicted via
the previous n words. The introduction of feedforward neural networks-based language models was
advantageous; however, they suffer from pre-defined contexts [17]. The recurrent neural network
to express a language and can theoretically use any length of context [18]. Recently, deep expression
learning models such as BERT and Embedding from Language Models (ELMo) have been demonstrated
to improve many NLP tasks [15]. These models typically learn language expressions from large raw text
using unsupervised pre-training techniques [19]. Recent research has found that many downstream
applications can benefit from the representation of words generated by pre-trained models [15].
The ELMo uses a bidirectional iterative neural network to create word expressions [20]. The BERT [15]
is based on a multi-layer bidirectional Transformer [21] and uses two pre-training goals: the language
model of the mask and the prediction of the next sentence, which allows getting natural benefits from
large, unlabeled data. The BERT input consists of three parts: word piece, location, and segment.
It uses a bidirectional converter to generate the word expressions which is co-adjusted in the left and
right context of all layers. Derivatives such as BioBERT [22] recognize various NLP or biomedical NLP
operations (e.g., question answering, specified objects, relationship extraction, document extraction
through simple fine-tuning techniques).

2.3. Contextualized Word Representations

The traditional pre-trained word representation is somewhat less comprehensible in language
because of the notion of embedding the same word always in the same vector [23], while the same word
can be used differently depending on the context. For instance, the popular word2vec assumes that the
meanings of words that appear in similar locations are similar. It stores the meaning of the context
when the word is vectorized. The words changed into vectors can be measured with “existing radian
distances” such as “cosine similarity”, and are interpreted as words with similar meaning when
the distances are close together. The embedding is done on a word-by-word basis. In other words,
the word vector is obtained by multiplying the one-hot-encoding vector of each word by WT [24].
On the counterpart, we can think that the same word can be used differently depending on the context.
Therefore, the contextualized word embedding follows the assumption that the performance of natural
language processing may increase if the same word is embedded differently according to the context.
The contextualized word representation uses a very deep neural network to grasp the meaning of
words according to the context, thus before embedding a word, it embeds the whole sentence.

2.4. Contextualized Word Embedding for Information Retrieval

Recently, there has been a great deal of work in designing ranking architectures that effectively
score pairs of query documents and drive results [25]. A neural ranking model, Conv-KNRM [26],
uses a convolutional neural network rather than a word representation, allowing the model to learn
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situational awareness representations from the local proximity. The language representation of the
pre-trained context depends on the situation. Unlike more common pre-trained word vectors such
as GloVe [27], which generates a word representation for each word in the vocabulary, this model
generates a representation for each word based on the context of the sentence. A framework called
DeepCT is developed using neural contextualized text representations of BERT that learns to map
the contextualized word representations onto the target term weights in a supervised manner [28].
The DeepCT framework proposes DeepCT-Index that estimates the importance of each document term
and DeepCT-Query, which estimates the importance of each query term. The retrieval models such as
BM25 and QL can use the new index and the new query directly for the retrieval tasks. A multitask
attention-based bidirectional LSTM–CRF (Att-biLSTM–CRF) model is developed using pre-trained
Embeddings from Language Models (ELMo) with enhanced functionality of named entity discovery
to enrich the model’s perception of unknown entities [29].

2.5. Self-Attention Model

Self-attention mechanisms have gained increased popularity in neural network attention research
and demonstrated fruitful results in a wide variety of tasks, particularly natural language processing
(NLP) tasks. The Google machine translation team first introduced it in a work titled “attention is
all you need” by presenting the idea of Transformer [21], which was entirely based on attention,
using multi-headed self-attention as a replacement of the recurrent layers most commonly used in
encoder-decoder architectures. BERT, which is currently attracting attention as the best NLP model,
also uses the bidirectional training of Transformer. Unlike the recurrent neural network (RNN),
the Transformer, a model to solve the problem of entire sequence dependency, can perform the parallel
calculation. For the input sequence, it finishes the attention calculation in parallel before calculating
the output. Then, when calculating the output word, the next word is predicted using the attention of
the words before the word to be output and the attention of the precomputed input.

2.6. Scoring Mechanisms for Information Retrieval

In a general document search engine, calculating a score value is called relevance and can
be translated as accuracy. The TF-IDF (Term Frequency Inverse Document Frequency) and BM25
(Best Matching 25) are the most used score algorithms in search engines. TF-IDF is a weight used
in information retrieval and text mining, and it works by comparing the relative frequency of a
word in a document with the inverse ratio of that word across the document corpus. Intuitively,
this calculation determines how related a particular word is to a specific document. Common words in
single or few documents tend to have higher TF-IDF numbers than common words such as articles
and prepositions [30]. Okapi BM25 is a scoring algorithm used in search engines and recommendation
systems [31]. Like TF-IDF, the BM25 algorithm is also based on the concept of term frequency and
inversed document frequency. However, it considers the length of the document in scoring.

Different techniques, as mentioned in the above paragraphs, are historically used by different
researchers for a variety of tasks related to the relevant document retrieval to answer the user
queries [1–3,30,32–37]. Our job is to investigate the best among the state-of-the-art techniques to use
for the task of finding the high impact relevant documents and rank them to satisfy the user needs
asked in the query.

3. Materials and Methods

The proposed approach of identifying highly relevant clinical articles matched with the given
topic of interest is divided into two steps. In the first step, the data is processed to extract the title and
abstract of each article, which are then used as features in the disease classification task. The output of
this step is the subsets of articles where each subset refers to a disease. In the second step, a query is
made from the topic by including only gene and demographic information, which is then matched
with the title and abstract collected from a disease-specific subset of articles. At this stage, a score
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related to the gene importance in a document is also determined. Finally, the scores are combined to
determine the final ranking of articles with the topic of interest. The sub-components of the proposed
method are described in Figure 1.
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Figure 1. Proposed methodology of identification of relevant documents to satisfy a query generated
from given topic using attention-based Bidirectional Encoder Representation from Transformers (BERT)
classification, contextualized word embedding, and semantic similarity.

In the proposed method of finding relevant documents needed for precision medicine, first,
the documents were classified into disease groups using a deep learning classifier to consider the
disease. Second, a query is created from a given topic, which contains information about genes and
demographics. The disease information is not included in the query as pre-classification has already
classified the documents into different health conditions. Third, vectors are generated for the document
(title and abstract) as well as the query using contextualized word embedding to calculate the similarity
score. Fourth, the search is carried out for the gene information in the title and the abstract of documents
using the BM25 algorithm, which helps to indicate how important the information about the gene
is in the entire document. Finally, the documents are ranked based on the combined relevance score
obtained from the relevance between query and document and the gene importance in a document.

3.1. Data Acquisition

We utilized TREC’s 2018 Precision Medicine track data to rank relevant documents that matched
the query. The medical document data provided by TREC consists of 240,324 biomedical documents
(abstracts and titles) along with other meta information such as disease, author, document number,
publication year, and journal name in XML format. First, we extracted the titles, abstracts, and disease
labels from the data. In the precision medicine track, a collection of topics is provided where each topic
comprises of three key elements in a semi-structured form: disease (e.g., type of cancer), gene variants
(mainly gene variant of the tumor as opposed to patient DNA), and demographic information (age, sex).

3.2. Pre-Classification for Disease

For the classification, titles and abstracts in medical documents related to five health conditions
that include breast cancer, healthy, HIV, melanoma, and prostate cancer were extracted. Initially,
four prevalent deep learning methods were applied to find a suitable candidate for the classification
task: CNN, RNN, Bidirectional Long Short-Term Memory (Bi-LSTM), and BERT. These algorithms
are chosen based on their popularity for NLP tasks in recent times. The CNN algorithm has the
advantage of layers using convolution filters applied to local features, which is originally devised for
computer vision; however, it has shown to be effective for NLP and has achieved excellent results
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over traditional NLP algorithms [38]. The RNN algorithm is preferred for NLP tasks due to its
recursive structure, which is suitable for variable length text processing. It can also take advantage of a
distributed representation of words by first converting the tokens that make up each text into a vector
that forms a matrix which is more suitable to capture as much contextual information as possible.
It also uses a maximum pooling layer to automatically determine which words play an important role
in text classification to capture important components of the text [39,40]. The attention-based BiLSTM
algorithm captures the most important semantic information in a sentence using a bidirectional long
short-term memory network. This model does not use lexical resources or features derived from
NLP systems. It focuses on words that have a decisive impact on classification and captures the
most important semantic information of a sentence without using additional knowledge or the NLP
system [41]. The BERT base model has 12 transformer blocks, 12 self-attention heads, and an encoder
with a hidden size of 768. Based on this model, BERT achieved state-of-the-art performance in a
variety of downstream tasks. The input representation can represent both a single sentence and a set of
sentences in one token sequence so that BERT can handle various downstream tasks. A “sentence” is
an arbitrary range of continuous text, not an actual language sentence, which may be a single sentence,
or two sentences packed together [13,15].

In this paper, we use sentence classification among General Language Understanding Evaluation
(GLUE) tasks. Among several BERT fine-tuning for NLP tasks, classification tasks are sentence pair
classification and single sentence classification tasks. The sentence pair classification, as described
in [15], is employed to measure the performance of document classification. The sentence transformers’
BERT framework is utilized to generate a semantically meaningful sentence embedding for document
matching and ranking.

3.3. Query Creation

A set of queries are created from the given set of topics. Of the three, two key elements are
included in the query: demographics and gene information. The queries are created for a total of
25 topics provided by TREC. A partial list of queries is shown in Table 1.

Table 1. Queries for Precision Medicine Topics from Text REtrieval Conference (TREC) 2018.

Topic Query
Disease Gene Demographic

Melanoma

BRAF (V600E) 64-year-old male BRAF V600E in old adult males

BRAF (V600E), PTEN
loss of function 57-year-old male BRAF V600E PTEN loss of

function in old adult males

KIT (L576P), KIT
amplification 56-year-old female KIT L576P KIT amplification in

old adult females

no tumor-infiltrating
lymphocytes 74-year-old female no tumor-infiltrating lymphocytes

in old adult females

high serum LDH levels 69-year-old female high serum LDH levels in old
adult females

The complete list of queries is provided in supplementary material Table A1.
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3.4. Sentence Similarity with Contextualized Word Embedding

Finding semantic similarity between textual passages is imperative for certain information
retrieval tasks such as searching, query suggestions, automatic summarization, and image searching.
Many approaches have been proposed based on lexical matching, handcrafted patterns, parse
trees, external sources of structured semantic knowledge, and distribution semantics. However,
lexical features such as string matching do not capture semantic similarity beyond a trivial level.
In addition, external sources of handcrafted patterns and structured semantic knowledge cannot be
assumed to be available in all situations and in all domains. Finally, parse tree-dependent approaches
are limited to syntactically well-formed text, usually one sentence length [42]. Recent advances in
neural language models have contributed to new ways of learning distributed vector representations of
words. These methods have been shown to produce embedding that finds higher-order relationships
between words that are highly effective for natural language processing tasks, including the use of
word similarity and word inference [43]. Word embedding technologies such as word2vec are very
enthralled in the NLP community that helps to get a list of words in the form of word vectors used in a
similar context for a particular word [44]. Pre-trained word representation is an important component
of many neural language understanding models. However, learning high-quality expressions can be
difficult as it requires modeling of both (1) the complex characteristics of word usage and (2) how these
usages vary with the context of the language. A new type of deep contextualized word representation
has been introduced that solves both challenges of complex characteristics of word usages and variation
of usages with the context of languages. Deep contextualized word representation vectorizes words
contextually. In other words, the same word produces a different vector depending on the context.
In this paper, we use the contextualized word representation for the title and abstract of medical
documents to create word vectors. Additionally, the queries are vectorized with the same method.
After getting the contextualized word vectors for titles, abstracts, and queries, we first determine the
distance of a query with a title, then repeated the process for the abstract to get the individual similarity
score of a query with the title as well as with the abstract. Finally, the individual scores are added to
obtain the similarity score of a document with a given query.

3.5. Gene Importance Score

The gene-related information is extracted from each topic and searched in documents to identify
the importance of documents concerning that gene. Finding such information has an impact on the
similarity score. Two methods are tested for gene information searching: TF-IDF and BM25. Because of
the fundamental difference between the two methods concerning the length of a document, we found
a significant difference in the score. Unlike TF-IDF, BM25 considers the average document length for
calculation and ranks documents based on the query terms appearing in each document, regardless of
their proximity within the document.

The individual scores found in Section 3.4 (similarity score of a query and a document) and
Section 3.5 (gene importance score) are added. The resultant value is used as the ranking score based
on which the documents are ranked and presented for the evaluation. The whole methodology of
identifying similarity scores to rank the documents is given in Algorithm 1.
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Algorithm 1. Algorithms to find document ranking based on similarity score aggregation.

Input:
D: The list of documents
G: Topic Gene Data
Q: Query
Output:
RD: Ranked list of documents according to their relevance score

Begin:
1. foreach title and abstract in D do:
2. title_tokenization← tokenizer.tokenize(title)
3. abstracts_tokenization← tokenizer.tokenize(abstract)
4. endfor
5. title_embedding← embedder.bertencoder(title_tokenization)
6. abstract_embedding← embedder.bertencoder(abstracts_tokenization)
7. query_embedding← embedder.bertencoder(Q)
8. title_bm25ranking← bm25raking (title_tokenization)
9. abstract_bm25ranking← bm25raking (abstracts_tokenization)
10. title_bm25_score← title_bm25ranking.get_scores(tokenizer.tokenize(G)) *2
11. abstract_bm25_score← abstract_bm25ranking.get_scores(tokenizer.tokenize(G)) *2
12. total_bm25_Score← title_bm25_score + abstract_bm25_score
13. embedding_score_title← sum (query_embedding * title_embedding)/title_embedding
14. embedding_score_abstract← sum (query_embedding *abstract_embedding)/abstract_embedding
15. top_doc_ids← get_top(embedding_score_title + embedding_score_abstract + total_bm25_Score)
16. foreach id in top_doc_ids do:
17. score← (embedding_score_title[id] + embedding_score_abstract[id] +total_bm25_Score[id])
18. RD← get (D[“id”], D[“Title”], score)
19. endfor
20. return RD
21. End

4. Results

To test and evaluate the proposed methods, a document collection of 2018 TREC Precision
Medicine Track was utilized as well as the TREC system for the evaluation to rank documents.

4.1. Experiment Design

The experiment is performed in two stages as shown in Figure 2: (1) pre-classification stage and (2)
document ranking. In the first stage, we tested the proposed BERT classifier to obtain a disease-specific
set of documents making us able to conduct a search through a query only within a subset of documents.
In the second stage, we obtained the results of ranking documents through similarity scores using
query similarity with documents and gene importance.
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shows the document ranking based on relevance.

4.2. Pre-Classification Results and evaluation

The five health conditions that include breast cancer, healthy, HIV, melanoma, and prostate cancer,
and the number of documents distributed into the training and testing sets are shown in Table 2.

Table 2. Dataset of health conditions with training and testing distribution.

Health Condition Train Test

Breast Cancer 4717 1179
Healthy 4918 1230

HIV 3945 986
Melanoma 1222 306

Prostate Cancer 2266 566

A total of 21,335 medical document data where each document was composed of a title and an
abstract was used for model development and testing. The data is divided at a ratio of 80% (train data)
and 20% (test data). The performance of classifying documents of three deep learning models; CNN,
RNN, and Bi-LSTM are compared with the proposed BERT classifier and their results are reported
in Table 3. The BERT classifier has the highest score with improvements of about 1% (in accuracy
and precision) and of about 8% (in training time) over the next best performer Bi-LSTM. Though the
training time of CNN is substantially better than all classifiers on the list, it has the lowest metrics
measured here. As BERT attained the highest precision out of the models tested, we chose to utilize it
for the task of retrieving relevant documents.

Table 3. Performance comparison of four classifiers: convolutional neural network (CNN), recurrent
neural network (RNN), Bidirectional Long Short-Term Memory (Bi-LSTM), and BERT.

Classifier Precision Recall f1-Score Accuracy Training Time (min)

BERT 0.96 0.95 0.95 0.95 1158.22
Bi-LSTM 0.95 0.95 0.95 0.94 1252.93

RNN 0.94 0.94 0.94 0.94 1284.69
CNN 0.93 0.93 0.93 0.93 62.32

4.3. Relevance Document Ranking

After getting the disease-specific documents, we proceeded to rank the documents by calculating
the relevance scores using semantic similarity method. The ranked documents are then evaluated using
the document ranking evaluation program provided by TREC. For cross-comparison, we demonstrated
the results of two alternatives:
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1. Relevance ranking results without pre-classification of health condition
2. Relevance ranking results with pre-classification of health condition

In each of the above scenarios, we compare the results of searching in four runs. In the second
scenario, i.e., with pre-classification, we get comparatively better results. Figure 3 shows the
box-and-whisker plot for the two scenarios. The top-performing run precision score was 0.512
at P@5 for the second scenario, which is about 1% better than the score of the first scenario.
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Details of the four runs in each scenario are described in Tables 4 and 5. Table 4 shows the results
of searching for all medical documents for the first scenario.

Table 4. Relevance ranking results at different precision levels (without pre-classification).

Method P@5 P@10 P@15 P@20 P@30 P@100

CWE (Query) 0.2100 0.1620 0.1253 0.1140 0.1060 0.0676

CWE (Query)
TF-IDF (Gene) 0.3520 0.3500 0.2986 0.2548 0.1645 0.1150

BM25 (Query)
BM25 (Gene) 0.4260 0.3600 0.3040 0.2860 0.2400 0.1380

CWE (Query) and BM25 (Gene) 0.5040 0.4200 0.3680 0.3260 0.2773 0.1824

Table 5. Relevance ranking results at different precision levels (with pre-classification).

Method P@5 P@10 P@15 P@20 P@30 P@100

CWE (Query) 0.2400 0.1800 0.1400 0.1300 0.1100 0.0850

CWE (Query)
TF-IDF (Gene) 0.3800 0.3900 0.3267 0.2700 0.2067 0.1390

BM25 (Query)
BM25 (Gene) 0.4480 0.3880 0.3387 0.3020 0.2653 0.1800

Proposed (CWE (Query) and
BM25 (Gene) 0.5120 0.4480 0.3840 0.3440 0.2893 0.1964
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Run 1: the search was performed using a sentence similarity between a generated query and a
medical document using the contextualized word embedding (CWE) method. Run 2: the CWE (query)
is combined with the TF-IDF-based gene to get the results. Run 3: the BM25 (query) search is combined
with the BM25 (gene) for searching. Run 4: the CWE (query) is combined with the BM25 (gene) to find
the relevant documents. In all these runs, we measure the precision of the top five, ten, fifteen, twenty,
thirty, and one hundred of the medical documents related to the topic. The fourth run showed the
highest precision of 0.50 at P@5, which is about 16% better than the next best performer.

For the second scenario, i.e., the relevance ranking results with pre-classification, we searched
only within the disease-specific subset of documents. The experiment was conducted the same way
as for the first scenario, except the pre-classification. The purpose was to check the benefit of the
pre-classification on the results. As shown in Table 5, the pre-classification adds a slight improvement
(from 1 to 4%) to the results at different precision levels. For instance, the best run gets about 4% better
accurate results at P@10 on the pre-classified data than the data without pre-classification.

5. Conclusions

In this paper, we propose a method for retrieving the medical evidence documents most relevant
to the topic of interest. The proposed method first classifies the data based on a health condition using
the BERT classifier. Using contextualized word embedding, we obtain contextually-enriched vectors of
the query and the medical documents to find the similarity score. We then identify the importance
score of the genetic information in documents. Finally, we get the relevance ranking score by adding
the similarity score and gene importance score. The proposed method is evaluated on data of 2018
TREC’s Precision Medicine Track. In the pre-classification, we get the classification accuracy based on
which we obtain the disease-specific set of documents. Within the disease-specific documents, we rank
the documents by measuring the relevance to the topic. We can observe in the results obtained through
the TREC evaluation program that the proposed method obtained better results than the baseline,
which provides the confidence to use it for the retrieval tasks in other domains.

Our proposed method achieves comparatively better results for two reasons: pre-classification
before performing query-based searching and the add-on of gene importance score to the similarity
score of query and document. The pre-classification segregates the unnecessary documents and
forwards a focused set for further searching. Without the pre-classification, the chances of getting
unnecessary documents (false positives) may increase, i.e., the query may retrieve documents that
have disease information, not as the main subject rather as a secondary focus. For instance, a document
about cancer with a focus on breast cancer, and thyroid cancer is just used as an example somewhere in
the body of the text. Without pre-classification, there is a higher chance for a query created to retrieve
thyroid cancer documents along with breast cancer documents. The gene importance score brings
those documents to the top that have the gene as their main subject. In other words, it adds up to the
overall relevance ranking score. Therefore, our proposed method with pre-classification and the gene
importance score provides a different way to find and rank relevant documents.

Dealing with parallelism and long-range dependencies was a big challenge where the transformer
framework encounters this challenge by introducing a self-attention model that calculates attention
multiple times in parallel and independently. The self-attention layer in the BERT model has overcome
the challenge of long-range dependencies and therefore gets comparatively better results than
conventional RNN and Bi-LSTM models. Specifically, the BERT classifier performed better than
the competitors in terms of accuracy (95%) and precision (96%); therefore, we opted to use it as our
proposed model in this work to obtain the more precise results. The Python code of the proposed is
made available on a publicly available repository on GitHub (https://github.com/jamilbadama/Ranking_
Trec_Documents_Deeplearning), which can be reused for other datasets. For instance, our models
of pre-classification and ranking can be reused for the datasets 2019 TREC Precision Medicine topic
and onward.

https://github.com/jamilbadama/Ranking_Trec_Documents_Deeplearning
https://github.com/jamilbadama/Ranking_Trec_Documents_Deeplearning
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Despite the fact that we have achieved comparatively precise results; however, this is on the cost
of missing about 5% documents during the pre-classification stage as our proposed model accuracy
was 95%. Improving the pre-classification accuracy will reduce the chances of missing documents to
use for query matching in the later steps. Furthermore, this experiment is performed on the 2018 TREC
dataset, and since the 2019 dataset is now available, it will be useful to test the proposed model on the
new dataset with more refinements to the models.

In conclusion, the contextually viable and competitive outcomes of the proposed model confirm
the suitability of our proposed model for use in various domains where clinical studies are part of a
clinical care, such as precision medicine, evidence-based medicine, and medical education.
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Appendix A

Table A1. Queries for Precision Medicine Topics from TREC 2018.

Topic Query
Disease Gene Demographic

Melanoma BRAF (V600E) 64-year-old male BRAF V600E in old adult males

Melanoma BRAF (V600K) 54-year-old male BRAF V600K in middle adult males

Melanoma BRAF (V600R) 80-year-old male BRAF V600R in middle old males

Melanoma BRAF (K601E) 38-year-old male BRAF K601E in adult males

Melanoma BRAF (V600E), PTEN loss of
function 57-year-old male BRAF V600E PTEN loss of function in old adult

males

Melanoma BRAF (V600E), NRAS (Q61R) 67-year-old male BRAF V600E NRAS Q61R in old males

Melanoma BRAF amplification 61-year-old male BRAF amplification in old adult males

Melanoma NRAS (Q61R) 63-year-old female NRAS Q61R in old adult females

Melanoma NRAS (Q61L) 34-year-old female NRAS Q61L in adult females

Melanoma KIT (L576P) 65-year-old female KIT L576P in old adult females

Melanoma KIT (L576P), KIT amplification 56-year-old female KIT L576P KIT amplification in old adult females

Melanoma KIT (K642E) 62-year-old female KIT K642E in old adult females

Melanoma KIT (N822Y) 39-year-old female KIT N822Y in adult females

Melanoma KIT amplification 66-year-old female KIT amplification in old adult females

Melanoma NF1 truncation 70-year-old male NF1 truncation in old adult males

Melanoma NTRK1 rearrangement 60-year-old male NTRK1 rearrangement in old adult males

Melanoma TP53 loss of function 72-year-old male TP53 loss of function in old adult males

Melanoma tumor cells with >50%
membranous PD-L1 expression 48-year-old female tumor cells with >50% membranous PD-L1

expression in adult females

Melanoma tumor cells negative for PD-L1
expression 73-year-old male tumor cells negative for PD-L1 expression in old

adult males

Melanoma high tumor mutational burden 86-year-old female high tumor mutational burden in old adult males



Electronics 2020, 9, 1364 13 of 15

Table A1. Cont.

Topic Query
Disease Gene Demographic

Melanoma extensive tumor infiltrating
lymphocytes 49-year-old male extensive tumor infiltrating lymphocytes in

adult males

Melanoma no tumor infiltrating lymphocytes 74-year-old female no tumor infiltrating lymphocytes in old
adult females

Melanoma PTEN loss of function 68-year-old male PTEN loss of function in old adult males

Melanoma APC loss of function 47-year-old male APC loss of function in adult males

Melanoma high serum LDH levels 69-year-old female high serum LDH levels in old adult females
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