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Abstract: The proliferation of IoT devices has led to the development of smart appliances, gadgets,
and instruments to realize a significant vision of a smart home. Conspicuously, this paper presents an
intelligent framework of a foot-mat-based intruder-monitoring and detection system for a home-based
security system. The presented approach incorporates fog computing technology for analysis of foot
pressure, size, and movement in real time to detect personnel identity. The task of prediction
is realized by the predictive learning-based Adaptive Neuro-Fuzzy Inference System (ANFIS)
through which the proposed model can estimate the possibility of an intruder. In addition to this,
the presented approach is designed to generate a warning and emergency alert signals for real-time
indications. The presented framework is validated in a smart home scenario database, obtained from
an online repository comprising 49,695 datasets. Enhanced performance was registered for the
proposed framework in comparison to different state-of-the-art prediction models. In particular,
the presented model outperformed other models by obtaining efficient values of temporal delay,
statistical performance, reliability, and stability.
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1. Introduction

Internet of Things (IoT) technology has been a major driver for the technological progress of
Information and Communication Technology (ICT)[1,2]. Developments of small, internet-enabled,
and wireless sensors have not only revolutionized the ubiquitous data perception methodology,
but it has inserted a vision of smartness in the ambient environment everywhere [3,4]. According to
the Statista survey, the global IoT market is expected to pass 1.6 trillion US Dollars by 2025
(Source: https://www.statista.com). This includes an estimation of 34.2 billion connected IoT
devices around the world (Source: https://iot-analytics.com). Advancements of the IoT paradigm
has realized numerous innovations that were nearly impossible in previous decades due to
under-developed technology [5]. Some of these include Smart Homes [6], Mobile Healthcare [7],
Intelligent Transportation [8], Smart Food Hubs [9], and Smart Agriculture [10]. Additionally,
IoT technology contributes significantly to provisioning security in the form of wireless cameras,
motion sensors, and smart locking mechanisms [11]. However, continuous research is still going on in
the development of smart security systems for homes and buildings by incorporating the novel vision
of IoT technology and Fog Computing [12]. Fog computing, as coined by [13], is a virtual platform
for provisioning real-time computation, the capacity to store, and services at the network between
the users and data storage, which are present over the network [14]. The collaboration of IoT-Fog
technology can analyze IoT data for security-based decision-making in time-sensitive manner [15].
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1.1. Research Field

Smart Homes and Intelligent Buildings are characterized by ubiquitous services and effective
decision-making with enhanced accuracy. Designing smart security solutions has always been
a challenging aspect for researchers around the world. Security in the form of biological-locks,
automated doors, and smart alarms has been deployed to wireless protection for homes, buildings,
and parking. However, recent studies have shown vulnerabilities in these security solutions. A survey
report presented by Protect America depicts 75% of the smart devices are vulnerable to the security
breach (Source: https://www.protectamerica.com/). Moreover, there are 32 risks identified by the
Jacobsson et al. [16] out of 25% were classified as highly vulnerable. Therefore, need-of-the-hour is
to minimize current smart security risks which are derived from human factors either directly or
indirectly. This demands novel security solutions that can be easily implanted in the smart home
scenario as extra protection. With an advanced model of smart security, both privacy and safety can be
enforced to further assess the capability of IoT-inspired secure frameworks.

1.2. Research Motivation

The IoT-Fog-Cloud hybrid solution offers an appropriate mechanism to store, manage,
and interpret all-encompassing information in a time-sensitive manner. IoT sensors, including wireless
networks, preceptors, and RFIDs can transmit pervasive information to remote devices [17].
The development of sensing technologies can also generate stochastic data with minimal delay [18].
For optimum performance, sophisticated artificial intelligence technologies such as machine/deep
learning are incorporated for accomplishing the notion of the smart mat-based framework [19].
The core part of the presented system is to map and analyze the various identity-oriented parameters
in real time. Additionally, the comprehensive literature review has identified multiple research gaps;

1. Detection of real-time identity-based parameters of intruder personnel has not been addressed
specifically by the researchers. it is essential to develop user-centered decision-making strategies.

2. Minimal research has been presented for regularized monitoring of home security and related
attributes by the monitoring officials, thereby compromising the home security.

3. Another factor that has been minimally explored in state-of-the-art research is the incorporation
of ANFIS-PSO for interactive intruder detection decision-making.

4. Finally, limited work has been done to quantify the identity parameters for effective
decision-making by security officials and users.

1.3. State-of-the-Art Research Objectives

This section provides major contributions presented by the proposed home security framework.
In the current research, several compact, internet-equipped IoT sensors are embedded in the smart
mat, which consistently gathers data regarding the user’s identity parameters for preventing intrusion.
When IoT embedded mat is stepped on by the user, the identity of the user is monitored based on
certain parameters. Moreover, users get alerted by activation of pleasant chime or loud alarm as
per acquaintance or intruders’ presence, respectively. Significantly, identity-related information is
generated which includes parameters like weight, foot size, pressure, movement, which is further
analyzed for person identification via the fog computing node. Figure 1 displays the conceptual
illustration of the proposed framework. Specifically, the presented framework is aimed at realizing the
following objectives to realize the overall secure mat-based system.

1. Monitors identity-based attributes by using IoT devices equipped in the smart mat in real time
for the identification of intruders.

2. Classifies identity-based attributes in 2 classes, Authentic Class and Non-Authentic Class using
the Bayesian Belief Model (BBM) which is quantified in probabilistic feature of Probability of
Authenticity (PoA).

https://www.protectamerica.com/
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3. Enabling data analysis in time-sensitive manner, using the Temporal Granulation Process for
collecting and processing information. It is further quantified into the Authentic Index (AI) for
the prediction of identity-related information over the Fog-Cloud computing framework.

4. Predicts the probability of authenticity based on temporal aspects of AI value by using the
Adaptive neuro-fuzzy inference system (ANFIS) mechanism.

5. State-of-the-art validation of the presented framework performance in comparison to
decision-modeling techniques.

Figure 1. Conceptual Framework of Intruder Detection and Monitoring System.

Paper Organization: Remainder of the article is structured as; Section 2 reviews some of the
vital literature works in smart home-based security frameworks. Section 3 discusses the detailed
architecture of the presented framework. Section 4 presents the simulation for validation purposes.
Section 5 concludes the article with significant research pathways.

2. Literature Review

Researchers around the world have presented numerous architectures confining to the home
security and surveillance system. Matthies et al. (2019) [20] introduced CapMat system
comprising of a smart foot mat that supports user identification and multi-phase authentication
for applications. However, the proposed system was unable to feature any form of foot-based
interactivity. Huang et al. (2020) [21] developed the IoT Inspector tool for users to monitor traffic
on home networks from intelligent home devices. The authors addressed that such data permit new
research into intelligent homes via 2 safety and privacy case studies. Minoli et al. (2020) [22] examined
several existing automation smart home IoT-based architectures to provide a reliable assessment of the
provided environment and further evaluates the pertinence of blockchain mechanisms. The authors
addressed the complexities associated with the deployment of blockchain security in smart home
frameworks. Mallikarjuna et al. (2020) [23] proposed Feedback-based resource management (FBRM)
system for efficiently managing the resources and IoT devices. Moreover, it is evaluated using the
iFogSim toolkit and validated in conjunction with existing approaches and has been analyzed in terms
of QoS metrics. Desai et al. (2020) [24] addressed numerous issues for IoT-automation system using
android mobile applications and NodeMCUs. The key emphasis of the study is data gathering and
transmission by the sensor nodes to mobile devices for user-oriented operations. Popa et al. (2019) [25]
proposed a modular cloud-based platform for gathering, aggregating, and storing all the data collected
from the smart environment. The presented architecture enhanced the interoperability between
the environmental sensors and actuators and also allowed the models to be modified in real time,
depending on the raw data obtained. Ranjan et al. (2013) [26] presented “RF Doormat”, a device
that tracks the crossing of doors in people’s rooms in a multi-person household. The presented
system was effectively used in commercial buildings with the widespread use of RFID embedded
ID cards. Cheng et al. (2016) [27] performed a variety of studies to analyze the intelligent surface,
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exploring several possibilities for operation detection both as a cover for furnishings and as a floor in
daily life. The measurement is based on specific contact with a textile surface. It can detect activities
through movement propagation of body parts, and actions. Sokullu et al. (2020) [28] introduced a
revolutionary IoT-based framework for safety and early alerts generation for supporting elderly and
individuals with a short-term memory loss (MCI patients, dementia patients, etc.). Data is gathered
from environmental sensors to identify their behaviors. The patient’s conduct at home was tracked
and data was maintained for relatives and/or caregivers. Suciu et al. (2015) [29] evaluated different
components and methodologies for the efficient integration of cloud-based IoT-enabled big data
systems. The presented study also provided a secure e-health architectural design to monitor and
efficiently analyze health data. Sun et al. (2012) [30] developed a pre-alarm device focused on tailing
dam control computing systems based on IoT and Internet. The system intended to maximize the
protection of the dam by controlling flooded channels, water levels, and dam deformation in real time.
The device has been implemented extensively in various barrages and effective outcomes have been
obtained. Based on the extensive state-of-the-art review, a comparative analysis has been depicted in
Table 1 with the presented model.
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Table 1. State-of-the-Art Comparative Analysis Studies (A Available, NA Not Available).

Related Work Fog IoT Temporal Analysis Classification Cognitive Decision User-Centered Time-Sensitive Precision Numerical Stability Reliability Security Protocols

Ranjan et al. (2013) [26] NA A NA A NA NA NA NA NA NA NA NA
Sowajanya et al. (2016) [31] NA A NA NA NA NA NA NA NA NA NA A
Sun et al. (2012) [30] NA A NA A NA NA NA NA NA NA NA A
Cheng et al. (2016) [27] NA A NA NA NA NA A A NA A A A
Sokullu et al. (2020) [28] NA A A A NA NA A A NA NA A A
Suciu et al. (2015) [29] NA A NA A NA NA NA A NA A NA A
Matthies et al. (2019) [20] NA A NA NA NA NA NA A NA NA A A
Chiang et al. (2016) [15] A A A A NA NA NA NA NA NA NA NA
Proposed Technique A A A A A A A A A A A A

In Table 1, A indicate Available, NA indicate Not Available.



Electronics 2020, 9, 1361 6 of 17

3. Proposed Methodology

Figure 2 shows the proposed IoT-based framework for assessing identity-based parameters in
the pervasive environment of homes and personal apartments. The presented technique consists
of 4 phases including Data Perception Phase (DPP), Data Analysis Phase (DAP), Data Extraction
Phase (DEP), and Intelligent Prediction Phase (IPP). Initially, data is collected in a time-sensitive
manner using several IoT sensors that are embedded on the smart foot mat. For real-time intruder
detection and decision-making, the collected data is transferred on to the associated fog computing
device. Furthermore, extensive data is transmitted to the connected cloud computing platform for
cognitive decision analysis by security officials. The detailed functionally performed by each phase is
depicted ahead.

Figure 2. Modular Framework for Smart Intruder Detection.

3.1. Data Perception Phase (DPP)

DPP is the initial phase of the proposed approach for retrieving the real-time data values from
the sensors mounted on the smart mat. The key tasks performed by this phase are the interpretation
and sensation of data values concerning user identification, weight, foot size, pressure, foot width,
and movement. The quantitative findings are communicated to the Raspberry Pi (fog computing
device) for further analysis after the data is acquired. As an addendum to sensation, the DPP
phase provides security throughout the network and storage procedure. The security of the IoT
network relies on the usage of specific protocols for the transfer of data from system-to-system and
system-to-server [32]. All data from and to IoT system can be secured using various cryptography
protocols namely Transport phase Security (TLS) Protocol, Secure Sockets phase (SSL), and Elliptic
Curve Cryptography ECC) [33,34]. These protocols ensure secure communications for the network
protocols including the HTTP (Hypertext Transfer Protocol) and MQTT (Message Queuing Telemetry
Transport) Protocol [35]. Also, IoT computing involves data server nodes on a distant site [36].
Advance privacy policies like bio-metric authenticity monitoring, client authentication, and AES
(Advance Encryption Storage) allow secure IoT data storage [37].

3.2. Data Analysis Phase (Dap)

Identity-based attributes are obtained in time-sensitive manner from the smart mat.
Such parameters are evaluated for real-time decision-modeling using a fog computing paradigm.
Fog computing devices are compact and low-storage hardware devices that allow computational tasks
to be carried out in time-sensitive manner based on the data instances [38]. Moreover, fog computing
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enables data processing, storage, and networking between IoT and cloud storage [39]. Various fog
computing systems distributed on a commercial basis namely Arduino Gemma, Raspberry Pi, and Intel
Edison [40]. The main task of the DAP phase is to efficiently analyze the data over the fog computing
system based on identity-specific pre-defined values. Conspicuously, the BBM (Bayesian Belief Model)
is used for categorization based on a prevalence measure termed as Probability of Authenticity (PoA).

Definition 1. Probability of Authenticity (PoA): It is a probabilistic measure to establish the existence of
intruder at a specific time-slot ∆t. In specific, PoA calculates the presence of intruders stepped onto mat through
rigorous quantification.

The aforementioned definition provides a numerical measure to evaluate an intruder, stepped onto
the smart mat. In other words, PoA assesses the interdependent parameters for intruder detection in
time-sensitive manner. PoA is used to form 2 categories of data instances namely Authentic Class and
Non-Authentic Class. This classification ensures that the intruders are adequately examined.

1. Authentic Class:
This data set comprises of those parameter measures which indicate non-intruder or authentic
personnel. These parametric values are represented safe as well as compliance values with
the security measures. Moreover, data perturbation including increased weight and abnormal
shoe-based parameters can be detected using Expectation-Maximization [41] technique.

2. Non-Authentic Class:
This class is intended to acquire parameter values that are vulnerable and indicates the presence
of unauthentic personnel. On the basis of data classification, the Non-Authentic Class has a
detrimental effect for home security and thus it is indispensable to assess such measures for
providing prevention against intrusion.

3.2.1. Classification Based on BBM

BBM Model is used for the classification of datasets into different classes [42]. As described
earlier, 2 classes are mentioned based on different identity-based parameters. For mathematical
analysis, let an instance of data is represented by a vector Ai= (a1, a2, ...an) where Ai represents the ith
identity-based attributes, with the assuming that all the identity-based parameters are not bi-related.

The conditional probability of intruder detection Ai of class Lj is denoted by P(
Lj

a1,a2, ..., an ). Since large
input attributes are possible and a certain identity-based parameter may have a variable measure,
then the presented formulation result in inconsistency. Henceforth, the modified BBM is formulated as

P(
Lj
Ai

) =
P(Lj)P(Ai/Lj)

P(Ai)
.

On the other hand, the probability of P(Lj)P(Ai/Lj) can be significantly enhanced on the basis of
combined probability function as

P(Lj)P(Ai/Lj) = P(a1,a2, ..., an, Lj)

=P(a1/a2, ..., an, Lj)P(a2, ..., an, Lj)

= P(a1/a2, ..., an, Lj)P(a2/a3, ..., an, Lj)P(a3, ..., an, Lj)

= P(a1/a2, ..., an, Lj)P(a2/a3, ..., anLj), ..., P(an−1/an, ..., anLj) × P(an/Lj)P(Lj)

In addition, it is supposed that each feature ai of identity parameter is not completely reliant upon
any other measure aj i.e., i 6= j. Then P(ai/ai+1, ..., an,Lj) = P(ai/Lj).

Therefore, the joint probability is described as follows:

P(Lj) = Πn
i=1 P(Lj)P(ai/Lj)

P(
Lj
a ) = Πn

i=1 P(Lj)P(ai/Lj)/P(a)
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In the equation described above Lj depicts the Authentic Class and Non-Authentic Class of parameters.

3.3. Data Extraction Phase (Dep)

DEP is an essential phase in which valuable database samples can be abstracted. Data values for
identity-based data values can be extracted over the timeframe to provide accurate quantitative analysis.
Temporary Granulation Process (TGP) is a method used for data mining. TGP is extracted using the
temporal abstraction approach illustrated in [2]. TGP consists of 2 main phases, TGP Abstraction and
TGP Aggregation. Both phases are addressed ahead.

Definition 2. TGP Abstraction (ri, ∆t): Given a data value ri for an identity-based attribute and time-slot
of ∆t, TGP Abstraction is represented for time event (ti) and data value ri such that for ti→ ∆t, PoA(ri) > ζ

(pre-defined measure) and is represented as [ri,ti ].

Definition 2 comprises of ζ depicts the related threshold of the ith identity-based attribute.
The main goal of TGP Abstraction (ri, ti) is to associate every attribute of a user U with the certain time
interval. In other terms, ti depicts the measure of time at which the data ri is registered for the user U.
Accordingly, each data measure attained for user U is sequentially related to its corresponding time
interval through the usage of TGP Accumulation.

Definition 3. TGP Aggregation (r1, t1),(r2, t2), ..., (rn, tn): Considering TGP Abstraction with sequential data
samples for ∆t time frame, then TGP Aggregation contributes to the fusion of data instances with heterogeneous
identity-based attributes that have adverse attribute measures in the time-instant frame ∆t.

Definition 4. Authentic Index (AI): Given a user U and associated TGP for identity-based attributes in
time-slot of ∆t, then AI is a probabilistic measure for quantifiable detection of intruders on the basis of identity
attribute measure reported in ∆t time.

Definition 4 provides a consistent quantitative assessment of identity-based measures of the
User U for a given time frame. Figure 3 shows a brief formulation of the TGP mechanism for the
AI approximation. In Table 2, several steps have been presented to evaluate AI in a certain time
window ∆t.

Table 2. Identity AI Analysis Procedure

AI Analysis Procedure

1: Input IoT measures for n identity-based attributes and relevant PoA measures. ζ, α, β, φ are the
associated weights.
2: Set AIδt = Null(0).
3: Assess PoA measure of identity-based attribute 1 with pre-defined threshold measure.
4: If PoA1 > κ 1, Then Sum ζ × PoA1 to AI.
5: Assess PoA measure of identity-based attribute 2 with pre-defined threshold measure.
6: If PoA2 > κ 2, Then Sum α × PoA2 to AI

*Repeat for all attribute*
7: Evaluate PoA measure of nth identity-based attribute with prefixed threshold measure.
8: If PoAn > κ n, Then Sum α × PoAn to AI
9: Cumulative AI = ζ × PoA1+ α × PoA2+ β × PoA3+....... φ × PoAn
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Figure 3. Granulation Procedure.

3.4. Intelligent Prediction Phase (IPP)

IPP is the final phase of the presented framework for provision prediction-based decision-making
using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique. ANIFS model is used by several
researchers in several disciplines for analytical decision-making process [43]. ANFIS is used to solve
highly complex and non-linear problems [44]. Figure 4 illustrates the five-phased ANFIS architecture
with inputs. The Fuzzy Logic provides a multi-value input logic from one parental input vector
describing one value set in reference to a set of other variables [45]. In the proposed framework,
a fuzzy inference model for the input of non-linear map vectors is used. Each identity-based parameter
is evaluated within a space-time window in the current study using the proposed ANFIS model.
For instance, data values are provided to ANFIS for which its predictability value can be determined
to prevent intrusion of home security over a specified time-space window. The detailed mathematical
evaluation of ANFIS phases is discussed ahead.

(a) Fuzzification (Phase 1): The first phase of the ANFIS system is fuzzy unit, which uses
Membership Functions (MFs) to convert inputs into a fuzzy set. Every node in this phase is
responsive and shown as follows:

Q1
j = γk j(z) (1)

where the gaussian membership function is represented as Q1
j , z is supposed as the input is fed

to the node j, and Kj is supposed as the descriptive attribute linked with a node function [46].
In the present context, spatio-time data measures for several identity-based attributes in the initial
fuzzification phase are actually provided.
(b) Product rule (Phase 2): The neurons in the first phase transmit the input data to the next phase
by performing the element-based product formation and are mathematically represented as follows:

Q2
j = γXj(z)× γEj(s), j = 1, 2 (2)

where Xj(z) and Ej(s) represent the nodes in phase 2.
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(c) Normalization (Phase 3): Every neurons of this phase calculates the proportion of the single
firing strength rule to the amount of each firing strength rule as shown in Equation (3). The firing
strength of y′j is indicated and simplified as follows:

Q3
j = y′j =

yj

y1 + y2
, j = 1, 2 (3)

(d) De-fuzzification (Phase 4): This phase is accountable for evaluating the contribution of the jth
rule to the final output. The following standardized consequent variables are identified as the f j, aj,
and uj attributes. The de-fuzzification mechanism in this phase is as follows:

Q4
j = y′jdj = y′j( f jz + ajs + uj) f or j = 1, 2 (4)

(e) Output generation (Phase 5): The output phase is considered to measure the sum of all outputs
from all nodes, and to measure the ultimate value Q5

j as represented in Equation (5):

Q5
j = ∑ y′jdj =

∑j yjdj

∑j yj
(5)

Figure 4. Adaptive Neuro-Fuzzy Inference System (ANFIS) Structure.

In a wide variety of applications for the development of prediction models, the ANFIS
showed encouraging performance. However, the model optimization process can significantly
improve modeling quality and accuracy. A wide range of methodologies, including Particle Swarm
Optimization (PSO), for optimizing the parameters and outputs of the ANFIS system are available.
In comparison to other approaches with the ultimate goal of optimization, the PSO process is
exceptional. The PSO method was inspired by the bird’s behavior. This study incorporates the
beneficial aspects of the algorithm. The PSO technique was influenced by birds in need for food.
The particles in this model change their locations and trajectories according to their knowledge and
input from others. Therefore, it was suggested that the particle has a cognitive function. The method
of optimization is focused on competitiveness and particle cooperation. If PSO is used to address
modeling problems, the paths and speeds of particle states may be observed. Three vectors Yj, Ej,
and Abestj describe the characteristics of a particle where Yj is the specific location, Ej is the current
speed, and Abestj is the best spatial positioning of the particle in pursuit, and zbesti is the optimal
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solution for the whole community of particles. The direction and trajectory of a particle are slowly
modified based on the following formula:

e(l + 1) = e(l) + d1random(0, 1)× [abest(l)− present(l) + d2random(0, 1)× [zbest(l)− present(l)] (6)

present(l + 1) = present(l) + e(k + 1) (7)

where e(·) is the particle speed in the lst and (l +1)th repetition, present (·) is the particle position,
d1 and d2 are the learning constants which are higher than zero, and a random integer between [0, 1] is
referred with random(·). Equation (7) represents the process for upgrading the particle size including
the historic velocities and global best positions of a particular particle.

4. Experimental Implementation

The proposed model for identity-based estimations comprises of 3 important measures. Initially,
the data values related to the user identity-based parameters such as weight, foot size, pressure,
and movement are measured by specific sensors equipped within the IoT-mat. For in-depth analysis,
the collected data from these devices is transmitted for temporal evaluation to the fog computing node.
Therefore, findings will be recorded and displayed to the homeowner through the handheld device in
real time. Henceforth, the proposed framework has been evaluated from 5 major viewpoints.

1. Identification of the temporal delay time in the generation of identity-based findings by different
computational phases.

2. Estimate the categorization efficacy for the presented BBM model of data classification.
3. Quantitative identity-based prediction estimation for intruder detection.
4. Analyze the prediction model’s reliability across increased number of data segments.
5. Determine the system stability to identify the presented model’s effectiveness.

4.1. Simulation Environment

The model was simulated over a challenging dataset acquired from the Online repository of
UCI with 49,695 data instances. Identity-based parameters namely weight, foot scale, movement,
pressure were obtained. The presented frameworks enable the homeowner to check the information of
an unauthenticated person. Different data instances with heterogeneous physical measurements
were identified and assessed for system reliability. Moreover, attributes of age, height, weight,
and other physical features vary considerably. It allows the presented system to be more widely used
in practice. The iFogSim simulator is used for computational analysis of fog-related data processing.
iFogSim details are available in [47].

4.2. Temporal Delay Determination

Executing Delay is considered to be the computing time of the presented ANFIS-based adaptive
predictive-modeling. In other terms, it is depicted as the total time needed to generate ANFIS-based
decisions. Let TANFIS Generation signifies the time for ANFIS formulation and TPredictive-Modeling
signifies the time at which the decision is made. Therefore, Temporal Delay = TANFIS Formulation +
TPredictive-Modeling. For a temporal delay evaluation of the proposed system, the findings are contrasted
with existing models, including K-Nearest Neighbors (KNN), Artificial Neural Network (ANN),
and Support Vector Machine (SVM). Results were obtained after close analysis of different data sets.
The temporal delay for the datasets is shown in Figure 5. On average, the time required to detect
intruders by using a smart mat with IoT sensors was about 22.55 s as compared to 32.26 s by ANN,
36.66 s by SVM, and 38.11 by KNN respectively. Conspicuously, the proposed model is more effective
in temporal delay as compared to state-of-the-art prediction models.
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Figure 5. Cumulative Temporal Delay.

4.3. Classification Efficiency

Classification efficiency evaluates 3 performance estimators, namely Precision(Prec),
Specificity(Spec), and Sensitivity(Sens) for the proposed model. As the baseline classifier,
2 state-of-the-art classification techniques were incorporated. These involve the Decision Tree (DT)
and Support Vector Machine (SVM). It is important to note that during implementation only the
classification methodology is modified, whereas the rest of the model stays unchanged. Also, as seen
in Table 3, the average of such results is recorded for different datasets. For numerical simulation,
the Waikato Environment for Knowledge Analysis (WEKA) is used (Source: https://www.cs.waikato.
ac.nz/). WEKA is an open-source performance assessment toolkit usable commercially.

1. The proposed model can be noted to report a mean precision measure of 93.09% for the data sets
collected. Compared to this, DT achieved an accuracy of 91.68% and 91.37% was recorded by
SVM. Henceforth, the proposed BBM model is more efficient than other classification methods.

2. The presented approach can record a higher value of 92.03% as compared with DT (90.10%) and
SVM (90.54%) for specificity analysis. It shows that the proposed model is better.

3. Another aspect for performance assessment of the proposed model is sensitivity analysis. In the
current scenario, it can be seen that the presented model has a high value of 92.19% relative to
91.29% for DT and 91.28% for SVM. Henceforth, based on data classification, the proposed model
is more effective and reliable.

Table 3. Categorization Efficacy; (Prec Precision, Spec Specificity, Sens Sensitivity).

Model BBM Classifier DT Classifier SVM Classifier

Dataset Prec Spec Sens Prec Spec Sens Prec Spec Sens

5000 94.45% 92.04% 93.82% 92.82% 89.02% 90.67% 92.42% 89.14% 90.11%
10,000 92.78% 91.94% 92.32% 91.52% 91.22% 91.72% 91.02% 91.69% 91.04%
15,000 93.57% 91.98% 92.52% 91.42% 90.33% 92.34% 90.06% 90.43% 92.08%
20,000 93.73% 90.84% 91.32% 92.52% 89.14% 90.49% 92.32% 90.63% 90.59%
25,000 91.56% 92.44% 92.54% 91.22% 90.22% 92.09% 91.64% 91.26% 92.39%
30,000 92.32% 90.32% 91.32% 92.21% 91.14% 91.07% 92.76% 91.02% 91.83%
35,000 93.82% 89.93% 91.31% 91.26% 89.82% 90.24% 91.14% 90.79% 89.16%
40,000 92.32% 90.54% 92.62% 92.12% 89.45% 91.15% 92.06% 89.89% 91.34%
45,000 91.85% 89.35% 92.42% 90.44% 90.10% 92.04% 89.18% 90.42% 92.14%
50,000 92.42% 91.01% 91.72% 91.32% 90.59% 91.10% 91.18% 90.14% 91.60%

4.4. Prediction Efficiency

Prediction efficiency relates to the probability of intruder detection after the evaluation of specific
parameters. The comparative study has been carried out with state-of-the-art decision-taking models
namely Artificial Neural Network (ANN), Support Vector Machine (SVM), and K-Nearest Neighbor
(KNN) for quantification of the performance improvements. The findings have been calculated. It is

https://www.cs.waikato.ac.nz/
https://www.cs.waikato.ac.nz/
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important to note that only decision-making techniques have been modified and the remaining model
is unaltered. Performance measurement is evaluated in terms of Accuracy, Sensitivity, Coefficient of
Determination, and F-Measure. Detailed results are depicted ahead.

1. The proposed model has recorded a higher value of 93.66% as compared with ANN (89.57%),
SVM (90.55%), and KNN (92.19%) for accuracy analysis. Figure 6a shows that the model proposed
is much better.

2. The presented model has registered higher value of 93.59% as compared with ANN (87.53%),
SVM (88.56%), and KNN (89.29%) for sensitivity analysis as shown in Figure 6b.

3. The proposed model has attained a higher value of 93.68% as compared with ANN (85.57%),
SVM (89.45%), and KNN (91.32%) for F-Measure analysis. Figure 6c shows that the model
proposed is much better.

4. Results of the proposed model is also estimated in terms of the Coefficient of Determination
analysis as shown in Figure 6d. In the current scenario, it can be found that the presented model
has a comparatively higher value of 95.63% which is far better as compared to other models.

(a) Accuracy

(b) Sensitivity

(c) F-Measure

Figure 6. Cont.
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(d) Coefficient of Determination

Figure 6. Prediction Efficiency.

Henceforth, based on the results, it can be concluded that in the current scenario,
the represented decision-making model is more effective and efficient than state-of-the-art
decision-modeling techniques.

4.5. Reliability Assessment

To verify the reliable behavior of the presented framework, the prediction techniques are
updated, and most of the system remains identical. The findings of the reliability assessment
simulation are depicted in Figure 7. The average prediction model accuracy is defined by comparative
reliability variations with 3 state-of-the-art prediction models such as Support Vector Machine (SVM),
conventional Artificial Neural Network (cANN), and k-Nearest Neighbor (k-NN). Once the number
of data sets for experimental implementation is expanded, efficiency levels are associated with
higher values than other simulation strategies for the presented model. Particularly compared to
K-NN, cANN, and SVM prediction models, the presented model has greater reliability of 93.15%.
Reliability values have been registered as 90.91%, 91.72%, and 92.40% respectively for k-NN, cANN,
and SVM. Based on these results, the proposed approach is more reliable over vast data sets relative to
other decision-making models.

Figure 7. Reliability Analysis.

4.6. Stability Assessment

Stability assessment is performed for testing the presented model for durability over the large data
instances. Moreover, the stability of the system predicts total stabilization measures when the system
is deployed over large data sets for a long period. Mean Absolute Shift (MAS) is used to measure
the stability of the system. The value of the MAS is within the range of (0, 1) where the value of 0
implies minimal stability, and the maximum stability is represented by 1. The findings for the stability
assessment of the proposed system are shown in Figure 8. It is observed that the proposed model can
register a least value of 0.54, and a maximum value of 0.81, therefore resulting in an average value
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of 0.70. Conspicuously, the presented framework is highly suitable and stable for an identity-based
assessment in the home environment.

Figure 8. Overall System Stability.

5. Conclusions

Trio-logical aspects of IoT-fog-cloud technologies have presented numerous innovations in various
industries. This study proposes an intruder detection framework based on an IoT-inspired foot mat.
In particular, the overall goal of the proposed model is confined in 4 phases, namely the Data Perception
Phase (DPP), Data Analysis Phase (DAP), Data Extraction Phase (DEP), and Intelligent Prediction
Phase (IPP). Also, IoT data measures obtained from the smart mat are quantified in terms of the
Probability of Authenticity (PoA) and Authentic Index (AI) measure. Moreover, a decision-making
model inspired by Adaptive Neuro-Fuzzy Inference System (ANFIS) has been presented to predict
the identity-based parameters recorded by the smart mat. A challenging dataset containing nearly
49,695 data instances is used for validation of the presented model. Statistical findings indicate that
the proposed model has demonstrated increased values relative to state-of-the-art decision-making
approaches. Conspicuously, it can be concluded that the presented model is substantially efficient
and effective in detecting unauthentic personnel. For future research directions, network security
is an important domain for exploration. Moreover, visualization of intruder parameters is another
significant aspect of research.
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