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Abstract: With an ever-increasing resolution of optical remote-sensing images, how to extract
information from these images efficiently and effectively has gradually become a challenging problem.
As it is prohibitively expensive to label every object in these high-resolution images manually, there is
only a small number of high-resolution images with detailed object labels available, highly insufficient
for common machine learning-based object detection algorithms. Another challenge is the huge range
of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles,
simultaneously. To tackle these problems, we propose a novel neural network based remote sensing
object detector called full-coverage collaborative network (FCC-Net). The detector employs various
tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale
feature extraction and improve its robustness in dealing with objects of different sizes. Moreover,
by utilizing asynchronous iterative training alternating between strongly supervised and weakly
supervised detectors, the proposed method only requires image-level ground truth labels for training.
To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale
remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly
outperforms other weakly supervised methods in detection accuracy. Through a comprehensive
ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level
pooling in increasing the scale invariance of an object detector.

Keywords: object detection; collaborative learning; multiscale feature representation; weakly supervised
learning; remote-sensing image

1. Introduction

Remote sensing is an interdisciplinary subject involving technologies [1] such as aviation, optical
instrument, electronic sensor and computer science, etc. Over the past few decades, the development of
these individual disciplines has armed remote sensing with unprecedented tools that enable extremely
high image resolution and fidelity. The ever-more-capable remote-sensing imaging has become an
essential part of many important applications including high-precision map surveying [2], weather
forecasting [3], land planning [4] and disaster prevention [5], etc. With the fast-growing size of
remote-sensing image data, a pressing problem is to efficiently extract useful information from these
high-resolution images. In general, information extraction for remote-sensing images contains a few
components: scene classification, object recognition, object detection and semantic segmentation.
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The focus of this study is on object detection, which is the process of locating and classifying ground
objects in a remote-sensing image.

Object detection technology has been widely used in transportation, industry and medical
treatment [6–9]. Most existing object detection algorithms consist of a feature extraction stage and then an
object recognition stage. Conventional object detection techniques generally employ predefined feature
descriptors in feature extraction. After extracting the features in each sliding window, these techniques
usually use classifiers, such as support vector machine (SVM) to determine the categories of objects
contained in a region. One of the main drawbacks of these conventional techniques is their computational
efficiency; they must examine a large number of sliding windows one-by-one. Another problem is that,
as object boundaries are often not well-defined in remote-sensing images, the result of feature extraction
algorithms, such as scale-invariant features (SIFT) [10], direction gradient histogram (HOG) [11], etc.,
are unreliable for object detection. Therefore, the bag-of-words (BoW) model [12] based on statistical
histogram is no longer popular in image classification task. Fundamentally, the lack of high-level
semantic information limits the effectiveness of feature descriptors in complex remote-sensing scenes.
Modern object detection techniques use learned feature maps instead. Many convolutional neural
networks (CNNs)-based models, such as AlexNet [13], VGG [14] and ResNet [15], utilize the high-level
semantic feature extraction capabilities of neural networks and have demonstrated great strength
on image classification tasks. In comparison with conventional techniques, CNNs are more robust
against position shifting, scaling, stretching of objects, making them excellent choices for object
detection. For most remote sensing object detection (RSOD) related tasks, the state of the art was set by
CNNs [16,17].

Most CNN-based object detection methods employ end-to-end learning, mapping an image to
the bounding boxes of objects in the image. To make the training of the networks more effective,
these methods often use a region proposal network (RPN) [18] to pick out regions that may contain
objects of interest. Then they extract the features of these candidate regions and feed them into an
object classifier and a position estimator to get object types and positions, respectively. To increase their
robustness against scale changes, some CNN methods refine the positions of sizes of object-bounding
boxes using global-scale features and features of fully connected layers (FC). However, due to
the substantial differences in object sizes in remote-sensing images, such a simple measure is often
ineffective for achieving true scale invariance. To deal with the large variance of object size, Lin et al. [19]
proposed a feature pyramid network (FPN) that utilizes multiscale features. The idea of FPN has
shown great potential in improving scale robustness and has inspired several other methods. However,
the weakness of FPN is its complexity. It can become overly complicated and unconducive to
training if the multiscale feature maps are predicted separately. While FPN has difficulty balancing
the contradiction between feature resolution and receptive field in high-resolution input images,
there is also no real communication between multiscale features. In this study, we propose a cascade,
low-complexity multiscale feature fusion module to strengthen the backbone against scale variations
caused by large difference of objects sizes in the remote-sensing images, which is proved to be effective
in challenging RSOD tasks.

No matter how effective machine learning techniques are on artificial samples, they all face the
same problem in real-world applications: there are not enough labeled real remote-sensing images
for training. As exemplified in Figure 1, although high-fidelity remote-sensing images containing a
wide variety of objects are plentiful and readily available for researchers, most of these images do
not have the corresponding information about the types and positions of objects in them. Manually
labeling object-bounding boxes in these high-resolution images is a laborious work—prohibitively
expensive for gathering any meaningful quantity of ground truth data for training. In contrast, with the
help of learning-based automatic labeling methods, image-level labels are easy to obtain in mass.
While image-level labels do not provide the same level of details as bounding-box labels, it can still be
utilized to train an object detection network using weakly supervised learning.
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Based on the idea above, we propose a full-coverage collaborative network for weakly supervised
RSOD. The evaluation results on two large-scale remote sensing datasets TGRS-HRRSD (High-resolution
Remote Sensing Detection) [20] and DIOR [21] show that the proposed model achieves promising
accuracy even without any bounding-box annotations. To make the proposed technique more effective
against the previously discussed challenges, we also develop several novel techniques and make
improvements upon existing approaches. Our main contributions are summarized as follows:

(1) We propose a novel end-to-end remote sensing object detection network (FCC-Net) combining
a weakly supervised detector and a strongly supervised detector for addressing the challenge
of insufficient labeled remote sensing data, which improves the performance of only using
image-level labels training significant;

(2) We design a scale robust module on the top of the backbone using hybrid dilated convolutions
and introduce a cascade multi-level pooling module for multiple feature fusion on the backend of
the backbone, which promisingly suppresses the sensitivity of the network on scale changes to
further enhance the ability of feature learning;

(3) We define a focal-based classification and distance-based regression multitask collaborative loss
function that can jointly optimize the region classification and regression in the RPN phase;

(4) Our proposed method yields significant improvements compared with state-of-the-art methods
on TGRS-HRRSD and DIOR datasets.

The remainder of this study is organized as follows: Section 2 discusses related works in the field
of RSOD, including common problems and difficulties to be solved in multiobject detection, as well as
existing solutions. In Section 3, we present the proposed method and its main components in detail.
Section 4 introduces experimental datasets and evaluations, and Section 5 discusses the experimental
results. Finally, we conclude and discuss future work in Section 6.

2. Related Work

CNNs have achieved great success in the research of natural scene image object detection, with the
emergence of two-stage detection algorithm represented by R-CNN [22], fast R-CNN [23] and faster
R-CNN [18] and the single-stage detection algorithm represented by YOLO [24], RetinaNet [25] and
CornerNet [26]. Due to the particularity of its sensors and shooting angle, there are many differences
between remote-sensing images and natural scene images, such as small objects, high resolution,
complex background, imbalanced classes, insufficient training examples, etc. Therefore, how to improve
the accuracy of RSOD has become a very promising subject. In this section, we review the related
components of deep learning that are used in the proposed network for RSOD tasks.

2.1. Small Objects in Remote Sensing Images

Due to the large size of remote-sensing images, it is easy to miss or error-detect the small objects
with only tens or hundreds of pixels. As the number of network layer increased, the feature information
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of small objects will gradually weaken or even disappear. To address this problem, a large number of
detection algorithms have been developed, and these methods tend to fall into two main categories:
The first category of RSOD methods are feature learning-based detection algorithms, which enhances
feature expression of small objects by extracting or fusing multiscale features. For instance, using
unconventional convolutions to reduce the loss of feature extraction [27–30], constructing additional
branches to fuse more contextual features [31–33], introducing attention mechanisms to enhance the
relationship between global and local pixels [34,35], etc. Another category of RSOD methods are
sample postprocessing-based detection algorithms, such as intersection over union (IoU) [36,37] and
non-maximum suppression (NMS) [38,39].

2.2. Insufficient Training Examples of Remote Sensing Images

Since only image-level labels are required for training, weakly supervised learning has achieved
great attention in the field of object detection. Most existing works adopt the idea of multiple-instance
learning [40–45] to transform weakly supervised object detection into multilabel classification problems.
Among them, the most representative model is the two-stream weakly supervised deep detection
network (WSDDN) [40], which multiplies the score of classification and detection streams to select
the high-confidence positive samples. Many subsequent CNN-based works [41–45] are built on
WSDDN. Due to the lack of accurate bounding-box labels, the location regression performance of the
weakly supervised detector is far worse than the strongly supervised detector. Therefore, some recent
works [41,42,46–48] attempt to utilize the multiphase learning manner for weakly supervised object
detection to improve the detection accuracy to a certain extent. However, these approaches cannot
be directly applied to remote-sensing images. Thus, several efforts [49–54] are made to address the
particularity of RSOD under weakly supervised learning. Although these methods achieve promising
results, still have much room for improvement.

2.3. Foreground-Background Class Imbalance

In remote-sensing images, objects only occupy a small proportion of the large-scale image with
complex backgrounds. Therefore, when generating proposals, a large number of proposals are the
background, which dominates the gradient descent during training, resulting in a decrease in the
performance of the detector. We can group the solutions for the foreground–background class imbalance
into two: (1) hard sampling methods and (2) easy sampling methods. For example, the previous
works [30,55,56] add online hard example mining (OHEM) to the detection networks for focusing
on extracting features of hard samples so that the whole networks have a more robust classification
capability. Focal loss can be introduced [57] or modified [58] to make the model focus on hard positive
samples by reducing the weight of easy negative samples during training for improving the accuracy
of vehicle detection.

3. Proposed Method

In this section, we present the proposed network and some related components that affect network
performance in detail. This study primarily focuses on making full use of the image-level supervision
information through a collaborative training network for realizing multiple-object remote sensing
detection and the overall architecture of the FCC-Net is illustrated in Figure 2. As can be seen, it consists
of three modules: (1) full-coverage residual network (FCRN), (2) cascade multi-level pooling module
(CMPM) and (3) collaborative detection subnetwork. Moreover, we introduce focal loss and distance
intersection over union (DIoU) simultaneously to define a focal-based classification and distance-based
regression multitask collaborative loss function for generating proposals in the RPN phase. The strongly
and weakly supervised detectors alternately optimize their own loss functions and cooperate with
each other to further improve the detection performance under weakly supervised learning procedure.
Specifically, training the FCC-Net contains the following three stages:
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(1) Fine-tuning FCRN to extract more image edges and details information and utilizing CMPM to
fuse multiscale features for better correlation between local–global information;

(2) Training a weakly supervised detector (WSD) using image-level labels and adopting the fine-tuning
branch to refine the proposal results of the WSD for obtaining the final pseudo-ground-truths;

(3) Training a strongly supervised detector (SSD) with the pseudo-ground-truths generated by
previous steps and minimizing the overall loss function in a stage-wise fashion to optimize the
training process.
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In the following sections, we will describe the implementation details of the three stages.

3.1. Scale Robust Backbone for High-Resolution Remote Sensing Images

3.1.1. Full-Coverage Residual Network

Objects in high-resolution remote-sensing images usually appear in large resolution spans.
Many researchers try to introduce dilated convolution to expand the receptive field—and thus,
to extract features of the higher receptive field [59,60]. However, there is an inherent problem of
dilated convolution called gridding artifacts, that is, the lack of interdependence between neighboring
pixels that leads to the loss of local information. Given the above problem, this paper designs a novel
backbone for RSOD by modifying ResNet-50.

We insert three 3 × 3 dilated convolutions with dilated rates of 2, 3 and 5 after the normal 3 × 3
convolution in the original bottleneck to form a contiguous dilated convolution combination with
dilated rates of 1, 2, 3 and 5, thus constructing a new bottleneck block, namely full-coverage bottleneck
(FC bottleneck), as shown in Figure 3a. Moreover, we add two shortcuts in the two contiguous dilated
convolutions, respectively, which reuse the low-level features that contribute to object localization a lot.
Compared with the dilated bottleneck in dilated residual network [55], the proposed FC bottleneck
can acquire different levels of context information from a broader range of pixels without causing
gridding artifacts. It also reduces the probability of dispersion or explosion that often occurs in gradient
propagation due to the depth change.

We remain the first third stages of ResNet-50, then stack six and three FC bottlenecks in stages 4
and 5, respectively, replacing the original stages 4 and 5 to effectively enhance the correlation between
long-ranged information. The whole structure of FCRN is shown in Figure 3b. The downsampling
operation is removed in stages 4 and 5 so that the resolutions of output features are maintained at 1/8
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of the original image. Moreover, stage 4 and stage 5 keep the same input channels as stage 3, i.e., 256,
since contiguous dilated convolutions are time-consuming. Our experiments demonstrate that the
proposed FCRN can increase the final receptive field to cover the entire area and avoid voids or loss
of edge information, which directly improves the robustness of the detector to multiscale objects in
remote-sensing images. Table 1 shows the architectures of ResNet-50 and our modified network.
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Table 1. Architectures of ResNet-50 and our modified network.

ResNet-50 Modified

Stage Layer Output_Size Layer Output_Size

Stage 1 7 × 7, 64, stride 2 1/2 7 × 7, 64, stride 2 1/2

Stage 2

3 × 3, max-pooling, stride 2 1/4 3 × 3, max-pooling, stride 2 1/4
1× 1.64
3× 3.64

1× 1.256

× 3
1× 1.64
3× 3.64

1× 1.256

× 3

Stage 3
1× 1.128
3× 3.128
1× 1.512

× 4 1/8
1× 1.128
3× 3.128
1× 1.512

× 4 1/8

Stage 4
1× 1.256
3× 3.256
1× 1.1024

× 6 1/16

1× 1.256
3× 3.256

3× 3, dilate 2.256
3× 3, dilate 3.256
3× 3, dilate 5.25

1× 1.1024


× 6 1/8

Stage 5
1× 1.512
3× 3.512
1× 1.2048

× 3 1/32

1× 1.256
3× 3.256

3× 3, dilate 2.256
3× 3, dilate 3.256
3× 3, dilate 5.256

1× 1.1024


× 3 1/8

Avg-Pooling, FC Layer, Softmax Removed

3.1.2. Cascade Multi-Level Pooling Module

To further strengthen the performance of the backbone in the feature learning stage, we introduce
a cascade multi-level pooling module (CMPM) after the backend of FCRN. This module can freely
fuse multiscale feature maps for adapting to the detection of various-sized objects in remote-sensing
images, especially for strip objects in remote-sensing images. Figure 4 shows the structure of the
proposed CMPM.
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First, this module adopts the multi-level pooling layer with six different-size adaptive pooling kernels
to reduce the dimension of the output feature maps of FCRN: Fstage5 ∈ RH1∗W1∗C1 , H, W and C represent the
length, width and channel of the feature map, respectively.Then we can obtain contextual features at six
different fixed spatial scales: Pi = {P1 = 1× 1, P2 = 2× 2, P3 = 4× 4, P4 = 8× 8, P5 = 10× 2, P6 = 2× 20}.
Among them, the fifth and sixth pooling layers are specifically designed for difficult-to-detect objects
in remote-sensing images, such as bridges and ships. Two small rectangular pooled features in vertical
or horizontal directions P5 and P6 are added to further increase the feature representation of strip
objects. In addition to the first level of pooling being average-pooling, the other five levels of pooling
all utilize max-pooling.

Second, we use a 1 × 1 convolution to compress the dimension of Pi to 1/8 of input feature
channels for limiting the weight of global features in the subsequent feature fusion stage and acquire
the intermediate features: Ci = {C1, C2, C3, C4, C5, C6}. Ci are gradually upsampled through a 3 × 3
deconvolution from top to bottom and further concatenated on the channel dimension layer-by-layer
to obtain the fused features: Fi = {F1, F2, F3, F4, F5, F6, F7}, which can prevent the information loss in
the process of directly upsampling the minimum size to the maximum size.

Finally, we downsample the output feature maps of stage 2 in FCRN: Fstage2 ∈ RH2∗W2∗C2 , to the
scale of F7 obtained from the previous operation and perform three convolution operations after
concatenation to get the final output of the backbone: FOut ∈ RH3∗W3∗C3 . The convolution kernel sizes
are 3 × 3, 3 × 3 and 1 × 1, respectively.

The module is defined as follows:

Pi =

{
pavg(Fstage5), i = 1
pmax(Fstage5), i ∈ {2, 3, . . . , 6}

Ci = fconv(Pi), i ∈ {1, 2, . . . , 6}

Fi =


fdconv(Ci), i = 1
fdconv(Ci ⊕ Fi−1), i ∈ {2, 3, . . . , 6}
fconv(Fstage5 ⊕ Fi), i = 7

Fout = fconv( fconv(Fstage2) ⊕ F7)

(1)

where pavg(∗) and pmax(∗) represent the operation of avg-pooling and max-pooling, fconv(∗) represents
the operation of convolution and activation function, fdconv(∗) represents the operation of deconvolution
and activation function, ⊕ represents the concatenation operation of feature maps on the channel
dimension. The module we propose is similar to the FPN, but we only utilize the fused feature from
stage 2 and 5 for detection, instead of making predictions on features of each level. The experimental
results show that CMPM can enable abundant different coarse-fine-grained features to be shared and
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reused. Moreover, compared with the multiscale feature prediction and fusion operation in FPN,
CMPM can maintain accurate feature expressions, especially for strip objects in remote-sensing images.

3.2. Collaborative Detection SubNetwork for Weakly Supervised RSOD

As mentioned above, since there are no bounding-box labels, it is a great challenge for weakly
supervised methods to accurately predict the positions of the objects in remote-sensing images.
Therefore, we attempt to balance this contradiction by using a two-phase training procedure, i.e.,
a multiple instance learning detector followed by a strongly supervised detector with bounding-box
regression. In this work, we design a two-phase collaborative detection subnetwork with both
multiple instance learning and bounding-box regression branches that share the same backbone,
and we introduce it to the RSOD task. Specifically, we choose WSDDN as the baseline to generate
pseudo-ground-truths and integrate faster R-CNN for more accurate bounding-box regression.

3.2.1. Weakly Supervised Detector (WSD)

As shown in Figure 3, selective search windows (SSW) [61] is first utilized to propose Jw region
proposals per remote-sensing image in WSDDN. Then these images are fed into our proposed backbone
in the previous article and an ROI pooling layer. This can deal with the features of different scales
and improve the robustness of the network to scale changes of input images. After two FC layers,
the outputs of WSDDN are split into two branches: one branch predicts the probability pcls

jc that the

object in the proposal j belonging to class c; another predicts the probability ploc
jc of the object contained

in the proposal j according to its position. Next, the predictions of the two branches are multiplied by
element-wise product to get the class label p̂ jc of the proposal j. Finally, we sum up the class labels
from all proposals in a remote-sensing image as its corresponding prediction ŷc of the image-level
multiclass label. The binary cross-entropy (BCE) loss is adopted to train the initial instance classifier
with predict labels ŷc and ground-truths yc, as shown in Equation (2):

Lwsddn = LBCE(yc, ŷc) = −
C∑

c=1

(yc log(
Jw∑

j=1

p̂ jc) + (1− yc) log(1−
Jw∑

j=1

p̂ jc)) (2)

Moreover, we introduce the online instance classifier refinement (OICR) algorithm [41] into the
WSD for further optimizing the local optimal problem of WSDDN in the regression phase. Specifically,
we add three same fine-tuning branches (k = 3) in the subnetwork, which are parallel to the two
branches in WSDDN. Each branch applies a max-out strategy to select the highest-confidence proposal
and the proposals that overlaps it highly as reference so that filters out most redundancy predictions,
as given in Equation (3). The loss function for each fine-tuning branch is Equation (4):

jc = arg maxp̂ jc (3)

L f ine−tuning = −
1
Jw

Jw∑
j=1

C+1∑
c=1

wk
j ŷk

jc log f k
jc (4)

where f k
jc represents the output of the kth fine-tuning branch, ŷk

jc ∈ {0, 1} is image-level

pseudo-ground-truth for each proposal. wk
j represents the weight for each proposal. Unlike the

original OICR, the weight wk
j in our WSD module is modified by imposing a spatial restriction on

negative labeling for alleviating the problem that multiple objects of the same class are easy to be
mislabeled in remote-sensing images in Equation (5) as follows:

wk
j =

 f k−1
jc , if IoU( j, jc) < it

0 , otherwise
(5)

where it is a threshold, and we set it = 0.1. For more details, please refer to [62].
After that, the final loss of the WSD is defined as Equation (6):
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LWSD = Lwsddn +
3∑

k=1

L f ine−tuning (6)

3.2.2. Strongly Supervised Detector (SSD)

The network initializes from the training of WSD and when the loss drops below a threshold, we
assume that the region proposals with high scores proposed from the network are reliable enough.
Therefore, these proposals are provided as pseudo-ground-truths to train a SSD, i.e., faster R-CNN.
The purpose of this branch is to take advantage of faster R-CNN in bounding box regression since the
pseudo-ground-truths generated in the previous two branches are too rough. To reduce the number of
parameters and accelerate the network’s convergence, SSD and WSD share the same backbone and the
weights of part of FC layers.

Faster R-CNN can be regarded as composed of RPN and fast R-CNN, in which RPN is the
core part. However, directly using RPN for RSOD tasks has two limitations: (1) RPN overcomes
the impact of class-imbalance on network performance by setting the ratio of positive and negative
samples, but it also results in losing the diversity of proposals during training; (2) RPN suffers from
the problems of slow convergence and inaccurate regression in the bounding box regression process,
especially for multiscale objects in remote-sensing images. Inspired by the observations, we attempt to
optimize the loss function of RPN by introducing focal loss [25] and DIoU [63] simultaneously. In this
study, we design a focal-based classification and distance-based regression multitask collaborative loss
function to replace the original loss function in RPN for accurate bounding boxes and positive proposals
in remote-sensing images. The flow chart of this loss function is shown in Figure 5. The formulation of
LRPN f ocal_DIoU is given as follows:

LRPN f ocal_DIoU =
1

Ncls

∑
i
L f ocal(pic, p∗ic) +

λ
Nreg

∑
i
p∗icLDIoU(tic, t∗ic) (7)

where pic represents the predicted probability of the i-th proposal of class c, p∗ic is the i-th proposal of
class c. tic and t∗ic are the coordinate vectors of the predicted proposal and ground truth, respectively.
λ is the weight of balancing the classification loss and bounding box regression loss of RPN. Focal loss
L f ocal and DIoU loss LDIoU are expressed as follows, respectively:

L f ocal = −(αp∗ic(1− pic)
γ log(pic) + (1− α)(1− p∗ic)p

γ
ic log(1− pic)) (8)

LDIoU = 1− IoU + (d2
ρ/d2

c ) (9)

where α and γ are the hyperparameters. dc represents the diagonal length of the smallest enclosing box
covering predicted anchor box and the ground-truth, dρ represents the distance of central points of
predicted anchor boxes and ground-truths.

Then, the region proposals selected by NMS are output to train the subsequent fast R-CNN.
Generally, training a fast R-CNN involves a classification loss and a bounding box regression loss. Due to
the lack of refined bounding-box labels, the actual supervision information in our SSD branch is the
pseudo-ground-truths

{
(p jc, t jc)

}
generated by the first two weakly supervised branches. Considering

that both the WSD and SSD are used to predict the object-bounding boxes, thus we adopt a consistency
prediction loss to constrain the training of the two detectors. The prediction consistency loss consists
of the loss between the SSD and the WSD and the internal loss of the SSD. The loss function for the
prediction consistency loss is defined as:

LSSD =

Jw∑
j=1

Js∑
i=1

C∑
c=1

Ii j(βLcls_inter(pic, p jc) + (1− β)Lcls(pic) + p jcLreg(tic, t jc)) (10)

where Lcls_inter represents the consistency of class predictions between two detectors by using multiclass
cross-entropy. Lreg represents the smooth L1 loss function and Ii j indicates the overlap of the IoU of the
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regions proposed by the two detectors. Ii j will set to be 1 if the IoU is greater than 0.5 and otherwise 0.
β is a hyperparameter between 0 and 1 to balance the consistency of the predictions of the two detectors.
The larger the β indicates that the SSD trusts the object-bounding boxes predicted by WSD more.
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3.3. Overall, Loss Function

After introducing our collaborative detection subnetwork, we can formulate the total loss function
for FCC-Net. Our FCC-Net is trained by optimizing the following composite loss functions from the
four components using stochastic gradient descent:

Ltotal = Lwsddn + L f ine−tuning + LRPN f ocal_DIoU + LSSD (11)

Empirically, we set the hyperparameters α = 0.25, β = 0.8, γ = 2 and λ = 1 of the individual loss
functions in the following experiments.

To make the overall training strategy of FCC-Net clearer, we summarize the process in Algorithm 1.

Algorithm 1 FCC-Net Algorithm

Inputs: remote-sensing image I and image-level labels yc

Output: Detection results
1 Step 1: Feature Extraction and Fusion
2 (1) Extract feature of I by the backbone FCRN
3 (2) Conduct cascade multi-level pooling to realize multiscale feature fusion by Equation (1)
4 Step 2: Collaborative Training
5 while iterations less than max iteration or Loss larger than threshold do
6 (1) Propose region proposals of I by SSW
7 (2) For the region proposals:
8 Compute classification probability pcls

jc , position probability ploc
jc

9 Compute detection probability p̂ jc = Scls
jc ∗ Sloc

jc

10 (3) Generate image-level prediction ŷc =
∑N

j=1 p̂ jc

11 (4) Max-out on the predictions generated from the previous branch by Equation (3)

12 (5) Fine-tune and generate pseudo-ground-truth labels
{(

pjc, tjc
)}

by Equation (4)

13 (6) Generate region proposals using RPN by Equation (7)

14 (7) Generate bounding-box predictions
{(

pic, tic
)}

15 (8) Collaborative training to optimize Equation (10)
16 if the total loss Equation (11) converges then
17 Stop
18 end if
19 end while
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4. Experimental Settings

4.1. Datasets

We evaluate the superiority and generalization of our method on two large public multiclass
remote-sensing image datasets as follows: Figure 6 illustrates the number of objects of each class on
two datasets.
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TGRS-HRRSD dataset contains a total of 21,761 high-altitude images from Google Earth and
Baidu Map. The minimum resolution of these images ranges from 0.15 m to 1.2 m, with a tremendous
difference in resolution, which is difficult for the object detection task. The whole dataset contains
a total of 55,740 target object instances in 13 categories. This dataset is divided into three subsets,
in which the training set contains 5401 images, the validation set contains 5417 images and the test set
contains 10,943 images. The trainval set and test set each account for 50% of the total dataset.

DIOR dataset contains 23,463 high-altitude remote-sensing images and 192,472 object instances
covered by 20 categories. The size of images in the dataset is 800 × 800 pixels and the spatial resolutions
range from 0.5 m to 30 m. These images are carefully selected from Google Earth by researchers and
this dataset has the largest scale on both the number of images and the number of object categories.
Researchers fully consider the different weather, seasons, imaging conditions and image quality when
collecting these remote-sensing images, which makes the background variations of the dataset rich and
diverse. Moreover, since there are many categories of target objects, this dataset has a high interclass
similarity and intraclass diversity, thus making it much challenging for the object detection task.
This dataset is divided into three subsets, in which the training set contains 5862 images, the validation
set contains 5863 images and the test set contains 11,738 images. The trainval set and test set each
account for 50% of the total dataset.

4.2. Evaluation Metrics

To quantitatively evaluate the performance of the proposed method in this work, we adopt the
widely used precision–recall curve (PRC), average precision (AP), mean average precision (mAP) and
correct location (CorLoc).

4.2.1. Precision–Recall Curve

The PRC is characterized by precision as the Y-axis and recall as the X-axis, such that before
generating the PRC, we need to calculate the precision and recall first. Precision refers to the proportion
of correctly detected objects in all detected objects and recall refers to the proportion of correctly
detected objects in all positive examples detected.
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4.2.2. Average Precision and Mean Average Precision

AP is a more general metric in the field of object detection and information retrieval. As normally
defined, the average precision refers to the average precision value within the interval from 0 to 1 for the
recall rate, which is also the area under the precision–recall curve. Normally, higher average precision
results in better model performance. Moreover, mAP refers to the mean of the AP for each class.

4.2.3. Correct Location

CorLoc is another common evaluation metric for weakly supervised object detection. CorLoc
measures the accuracy of localization by calculating the proportion of the detected correct images to all
true positive in the dataset. CorLoc is evaluated on the union of the training set and validation set,
and AP is measured on the test set.

4.3. Implementation Details

The network proposed in this study can be trained end to end. The whole framework is
implemented on Ubuntu 16.04 and Python 2.7 with Pytorch 0.2. In the training progress, we adopt the
stochastic gradient descent (SGD) with a batch size of 4 for optimization. The momentum and weight
decay are set as 0.9 and 0.0001, respectively. The proposed FCC-Net is trained by 20 K iterations,
and the initial learning rate is set as 0.001 for the first 10 K iterations—then it decades to 0.0001 for
the next 10 K. All backbones adopt ImageNet pre-trained weights when possible and then fine-tune
on the two benchmarks used in this work. We conducted all experiments on a computer with a Intel
Xeon E5-2650 v2 CPU and a single NVIDIA GTX TITAN-V GPU for acceleration. The whole training
converges in 47 h on TGRS-HRRSD dataset and 44 h on DIOR dataset. Our method achieves ~0.8 fps
with an input of ~1000 × 1000 pixels (i.e., TGRS-HRRSD dataset) and ~1.1 fps with an input of 800 × 800
pixels images (i.e., DIOR dataset).

5. Experimental Results and Discussion

5.1. Evaluation on TGRS-HRRSD Dataset

Table 2 presents the quantitative comparison results of the eleven different methods in terms
of AP and mAP on the TGRS-HRRSD dataset. To save space, we represent the class names with
C1 to C13 according to the order in Figure 6a. The double underscore in table is used to distinguish
between strongly supervised and weakly supervised methods for a clear illustration. It can be seen
that our proposed FCC-Net significantly outperforms the other three traditional approaches and two
weakly supervised methods in terms of mAP by a large margin of about at least 10.3% improvements.
For classes of airplane, ship, ground track field and storage tank, our approach achieves better AP
values than the WSDDN and OICR, which is also competitive compared with the other four strongly
supervised methods. After our observation, we believe that this is because the objects of these categories
have moderate size, high shape recognition and a relatively low probability of co-occurrence with
other classes of objects, so they are easy to distinguish. However, for classes of crossroad, T Junction
and parking lot, our method is far less accurate than the strongly supervised methods. Through the
experimental results of faster R-CNN, we can find some commonalities with BoW method. For example,
the AP value of basketball court and parking lot are low on both models. Moreover, compared with
the two-stage models, we perform experiments on the single-stage model YOLOv2. The mAP value
also reaches 65.8 and the AP value of each category is similar to faster R-CNN. Whether single-stage
or two-stage models, the methods based on deep learning all show a similar performance, which we
think is caused by the similarity of the backbone in feature extraction.
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Table 2. Average precision (AP) (%) of different detection networks on the TGRS-HRRSD dataset.

Methods
The Class AP

mAP
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

BoW [12] 36.8 7.0 4.4 7.2 12.2 42.1 24.1 5.3 39.3 51.5 0.7 12.5 11.4 18.9
SSCBoW [64] 59.3 35.0 7.9 9.3 11.6 7.6 53.5 6.8 37.6 26.3 0.8 12.2 30.5 23.0

FDDL [65] 30.5 20.4 2.5 10.1 18.2 15.0 19.3 7.4 33.2 72.7 1.9 16.0 4.0 19.3
COPD [66] 62.5 52.2 9.6 7.1 8.6 72.4 47.8 17.4 45.3 50.1 1.6 58.1 32.7 35.8

Transformed CNN [13] 77.5 57.6 18.0 20.0 25.9 76.3 54.1 16.6 49.7 79.1 2.4 70.8 41.3 45.3
RICNN [67] 78.1 59.6 23.0 27.4 26.6 78.0 47.8 20.5 56.5 81.0 9.3 66.4 52.0 48.2

YOLOv2 [68] 84.6 62.2 41.3 79.0 43.4 94.4 74.4 45.8 78.5 72.4 46.8 67.6 65.1 65.8
Fast R-CNN [23] 83.3 83.6 36.7 75.1 67.1 90.0 76.0 37.5 75.0 79.8 39.2 75.0 46.1 66.5

Faster R-CNN [18] 90.8 86.9 47.9 85.5 88.6 90.6 89.4 63.3 88.5 88.7 75.1 80.7 84.0 81.5

WSDDN [40] 47.9 51.4 13.6 3.0 18.0 89.6 22.6 13.4 31.8 51.5 5.1 32.8 13.7 31.1
OICR [41] 34.2 33.5 23.1 2.9 13.1 88.9 9.0 17.6 50.9 73.3 13.2 36.1 14.6 32.3

FCC-Net (FCRN +
CMPM + MCL) 64.6 52.3 21.1 22.4 28.6 90.3 18.2 25.3 60.5 72.6 18.2 43.6 35.8 42.6

Meanwhile, we can see the performance measured in terms of CorLoc in Table 3. Compared with
WSDDN and OICR, our method obtains 19.1% and 13.3% gains, respectively. The possible explanation
is that the introduction of the spatial restriction in fine-tuning branches leads to more makes objects of
the same class remain and improves the ability of multi-instance mining. In general, although there
is a certain gap between our method and the strongly supervised methods such as YOLO and faster
R-CNN, we have achieved remarkable success in narrowing the gap between weakly and strongly
supervised methods.

Table 3. CorLoc (%) of different detection networks on the TGRS-HRRSD dataset.

Methods mAP CorLoc

WSDDN [40] 31.1 31.6
OICR [41] 32.3 37.4

FCC-Net (FCRN + CMPM + MCL) 42.6 50.7

The above results show that a variety of potential factors can affect the performance of RSOD. First
of all, the complexity of the backbone network and the robustness of multiscale objects are the primary
problems faced by remote-sensing images feature extraction. Different object sizes and spatial image
resolution result in the limitation of the general image classification network in RSOD task, so we need
to design a new backbone. Second, the size of objects in remote-sensing images is generally small.
When the backbone is used to extract the high-level features of small objects, the image resolution is
low so that some feature information may be lost, while the low-level features have high resolution
and contain more position and detail information. Therefore, fusing multiscale features can enhance
the relevance of context information and improve the performance of small object detection. Lastly,
the optimization strategy in RPN can also enhance the robustness of the detection subnet to objects of
different shapes and angles in remote-sensing images to a certain extent.

5.2. Evaluation on DIOR Dataset

To further test the effect of our method on remote sensing datasets with more categories, we also
conduct some comparative experiments on the DIOR dataset. We test the dataset on faster R-CNN,
and the mAP value reached 54.1%, with a performance degradation of more than 25% compared to
the TGRS-HRRSD dataset, which is very consistent with the description of the dataset in Section 4.1.
Due to the complexity of this dataset, it is a greater difficulty for the backbone to extract features of
high robustness, and the effect of the object detection is reduced consequently. In addition, the different
spatial resolutions of the data make it hard to learn multiscale features in a relatively shallow backbone.
To this end, we need to further modify the backbone, that is, expand both the depth and width.
To verify this idea, we also carried out evaluations on RetinaNet, a single-stage detector. Resnet-50 and
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Resnet-101 are used as the backbones, respectively. In Table 4, the experimental results show that a
deeper and more complex backbone can bring about performance improvements, increasing the mAP
from 65.7% to 66.1%. The weak improvement of 0.4% may be due to the reason that RetinaNet itself
has reached a saturation state on this benchmark. Furthermore, although more complex backbones can
indeed extract features of high robustness, it may be difficult to improve further due to the limitations
of the network itself. In the evaluation of our method, we set Res50, FRCN and FRCN-CMPM as
the backbones, respectively, and carry out more comparisons. The results are consistent with the
distribution of the TGRS-HRRSD dataset in Table 2, and mAPs are slightly improved. However,
the optimal mAP on this dataset is nearly 30% lower than that on the TGRS-HRRSD dataset. The gap
between these models is not large, which confirms our hypothesis of the dataset and the effectiveness
of this work.

Table 4. Mean average precision (mAP) (%) of different detection networks on the DIOR dataset.

Methods
Faster R-CNN [18] RetinaNet [25] FCC-Net

VGG16 ResNet-50 ResNet-101 ResNet-50 FRCN FRCN + CMPM

mAP 54.1 65.7 66.1 17.2 17.7 18.1

In Table 5, we plot the AP values of each class in the DIOR dataset. To save space, we represent the
class names with C1 to C20 according to the order in Figure 6b. The double underscore in table is used
to distinguish between strongly supervised and weakly supervised methods for a clear illustration.
It is can be seen clearly that the DIOR dataset is much more challenging than the TGRS-HRRSD dataset,
the detection performance of two strongly supervised methods is much better than all these three
weakly supervised methods. However, compared with the other two state-of-the-art weakly supervised
methods, our method outperforms WSDDN and OICR with an improvement of 5% and 1.8% in terms
of mAP, respectively. For the two classes of ship and bridge that are difficult to detect, our method
achieves the best performance among the three weakly supervised methods. Moreover, for classes of
baseball field, ground track field and stadium, our method is still very competitive compared with the
two strongly supervised methods without any bounding-box supervision information. At the same
time, we can see in Table 6 that our method improved by 9.3% and 6.9% in terms of CorLoc compared
with WSDDN and OICR, respectively.

Combining the two evaluation metrics, we can find that our proposed network does not decrease
in performance on more difficult and large-scale benchmarks. There are three main reasons as follows:
(1) The combination of FCRN and CMPM fully improves the utilization and sharing of abundant
multiscale features so that increases the network’s ability to express the features of these hard
instances; (2) The addition of three fine-tuning branches enables WSD to generate more accurate
pseudo-ground-truths, providing to SSD for further bounding-box regression; (3) The multitask
collaborative loss function mitigates the adverse effects of complex background and prevents the
network from overfitting negative samples in the classification stage.

For a more intuitive understanding, we draw the PRC on the two benchmarks of the proposed
network in this work. As shown in Figure 7, with the same Precision, the Recall of FCC-Net is higher than
any of the comparison methods, which means that our method can detect more actual objects; with the
same Recall, the precision of FCC-Net is higher than any of the comparison methods, which means that
the false alarm rate of our method is lower. These observations adequately demonstrate that our method
is highly competitive compared to other state-of-the-art weakly supervised object detection methods.
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Table 5. AP (%) of different detection networks on the DIOR dataset.

Methods
The Class AP

mAP
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Fast R-CNN [23] 44.2 66.8 67.0 60.5 15.6 72.3 52.0 65.9 44.8 72.1 62.9 46.2 38.0 32.1 71.0 35.0 58.3 37.9 19.2 38.1 50.0
Faster R-CNN [18] 53.6 49.3 78.8 66.2 28.0 70.9 62.3 69.0 55.2 68.0 56.9 50.2 50.1 27.7 73.0 39.8 75.2 38.6 23.6 45.4 54.1

WSDDN [40] 9.1 39.7 37.8 20.2 0.3 12.2 0.6 0.7 11.9 4.9 42.4 4.7 1.1 0.7 63.0 4.0 6.1 0.5 4.6 1.1 13.3
OICR [41] 8.7 28.3 44.1 18.2 1.3 20.2 0.1 0.7 29.9 13.8 57.4 10.7 11.1 9.1 59.3 7.1 0.7 0.1 9.1 0.4 16.5

FCC-Net (FRCN +
CMPM + MCL) 20.1 38.8 52.0 23.4 1.8 22.3 0.2 0.6 28.7 14.1 56.0 11.1 10.9 10.0 57.5 9.1 3.6 0.1 5.9 0.7 18.3
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Table 6. CorLoc (%) of different detection networks on the DIOR dataset.

Methods mAP CorLoc

WSDDN [40] 13.3 32.4
OICR [41] 16.5 34.8

FCC-Net (FCRN + CMPM + MCL) 18.3 41.7

Electronics 2020, 9, x FOR PEER REVIEW 15 of 21 

 

Table 5. AP (%) of different detection networks on the DIOR dataset. 

Methods 
The Class AP 

mAP 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 

Fast R-CNN [23] 44.2 66.8 67.0 60.5 15.6 72.3 52.0 65.9 44.8 72.1 62.9 46.2 38.0 32.1 71.0 35.0 58.3 37.9 19.2 38.1 50.0 
Faster R-CNN [18] 53.6 49.3 78.8 66.2 28.0 70.9 62.3 69.0 55.2 68.0 56.9 50.2 50.1 27.7 73.0 39.8 75.2 38.6 23.6 45.4 54.1 

WSDDN [40] 9.1 39.7 37.8 20.2 0.3 12.2 0.6 0.7 11.9 4.9 42.4 4.7 1.1 0.7 63.0 4.0 6.1 0.5 4.6 1.1 13.3 
OICR [41] 8.7 28.3 44.1 18.2 1.3 20.2 0.1 0.7 29.9 13.8 57.4 10.7 11.1 9.1 59.3 7.1 0.7 0.1 9.1 0.4 16.5 

FCC-Net (FRCN + 
CMPM + MCL) 

20.1 38.8 52.0 23.4 1.8 22.3 0.2 0.6 28.7 14.1 56.0 11.1 10.9 10.0 57.5 9.1 3.6 0.1 5.9 0.7 18.3 

Table 6. CorLoc (%) of different detection networks on the DIOR dataset. 

Methods mAP CorLoc 
WSDDN [40] 13.3 32.4 

OICR [41] 16.5 34.8 
FCC-Net (FCRN + CMPM + MCL) 18.3 41.7 

Combining the two evaluation metrics, we can find that our proposed network does not decrease 
in performance on more difficult and large-scale benchmarks. There are three main reasons as 
follows: (1) The combination of FCRN and CMPM fully improves the utilization and sharing of 
abundant multiscale features so that increases the network’s ability to express the features of these 
hard instances; (2) The addition of three fine-tuning branches enables WSD to generate more accurate 
pseudo-ground-truths, providing to SSD for further bounding-box regression; (3) The multitask 
collaborative loss function mitigates the adverse effects of complex background and prevents the 
network from overfitting negative samples in the classification stage. 

For a more intuitive understanding, we draw the PRC on the two benchmarks of the proposed 
network in this work. As shown in Figure 7, with the same Precision, the Recall of FCC-Net is higher 
than any of the comparison methods, which means that our method can detect more actual objects; 
with the same Recall, the precision of FCC-Net is higher than any of the comparison methods, which 
means that the false alarm rate of our method is lower. These observations adequately demonstrate 
that our method is highly competitive compared to other state-of-the-art weakly supervised object 
detection methods. 

 
(a) (b) 

Figure 7. Precision–recall (PR) curve of our model on two benchmarks: (a) TGRS-HRRSD dataset: (b) 
DIOR dataset. 

5.3. Ablation Experiments 

To evaluate the effectiveness of our proposed FCC-Net, we constructed some ablation 
experiments on the TGRS-HRRSD dataset to future analyze the contributions of the three key 

Figure 7. Precision–recall (PR) curve of our model on two benchmarks: (a) TGRS-HRRSD dataset:
(b) DIOR dataset.

5.3. Ablation Experiments

To evaluate the effectiveness of our proposed FCC-Net, we constructed some ablation experiments
on the TGRS-HRRSD dataset to future analyze the contributions of the three key components in
this work, such as FCRN, CMPM and multitask collaborative loss. In the ablation experiments,
we gradually added the components used in this work and carry out comparative experiments.
In Table 7, FCC–FCRN represents the collaborative subnetwork based on FRCN, FCC–FCRN–CMPM
represents the addition of CMPM on this basis, FCC–FCRN–CMPM–MCL represents the further
addition of multitask collaborative loss.

(1) Impact of full-coverage residual network. Under the collaborative detection subnetwork of
VGG16 as the backbone, the mAP value reaches 46.6%, which proves that collaborative training has
more advantages than the mere weakly supervised model. Then, we tried two deeper and more complex
backbones, i.e., ResNet-50 and ResNet-101 and the results show that complex networks have more
advantages in feature representation and can bring a certain degree of improvement. Our proposed
FCRN outperforms ResNet-101 with an improvement of 0.4% in terms of mAP, which confirms that
the FC bottleneck greatly reduces the loss of information during the feature extraction process and
improves the detection performance of the entire network.

(2) Impact of cascade multi-level pooling module. Using FCRN and CMPM simultaneously, we
find that mAP value is further improved by 0.6%. For classes of bridge and ship, FCC–FCRN–CMPM
achieves better AP results than the previous weakly supervised methods. CMPM successfully deals
with the problem of low feature recognition of strip objects in remote-sensing images, which future
confirms that the multifeature fusion strategy is effective to mine objects under weakly supervised
settings, especially for the objects of small size and special shape. The combination of FRCN and
CMPM leads to that the scale robustness of the network is significantly improved.

(3) Impact of Multitask Collaborative Loss. We combined all the components proposed in this
study to reach a mAP value of 48.3%, the accuracy of the model fluctuated slightly by 0.1%. The main
reason is that the predicted bounding boxes of the objects extracted by PRN used in our framework are
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very dense, the calculation results of the IoU between the predicted bounding boxes and ground-truth
boxes are always in an ideal horizontal interval. Thus, the improvement of our proposed network
accuracy by multitask collaborative loss is relatively limited, but still much higher than WSDDN.

Table 7. AP (%) of the components of FCC-Net on the TGRS-HRRSD dataset.

Methods
The Class AP

mAP
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

FCC–VGG16 62.3 49.0 17.8 21.5 26.9 82.3 10.4 21.5 55.8 69.3 15.0 42.1 31.9 38.9
FCC–Res50 62.5 49.1 18.0 20.9 27.6 84.7 10.1 23.9 56.0 69.4 14.9 42.7 32.4 39.4
FCC–Res101 63.0 49.1 18.2 21.7 27.7 83.9 10.4 24.0 55.9 68.6 15.7 42.6 33.3 39.5
FCC–FCRN 63.5 49.7 19.2 22.6 29.9 83.3 11.3 25.1 57.8 72.6 18.2 43.9 32.1 40.7

FCC–FCRN–CMPM 64.7 51.6 20.6 24.2 28.1 88.3 19.2 26.2 59.2 72.4 18.1 44.5 35.0 42.5
FCC–FCRN–CMPM–MCL 64.6 52.3 21.1 22.4 28.6 90.3 18.2 25.3 60.5 72.6 18.2 43.6 35.8 42.6

5.4. Qualitative Results

We present part of the detection results on the TGRS-HRRSD and DIOR datasets in Figures 8
and 9, respectively. It can be seen that our method can successfully detect most classes of objects and
give precise and tight bounding boxes on both two datasets. When faced with multiple objects to be
detected in a remote-sensing image, our method also shows better performance. However, we also
observe that our method is easy to treat densely arranged small objects as a whole and cannot detect
every single object, such as the class of ship and vehicle. This is also the direction we will focus on in
our next work.Electronics 2020, 9, x FOR PEER REVIEW 17 of 21 
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6. Conclusions

The traditional strongly supervised object detection methods require a large amount of finely
labeled image data, which has a high cost and poor generalization performance. Considering the
gap between remote-sensing images and general images, we propose a novel collaborative network
(FCC-Net) in this study. We jointly train WSD and SSD in an end-to-end manner and feed the
prediction results of the WSD into the SSD as the pseudo-ground-truths. This makes full use of their
respective advantages to realize the collaborative optimization of region classification and regression.
Moreover, a scale robust backbone is designed to enhance the feature learning of the multiscale objects
in remote-sensing images. The quantitative evaluations on the TGRS-HRRSD and DIOR datasets
demonstrate the effectiveness of the proposed method. Specifically, compared with two previous
state-of-the-art weakly supervised methods and four traditional methods, FCC-Net archives the
substantial improvements in terms of mAP. Moreover, the detection performance of FCC-Net in several
classes is still highly competitive compared with some state-of-the-art strongly supervised methods.
Through experiments, we also reveal an important mechanism, that is, the deeper and more complex
backbone has more advantages than the shallow backbone, which is more suitable for diversified
RSOD tasks.
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