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Abstract: Diabetic retinopathy (DR) is a common fundus disease that leads to irreversible blindness,
which plagues the working-age population. Automatic medical imaging diagnosis provides
a non-invasive method to assist ophthalmologists in timely screening of suspected DR cases,
which prevents its further deterioration. However, the state-of-the-art deep-learning-based methods
generally have a large amount of model parameters, which makes large-scale clinical deployment
a time-consuming task. Moreover, the severity of DR is associated with lesions, and it is difficult
for the model to focus on these regions. In this paper, we propose a novel deep-learning technique
for grading DR with only image-level supervision. Specifically, we first customize the model with
the help of self-knowledge distillation to achieve a trade-off between model performance and time
complexity. Secondly, CAM-Attention is used to allow the network to focus on discriminative zone,
e.g., microaneurysms, soft/hard exudates, etc.. Considering that directly attaching a classifier after
the Side branch will disrupt the hierarchical nature of convolutional neural networks, a Mimicking
Module is employed that allows the Side branch to actively mimic the main branch structure.
Extensive experiments are conducted on two benchmark datasets, with an AUC of 0.965 and an
accuracy of 92.9% for the Messidor dataset and 67.96% accuracy achieved for the challenging IDRID
dataset, which demonstrates the superior performance of our proposed method.

Keywords: image classification; convolutional neural network (CNN); diabetic retinopathy (DR);
self-knowledge distillation (SKD); attention mechanism

1. Introduction

Diabetic retinopathy (DR) is the predominant manifestation of diabetic microangiopathy, which is
one of the complications of diabetes. It is reported that approximately one third of people with
diabetes in the United States, Europe and Asia have some degree of DR [1]. It also the major leading
cause of blindness and vision defects among working-age adults worldwide [2]. The traditional
solution is to have a well-trained clinical ophthalmologist observe fundus imaging and subjectively
assess the severity of DR. However, the scarcity of ophthalmologists hinders patients from receiving
timely diagnosis and treatment, especially in underdeveloped areas, which eventually leads to
irreversible vision loss. With this in mind, an automated computer-aided diagnostic (CAD) system
is needed to assist ophthalmologists in the early screening of potential DR, alleviating their
labor-intensive workload.

Early research mainly focused on hand-crafted features to represent images, which requires
specific domain knowledge. Adarsh et al. [3] used image processing techniques to obtain anatomical
and texture features, and then fed them into a multi-class support vector machine (SVM) for
classification. In [4], an ensemble-based method for the screening of DR was proposed, which extracted
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features from the output of several retinal image processing algorithms, such as image-level,
lesion-specific, and anatomical components. Seoud et al. [5] designed a new set of shape features,
called Dynamic Shape Features, that do not require precise segmentation of the regions to be classified.
These works are effective to a certain extent, but they are very sensitive to noise and artifacts. Moreover,
they have domain limitations, which means their generalization is relatively poor.

Recently, convolutional neural networks (CNNs) have demonstrated their outstanding performance
in various computer vision tasks, such as image classification [6], semantic segmentation [7], and object
detection [8]. As an efficient feature extraction method, CNNs are also applicable to medical imaging,
especially DR screening. For example, Zhao et al. [9] presented a model called “BiRA-Net”,
which employs dual streams to improve performance while introducing attention mechanism for
better feature learning. Ni et al. [10] took advantage of the strong correlation of both eyes to improve
the prediction accuracy. In addition, selective data sampling is applied to alleviate data imbalance
between classes. Considering the “black box” nature of CNN, Wang et al. [11] implemented a
visual-interpretable DR grading by introducing the regression activation map after the global average
pooling layer. Recently, Li et al. [12] explored the internal relationship between DR and diabetic
macular edema (DME) and proposed a novel cross-disease attention network to jointly grading DR
and DME. However, the work covered above uses only image-level labels and tends to ignore the
impact of lesion-related regions and other prior knowledge on the severity of DR.

In [13], Prasanna et al. pointed out that structures such as microaneurysms, hemorrhages,
and soft/hard exudates are closely related to DR and the presence of the above abnormalities
determines the DR grade of a patient, as shown in Figure 1. Next, we briefly review some approaches
based on DR lesions. Foo et al. [14] used a semi-supervised learning process to obtain segmentation
masks, followed by a multitask learning approach to determine DR. Zhao et al. [15] obtained
significant performance gains by using vessel priors to guide the attention mechanism of deep-learning
architectures. Zhou et al. [16] proposed a collaborative learning method of semi-supervised lesion
segmentation and disease grading for medical imaging, where the intervention of the lesion masks
can improve the accuracy of classification and enhance the robustness of the model. The drawbacks
of these lesion-based approaches [14–16] are that they cannot be trained end-to-end and are too
resource-intensive for direct clinical deployment.

Optic disc
Macula

Hemorrhage

Exudates

Microaneurysm

Figure 1. Early pathological signs of DR, such as soft/hard exudates, microaneurysms and hemorrhage.
The picture is kindly provided by Messidor database [17], no conflict of interest.

To address the above-mentioned issues, we use a large “teacher network” within the
self-knowledge distillation (SKD) [18,19] to guide the compact yet efficient “student network” with
only image-level labels, which allows custom pruning of the model according to the actual scenarios
in the inference, as shown in Figure 2. Nevertheless, unthinking pruning will disrupt the hierarchical
structure of the CNN, so we propose the Mimicking Module (MM) to mitigate it. L2 loss allows
alignment of the block-level outputs between Side branches and the main branch, shortening the
spatial distance between them. Furthermore, the off-the-shelf CAM-Attention [20] facilitates the model
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to focus on discriminative regions (e.g., lesions), significantly improving the overall performance.
For evaluation, we test our method on two publicly available datasets, the Messidor dataset and a
new IDRID challenge dataset. Experimental results show that our method outperforms state-of-the-art
methods on DR screening. In summary, our contributions of this paper are as follows:

(1) A novel self-knowledge distillation framework is proposed for diabetic retinopathy image grading.
It can customize the pruning of the model according to the actual application scenario, which
reduces the time delay while not significantly degrading the accuracy.

(2) The introduction of CAM-Attention promotes the model to focus on pathological regions,
and the Mimicking Module enables the model to maintain its original hierarchy while pruning.
Experimental results confirm that the two proposed modules have a positive effect on the results.

(3) The quantitative and qualitative results on the Messidor and IDRID datasets confirm the
effectiveness of the methodology in this paper.

The remainders of this paper are organized as follows. The details of SKD-based DR grading
method and its components are presented in Section 2. Section 3 gives experiments on benchmark
datasets. Section 4 verifies the effectiveness of each component on the Messidor dataset. Finally,
in Section 5, we draw some conclusions.
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Figure 2. A detailed illustration of our proposed network. In addition to the main branch and the
auxiliary attention branch, the proposed framework also has three Side branches attached. Among them,
the red dotted box contains multiple groups of ResBlocks; AvgPool denotes the global average pooling
layer; f c denotes the fully connected layer. For binary classification, the images of stage 0 and
stage 1 in the Messidor dataset are combined as referable images, and the rest are non-referable images.
Backbone and the Mimicking Module will be discussed in Sections 2.3 and 3.2, respectively. Best viewed
in color.

2. Methodology

Figure 2 illustrates the overall flowchart of our DR grading method. Our goal is to design
a self-knowledge distillation system that integrates scalability and flexibility, which transfers
knowledge from an over-parameterized model to compact models, thereby reducing response time to
efficiently assist ophthalmologists in the timely diagnosis of potential DR.



Electronics 2020, 9, 1337 4 of 13

2.1. CAM-Attention Module

Although CNN architectures such as ResNet [6] have demonstrated their superior performance
on a variety of visual-related tasks, Squeeze-and-Excitation [21] and CBAM [22] components show
that by attaching channel or spatial attention components to the backbone, the network can imitate
human visual behavior, i.e., focusing on decisive features to achieve outstanding performance gains.
Recently, in [20], Fukui et al. extended a response-based visual explanation model named Attention
Branch Network (ABN) by introducing attention and perception branches on the basis of Class
Activation Mapping (CAM) [23]. Inspired by the work of ABN, we merge it to enhance the “teacher
network” representation capabilities while focusing on the discriminative regions. Unlike ABN’s
approach, CAM-Attention is added after ResBlock4 instead of ResBlock3, which further reduces
time consumption.

Given an input tensor X0
i ∈ R3×H0×W0 and its corresponding ground truth label

yi ∈ {0, 1, ..., K− 1}, where i represents the i-th sample and K represents the number of predefined
classes. The input tensor first passes through N convolution blocks ΘN

n (·) to generate the feature
extractor, where intermediate feature maps Xn

i ∈ RCn×Hn×Wn at the block n can be calculated as
Xn

i = Θn(Xn−1
i ). Here, Cn, Hn and Wn represent the number of channels, height and width of the n-th

block, respectively. Then, a channel dot-product is performed between the feature extractor and the
attention weights to obtain the output of the CAM-Attention X′ni , which can be formulated as

X′ni = Xn
i · Atten(Xn

i ) + Xn
i (1)

where Atten(·) denotes the spatial attention operation. Let ŷc
i and ŷm

i be the normalized output
logits by Atten(Xn

i ) and X′ni after passing through the attention branch and the main branch
(sequentially traverse a global average pooling layer (GAP), several fully connected layers (FC) and a
SoftMax layer, respectively). When the conventional cross-entropy loss LCE is used as the supervision
signal, the loss of ABN is as follows

LABN = LCE(ŷm, y) + λ · LCE(ŷc, y) (2)

where λ used to balance them. More details of ABN can be found in [20].

2.2. Self-Knowledge Distillation

Top-performing deep CNN architectures suffer from computational overload, which hinders
their further porting to resource-constrained devices. As a trick of model compression,
knowledge distillation (KD) [24,25] takes the prediction of probability distribution from a powerful but
resource-hungry teacher model as the soft target, combined with one-hot labels to jointly regularize
smaller models. However, the paradigm adopted by conventional KD is a two-step optimization,
i.e., first training the teacher model and then allowing the learned knowledge flow progressively to
the student model by mimicking the probability distribution of the teacher model’s output, has the
disadvantage of being too costly.

Recently, related work [18,19,26] has shown that teacher and student models can come from the
same CNN network, and dynamically transfer knowledge by adding Side classifiers behind some
intermediate layers, which is called self-knowledge distillation (SKD). In [27], Lee et al. pointed out
that adding auxiliary (Side) classifiers allows the intermediate layer to obtain gradient flows from both
the topmost and branch losses, alleviating the “gradient disappearance” problem that occurs in the
back propagation of gradients caused by deeper networks, and accelerating the convergence. Let ŷs

j
denotes the j-th Side classifier output, SKD loss can be formulated as

LSKD = ∑
j

LCE(ŷs
j , y) + β ·∑

j
LKL(ŷs

j , ŷm) (3)
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where β is the relative weight between the two loss terms, and LKL represents Kullback–Leibler (KL)
divergence between ŷs and ŷm. Moreover, using a higher value of T in KL results in a softer probability
distribution over classes [24].

2.3. Mimicking Module

For the first time, FitNets [28] introduces hints loss from the teacher hidden layers to guide
the training process of the student. Nevertheless, due to the inherent hierarchical representation of
CNNs [29] (shallow towards detail and deep towards semantics), blindly attaching classifiers to the
middle hidden layers as described in [18] without thinking twice would disrupt this structure.

Our insight comes from the mimicking of teacher’s teaching, i.e., students receive what they
are taught through stage-wise learning, hence we propose a novel Mimicking Module (MM).
More specifically, by attaching thinner (fewer bottlenecks) but the same number of ResBlocks as
the main branch behind the Side branches, the block-level constraints of the main branch (teacher) are
used to allow the Side branch (student) to reach block-alignment and hierarchical information sharing
during mimicking, while reducing runtime. Below, we describe the mathematical formulation of it.

Let Fl and Fm be the intermediate layer outputs of the l-th branch and the main branch,
respectively. Our optimization target is

LMM = ∑
l

η · ||Fl , Fm||22 (4)

where || · ||22 refers to the L2 norm loss and η is a tunable hyper-parameter. Combining Equations (2)–(4),
the optimization objective of the entire network can be written as

arg min
W

LABN + LSKD + LMM (5)

where W stands for the weight matrices to be optimized.

3. Experiments

3.1. Datasets Descriptions

Messidor. The Messidor dataset [17] contains 1200 color fundus images with DR and DME
annotations, in which DR is classified into four classes according to the severity scale. For a fair
comparison with previous works [5,12,30–32], we treat images at levels 0 and 1 as referable and
the remainder as non-referable, while using 10-fold cross-validation to verify the effectiveness of
the model.

IDRiD. The IDRiD dataset [33] comes from ISBI-2018 Challenge 2 (https://idrid.grand-challenge.
org/Grading), with a total of 413 training images and 103 test images. We divide it into five
classes according to the organizer’s rules, and refer the test set as the validation set to evaluate
the experimental results.

3.2. Experimental Setup

Our experiments are conducted using Pytorch toolkit and trained on a single NVIDIA Tesla
V100 GPU. By default, we use ResNet18 [6] as the backbone and optimize the network with Adam
optimizer [34], accompanied by an initial learning rate of 0.0001. The number of ResBlocks for
the three Side branches is configured as {1, 1, 2}, {1, 2} and {2}, respectively. For training, a total
of 300 epochs for Messidor and 200 for IDRID, while the batch size is set to 40 for both datasets.
Moreover, λ, β and η are empirically set to 0.4, 1, and 1 × 10−7 respectively to ensure gradient
equalization. We resize the original images to 224× 224, while using simple data augmentation, such
as horizontal and vertical flips to increase the diversity of the data. It should be noted that to overcome
class imbalance, the number of samples for each class in the training batch is the same (using data

https://idrid.grand-challenge.org/Grading
https://idrid.grand-challenge.org/Grading
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re-sampling). In addition, for an analysis of general dataset, see Appendix A.1. Our code is available
at: https://github.com/JACKYLUO1991/DR-Grading.

3.3. Results on Messidor Dataset

To evaluate our training strategy, we follow the SKD training procedure and report the results
of the comparison between the main branch without/with the help of CAM-Attention and several
existing methods on Messidor dataset.

As shown in Table 1, our method has superior performance over state-of-the-art methods in
terms of AUC (Area Under the Receiver Operating Curve), Acc. (accuracy), Pre. (precision) and
Rec. (recall a.k.a. sensitivity) metrics. The quantitative results can be summarized as follows: (1) our
method improves the AUC metric by nearly 10% compared to the method [30] using laborious manual
feature extraction; (2) compared with methods such as Zoom-in-net [31] that use additional data to
improve performance, we still achieve outstanding results with only Messidor’s annotations; (3) in
contrast to CANet [12], which uses bulky ResNet50 combined with multitask learning, our method
uses lightweight ResNet18 while increasing the AUC, accuracy and precision by 0.3%, 0.3% and 0.4%
respectively, falling below the former only in the recall metric; (4) compared to the plain SKD, the SKD
with CAM-Attention has significantly improved the performance, such as AUC (0.959 vs. 0.966) and
Acc. (91.7% vs. 92.9%) metrics, which reflects the positive effect of focusing on pathological regions
over outcomes. From a statistical perspective, we give a 95% confidence interval (CI) for AUC, which
ranges from 0.953 to 0.979.

Table 1. Performance comparisons on Messidor dataset. Results are given as the mean or (mean ± std)
of 10-fold cross-validation. “†” shows that its results are reproduced from [12] and the remaining
values are copied from original papers.

Method AUC Acc. (%) Pre. (%) Rec. (%)

Pires et al. [30] 0.863 - - -
VNXK/LGI [32] 0.887 89.3 - -
CKML Net/LGI [32] 0.891 89.7 - -
CANet [12] 0.895 81.0 - -
Comprehensive CAD [35] 0.910 - - -
DSF-RFcara [5] 0.916 - - -
Expert [35] 0.940 - - -
Multitask net [36] † 0.948 89.9 89.7 85.7
MTMR-Net [37] 0.949 90.3 90.0 86.7
Zoom-in-net [31] 0.957 91.1 - -
CANet + MultiTask [12] 0.963 92.6 90.6 92.0
SKD w/o CAM-Attention (ours) 0.959 91.7 89.3 87.5
SKD (ours) 0.966 ± 0.02 92.9 ± 3.99 91.0 ± 1.72 91.2 ± 2.18

Figure 3 shows the heatmap generated by the last convolutional layer supported by
Grad-CAM [38], where the red highlights indicate regions that the model considers decisive
for diagnosis.

https://github.com/JACKYLUO1991/DR-Grading
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DR sample

Normal sample

Figure 3. The highlighted regions of the DR decision. From the left to right: the input, highlighting
without CAM-Attention and highlighting with CAM-Attention.

3.4. Results on IDRID Dataset

Table 2 summarizes the comparison between our method and those proposed by other challenge
participants. To the best of our knowledge, since the competition covers both DR and DME, ref. [39]
is the only non-competition research result that provides independent DR grading so far, we list its
quantitative results as well. It should be pointed out that our method does not use additional data for
pre-training or relying on model ensembles like other solutions.

As can be seen, in the third column of Table 2, our method outperforms the other methods at
a smaller input scale, just lower than the solution of Lzyuncc [33] with an input scale of 896× 896.
Moreover, the SKD-refined student (Side branch 1) in the second line has the same classification
accuracy (67.96%) as the teacher (main branch), while significantly cutting down the number of
parameters, which further confirms the efficiency of our proposed method.

Table 2. Comparison with state-of-the-art results on IDRiD dataset. Our results are bolded in blue.
* indicates that the result is obtained from [33]. Consistent with the official evaluation criteria, only the
accuracy indicator (unit: %) is given here.

Rank Method Main Branch Side Branch 3 Side Branch 2 Side Branch 1

1 LzyUNCC * 74.76 - - -
2 SKD(ours) 67.96 66.99 60.19 67.96
3 SUNet [39] 65.06 - - -
4 VRT * 59.22 - - -
5 Mammoth * 55.34 - - -
5 HarangiM1 * 55.34 - - -
6 AVSASVA * 54.37 - - -
7 HarangiM2 * 47.57 - - -

The related confusion matrix of multi-class DR grading is also given which is illustrated in Figure 4.
Looking at the confusion matrix, each class is most likely to be predicted correctly except for class 1,
which is predominantly classified as class 0. Thus, class 1 is the most difficult to distinguish and its data
labeling also confuses experienced ophthalmologists. This problem can potentially be mitigated by
using a more powerful network. In [40], Sokolova et al. gave a comprehensive performance measures
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for classification tasks. Among them, F1, as the harmonic average of precision and recall, is the most
commonly used criterion for multi-classification problems. Mathematically, it can be formulated as:

macro−P =
1
m

m

∑
i=1

Pi

macro−R =
1
m

m

∑
i=1

Ri

macro−F1 =
2×macro−P×macro−R

macro−P + macro−R

(6)

where m is the number of classes, Pi and Ri denote precision and recall for class i, respectively.
Finally 59.98% of F1 can be obtained by calling the scikit-learn library.
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Figure 4. Quantitative results in the form of confusion matrix on IDRID’s DR grading dataset with our
proposed framework. Horizontal axis indicates the predicted classes and vertical axis indicates the
ground truth classes.

4. Analysis and Discussion

4.1. Ablation Studies

Here, fold1 in Messidor dataset is taken as an example to construct ablation experiments for
several factors to measure their contributions towards our remarkable results. We regard the main
branch without CAM-Attention (CA) as the baseline, and then add the CA module and the MM
module in order, as well as training with SKD.

From Table 3 we can conclude that (i) the addition of the CA module promotes the model to focus
on pathological features, and the accuracy is improved by 1.66% relative to the baseline, which is also
consistent with the conclusion in Section 3.3; (ii) all the four classifiers outperform the baseline in
terms of accuracy by virtue of the MM’s hierarchical mimicry mechanism and co-optimization, which
leverages weight sharing to facilitate performance of the primary task, and (iii) with the help of SKD,
students progressively approximate the distribution of the teacher. In particular, the performance of
Side branch 1 (94.17% with SKD) is equivalent to that of the teacher without SKD, which verifies the
effectiveness of SKD’s training strategy.
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Table 3. Ablation experiments performed on Messidor dataset according to the accuracy metric (unit: %).

Method Main Branch Side Branch 3 Side Branch 2 Side Branch 1

baseline 91.67 - - -
baseline + CA 93.33 - - -
baseline + CA + MM 94.17 92.50 93.33 93.33
baseline + CA + MM + SKD 95.83 95.83 95.00 94.17

4.2. Efficiency of the Network

One way to get the speed of a model is to simply calculate how many computations it does,
which also eliminates the performance difference caused by a specific GPU model or other equipped
hardware resources. We typically count this as FLOPs (floating-point operations) and it is inversely
proportional to time-consuming.

As shown in Figure 5, the dynamic adaptation of the inference time can be achieved according
to the actual scenario, which highlights the advantages of SKD. In particular, compared to the main
branch, the Side branch 1 has increased operating efficiency by 1.4 times. It is reasonable to believe
that this gap can be more prominent when the model is deeper and the teacher-student block-level
compression ratio is increased. Moreover, this technology can be further applied to portable devices to
improve their execution efficiency.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
GFLOPs

94

95

96

A
c
c
u
ra

c
y

(%
)

Messidor dataset

Figure 5. Accuracy-FLOPs curve on Messidor dataset. The circles plotted represent Side branch 1,
Side branch 2, Side branch 3, and main branch in order of increasing radius.

4.3. Discussion on Free Parameters Selection

Currently, for the free parameters in Equations (2)–(4), we empirically assign them, with the core
idea of unifying the loss terms to the same order of magnitude. Specifically, different loss functions in
the same task have very different scales, so it is necessary to consider unifying these scales with weights.
Generally, the gradient size of different loss functions is different in the process of model convergence,
and the sensitivity to different learning rates is also differentiated. Adjusting different losses to the
same order of magnitude can prevent the loss of small gradients from being dominated by the loss of
large ones, so that the learned features have better generalization ability. However, the limitation of
manual tuning is that it requires repeated trial and error to obtain the optimal value, and the process is
usually very cumbersome. Moreover, the results are often sub-optimal.

There are two works worthy of further investigation: one comes from the literature [41], and its
basic idea is to estimate the uncertainty of each loss item. Specifically, each loss is divided by the
uncertainty, which is basically equivalent to automatically reducing the weight of the corresponding
loss. The other comes from an open source project (https://github.com/ultralytics/yolov5) that uses
genetic algorithms to search for parameters, which is more efficient than grid search. Since our work

https://github.com/ultralytics/yolov5
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focuses on the proposed SKD distillation method, we will search for free parameters as the direction of
future work.

5. Conclusions

In this paper, for diabetic retinopathy grading, we first introduce the CAM-Attention that allows
the model to focus on discriminative regions to obtain a powerful teacher network. Then, a training
strategy called self-knowledge distillation (SKD) is presented, which enables dynamic adjustment of
inference time while improving performance. Finally, considering that attaching classifiers directly
after the sharing layers would disrupt the hierarchical consistency between the teacher and students,
we propose a Mimicking Module. Experimental results demonstrate that the proposed SKD could
boost the performance of the student significantly.

This work can be further applied to resource-constrained devices, e.g., mobile phones, to reduce
model inference latency without significant performance degradation. In addition, for automatic
medical image screening, our work can relieve the fatigue of ophthalmologists while quickly obtaining
diagnosis results. On the other hand, the limitation of this research lies in the optimization of
hyper-parameters, which is currently optimized only by manual tuning. Our next work will introduce
the genetic algorithm mentioned in [8] to select hyper-parameters. In our future work, we will also
focus on semi-supervised as well as weakly supervised learning to eliminate the system’s strong
dependence on label data, while using graph neural network (GNN) for modeling.
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Abbreviations

The following abbreviations are used in this manuscript:

DR Diabetic retinopathy
DME Diabetic macular edema
KD Knowledge distillation
MM The Mimicking Module
CNN Convolution neural network
KL Kullback–Leibler divergence
GNN Graph neural network
CI Confidence interval
FLOPs Floating-point operations

Appendix A

Appendix A.1. Results on CIFAR-100

To further confirm the generalizability of our proposed method, we construct experiments on
CIFAR-100 dataset [42]. CIFAR-100 contains 50,000 training sets and 10,000 test sets for a total of
100 classes, with an image size of 32 × 32 pixels. For the fairness of the experiment, data preprocessing,
training parameters selection and hyper-parameters configuration are carried out according to [18].
DR classification transfer is done based on ResNet18 and is regarded as the baseline. The left value of
the slash comes from [18], and the right value is the result we reproduced.

From Table A1, we can see the advantages of the method in this paper, especially on Side
branch 1, which can achieve a balance between speed and accuracy. The method in [18] directly
attaches a classifier after a certain Side branch, which on the one hand destroys the consistency of
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hierarchical features in CNNs, and on the other hand causes significant performance degradation
due to cutting off most of the high-level feature layers. In contrast, our method brings considerable
gains (especially an increase of 8.61% in accuracy on Side branch 1), reflecting the powerful feature
mapping ability of the Mimicking Module. In addition, multiple branches have been improved in
terms of accuracy, indicating that adding CAM-Attention improves the performance of the teacher
(main branch) to assist students (Side branches) in learning. These experiments confirm the importance
of the knowledge interaction process in promoting the efficiency of sub-branch and improving the
baseline performance of a single CNN model.

Table A1. Accuracy (%) comparison on CIFAR-100 dataset.

Method Main Branch Side Branch 3 Side Branch 2 Side Branch 1

baseline 77.09/75.61 - - -
SKD [18] 78.64 78.23 74.57 67.85
ours 79.01 78.79 77.85 76.46
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25. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA,
20–23 August 2006; pp. 535–541.

26. Kim, I.; Baek, W.; Kim, S. Spatially Attentive Output Layer for Image Classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 9533–9542.

27. Lee, C.Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-supervised nets. In Proceedings of the Artificial
Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015; pp. 562–570.

28. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets.
arXiv 2014, arXiv:1412.6550.

29. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

30. Pires, R.; Avila, S.; Jelinek, H.F.; Wainer, J.; Valle, E.; Rocha, A. Beyond lesion-based diabetic retinopathy:
A direct approach for referral. IEEE J. Biomed. Health Inform. 2015, 21, 193–200. [CrossRef] [PubMed]

31. Wang, Z.; Yin, Y.; Shi, J.; Fang, W.; Li, H.; Wang, X. Zoom-in-net: Deep mining lesions for diabetic
retinopathy detection. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Quebec City, QC, Canada, 6–11 October 2017; pp. 267–275.

32. Vo, H.H.; Verma, A. New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid
color space. In Proceedings of the IEEE International Symposium on Multimedia (ISM), San Jose, CA, USA,
11–13 December 2016; pp. 209–215.

33. Porwal, P.; Pachade, S.; Kokare, M.; Deshmukh, G.; Son, J.; Bae, W.; Liu, L.; Wang, J.; Liu, X.; Gao, L.; et al.
IDRiD: Diabetic Retinopathy–Segmentation and Grading Challenge. Med. Image Anal. 2020, 59, 101561.
[CrossRef] [PubMed]

34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.5566/ias.1155
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1109/JBHI.2015.2498104
http://www.ncbi.nlm.nih.gov/pubmed/26561488
http://dx.doi.org/10.1016/j.media.2019.101561
http://www.ncbi.nlm.nih.gov/pubmed/31671320


Electronics 2020, 9, 1337 13 of 13

35. Sánchez, C.I.; Niemeijer, M.; Dumitrescu, A.V.; Suttorp-Schulten, M.S.; Abramoff, M.D.; van Ginneken, B.
Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data.
Invest. Ophthalmol. Visual Sci. 2011, 52, 4866–4871. [CrossRef] [PubMed]

36. Chen, Q.; Peng, Y.; Keenan, T.; Dharssi, S.; Agro, E. A multi-task deep learning model for the classification of
Age-related Macular Degeneration. arXiv 2018, arXiv:1812.00422.

37. Liu, L.; Dou, Q.; Chen, H.; Qin, J.; Heng, P.A. Multi-task deep model with margin ranking loss for lung
nodule analysis. IEEE Trans. Med. Imaging 2019, 39, 718–728. [CrossRef] [PubMed]

38. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626.

39. Tu, Z.; Gao, S.; Zhou, K.; Chen, X.; Fu, H.; Gu, Z.; Chen, J.; Yu, Z.; Liu, J. SUNet: A Lesion Regularized
Model for Simultaneous Diabetic Retinopathy and Diabetic Macular Edema Grading. In Proceedings of the
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 4–7 April 2020;
pp. 1378–1382.

40. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks.
Inf. Process. Manag. 2009, 45, 427–437. [CrossRef]

41. Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry
and semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 7482–7491.

42. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Available online:
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 17 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1167/iovs.10-6633
http://www.ncbi.nlm.nih.gov/pubmed/21527381
http://dx.doi.org/10.1109/TMI.2019.2934577
http://www.ncbi.nlm.nih.gov/pubmed/31403410
http://dx.doi.org/10.1016/j.ipm.2009.03.002
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	CAM-Attention Module
	Self-Knowledge Distillation
	Mimicking Module

	Experiments
	Datasets Descriptions
	Experimental Setup
	Results on Messidor Dataset
	Results on IDRID Dataset

	Analysis and Discussion
	Ablation Studies
	Efficiency of the Network
	Discussion on Free Parameters Selection

	Conclusions
	
	Results on CIFAR-100

	References

