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Abstract: The Constrained Application Protocol (CoAP) is a representative messaging protocol for
Internet of Things (IoT) applications. It is noted that a lot of IoT-based streaming applications have
been recently deployed. Typically, CoAP uses User Datagram Protocol (UDP) as its underlying
protocol for lightweight messaging. However, it cannot provide reliability, since it is based on UDP.
Thus, the CoAP over Transmission Control Protocol (TCP) was recently proposed so as to provide
reliability. However, the existing schemes do not provide the error handling and flow controls suitably
for IoT-based streaming applications. This tends to induce throughput degradation in wireless lossy
networks. In this paper, we propose a CoAP-based streaming control (CoAP-SC) scheme, which is
an extension of CoAP over UDP with error handling and flow control for throughput enhancement.
The proposed CoAP-SC scheme is designed by considering the sequence number of data message,
the use of ACK messages, and the buffer size of sending buffer. To do this, a new CoAP option is
defined. For performance analysis, the proposed scheme is implemented and compared with the
existing schemes. From the testbed experimentations in various network environments, we see that
the proposed CoAP-SC scheme can provide better throughput than the existing CoAP-based schemes
by performing the error handling and flow control operations effectively.

Keywords: CoAP; error handling; flow control; IoT; streaming control

1. Introduction

With the growth of Internet-of-Things (IoT) services [1,2], a variety of streaming applications
have been deployed, in which multimedia data measured by sensors will be delivered to the server
by streaming transport [3]. The streaming transport is featured by the periodic and sequential data
transmissions. It is reported that the conventional transport schemes using HTTP and TCP are not
suitable for delivery of IoT applications, since these protocols are too heavy and complicated operations
to support the small sensor devices in IoT networks. In the meantime, the Constrained Application
Protocol (CoAP) was recently proposed. The CoAP is an application-layer protocol on top of UDP
and it can be used to provide better communication performance to IoT-based constrained devices in
wireless sensor networks. The CoAP is lightweight, compared to HTTP, and it provides a variety of
functions for IoT services, such as resource discovery and block transfer.

However, the conventional CoAP scheme does not consider the error handling and flow controls
for streaming transport, and thus the throughput performance tends to be degraded, in particular,
in wireless sensor networks. For example, in CoAP over UDP, if a message is lost, retransmission
will occur after a timeout event, and thus the error recovery mechanism may tend to increase a large
transmission delay. The CoAP over TCP can recover the lost packet quickly by utilizing the TCP’s fast
retransmission, but TCP mechanism may add some overhead to the IoT environment. In addition,
the CoAP over TCP inherits the complexity of TCP mechanisms that are not suitable for real-time
streaming services in the IoT environment, as shown in the head-of-line (HOL) blocking problem.
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To overcome these problems, we propose a CoAP-based streaming control (CoAP-SC), which is
an extension of CoAP over UDP with error handling and flow controls for throughput enhancement.
The proposed scheme is designed by considering the sequence number of data message, the use of
ACK messages, and the buffer size of the sending buffer.

This paper is organized as follows. Section 2 briefly reviews the existing schemes for streaming
transport. In Section 3, we describe the proposed CoAP-SC (CoAP with Streaming Control) scheme.
Section 4 discusses the experimentation results for performance analysis. Finally, Section 5 concludes
this paper.

2. Related Works

2.1. CoAP over UDP

The CoAP [4] is the widely used protocol in constrained network environments, such as sensor
networks. Originally, CoAP based on UDP was developed to minimize network resource waste due to
connection establishment and retransmission in network environments with low power, high loss,
and low network bandwidth [5]. CoAP supports the Representational State Transfer (REST) architecture
by considering the compatibility with the web services [6,7]. In addition, it provides essential functions
for developing services that are not supported by UDP, such as reliable data transmission. The CoAP
has been standardized in the IETF CoRE WG. Figure 1 shows the CoAP over UDP header format.
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Figure 1. CoAP over UDP header format.

The first 4 bits of the CoAP over UDP header refers to the version. The CoAP message has four
types: Confirmable, Non-Confirmable, Acknowledgement, and Reset. It is expressed in the following
4 bits. The next 8 bits are the length of the token. TKL indicates a token length between 0 and 8,
and 9~15 are reserved. The code field is split into a 3-bit class (most significant bits) and 5-bit detail
(least significant bits). The code field indicates the message type such as GET, POST, PUT, DELETE in
the request message, and the response code, such as 2.01 Created, in the response message. Message ID
is used to detect duplication and also for optional reliability. Request-response message pairs have the
same Message ID. If the token length is not 0, the token (indicated by the TKL) will be located after the
Message ID field. The token value serves as a transaction ID. If large data is transmitted through a
CoAP message, it is fragmented due to the characteristics of UDP. All the fragmented messages and
the corresponding response message indicate that it is a chunk of data with the same token value.
CoAP option is located between the CoAP basic header and the payload, and most CoAP extensions
use this option field.

The CoAP provides many functions that UDP does not provide for service development. However,
it is not suitable for streaming services [8,9]. For streaming transport, a wireless sensor (client or
sender) transmits its sensing streaming data to the server (or receiver), periodically and sequentially.
Basically, CoAP over UDP is designed for a simple message transport, and thus it has some limitations
for streaming transport. This is because CoAP was designed based on the REST model and it uses
UDP as its underlying protocol. CoAP provides only a simple error recovery mechanism using the
CON and ACK types in data transmission.
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Figure 2 shows the error handling mechanism of CoAP over UDP. In step (1), the ACK messages
are transmitted for all CON messages. This mechanism may create unnecessary ACKs. As you can
also see in step (2), this protocol does not have any field for sequence number.
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Figure 3 shows the error handling scenario for CoAP over UDP. In this figure, ACK message for
PUT message (/stream/20) has been lost and the PUT message is retransmitted after the PUT message
(/stream/25) is sent. In addition, CoAP over UDP retransmits data messages if a timeout event occurs.
Thus, it may give poor performance in case the messages must be processed sequentially.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 19 

 

model and it uses UDP as its underlying protocol. CoAP provides only a simple error recovery 
mechanism using the CON and ACK types in data transmission.  

Figure 2 shows the error handling mechanism of CoAP over UDP. In step (1), the ACK messages 
are transmitted for all CON messages. This mechanism may create unnecessary ACKs. As you can 
also see in step (2), this protocol does not have any field for sequence number.  

 
Figure 2. Packet analysis for CoAP over UDP. 

Figure 3 shows the error handling scenario for CoAP over UDP. In this figure, ACK message for 
PUT message (/stream/20) has been lost and the PUT message is retransmitted after the PUT message 
(/stream/25) is sent. In addition, CoAP over UDP retransmits data messages if a timeout event occurs. 
Thus, it may give poor performance in case the messages must be processed sequentially. 

 
Figure 3. Packet analysis for error handling of CoAP over UDP. 

In addition, CoAP over UDP does not provide any flow control mechanism to facilitate the 
streaming data transmission at the sender. These features tend to incur the degradation of throughput 
performance in wireless and lossy networks. Some works have been conducted to overcome the 
shortcomings of the basic CoAP model, which include the CoAP-Observe schemes [10–12]. Figure 4 
shows the CoAP-Observe scenario. The receiver initiates the observation by sending a GET request 
message containing the CoAP-Observe option to the sender. The sender notifies the receiver of the 
changed status by sending a message including the Observe option, whenever the resource status 
changes. At this time, the Observe option can serve as a sequence number. However, these schemes 
do not address the error and flow controls effectively for streaming transport. The values included in 

Figure 3. Packet analysis for error handling of CoAP over UDP.

In addition, CoAP over UDP does not provide any flow control mechanism to facilitate the
streaming data transmission at the sender. These features tend to incur the degradation of throughput
performance in wireless and lossy networks. Some works have been conducted to overcome the
shortcomings of the basic CoAP model, which include the CoAP-Observe schemes [10–12]. Figure 4
shows the CoAP-Observe scenario. The receiver initiates the observation by sending a GET request
message containing the CoAP-Observe option to the sender. The sender notifies the receiver of the
changed status by sending a message including the Observe option, whenever the resource status
changes. At this time, the Observe option can serve as a sequence number. However, these schemes
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do not address the error and flow controls effectively for streaming transport. The values included
in the Observe option can only be used for reordering. That is, it cannot be used for other purposes,
such as fast retransmission. Thus, they are still subject to the performance degradation in wireless
lossy network.
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Figure 4. Packet analysis for CoAP-Observe in CoAP over UDP.

It is noted that the existing CoAP/UDP scheme gives a simple CON/ACK mechanism for reliability,
whereas this will paper proposes a more elaborated streaming control mechanism by considering the
sequence number of data message, the use of ACK messages, and the buffer size of the sending buffer.
This will be helpful to give better performance in the networks with data losses.

2.2. CoAP over TCP

As IoT services gradually grow, the research on convergence with web services is actively being
conducted. With the demand of TCP support for IoT, the CoAP over TCP has been proposed [13].
As the CoAP message is delivered by using TCP, the reliable transmission is guaranteed, and thus the
CoAP Confirmable and Acknowledge messages are no longer needed [14]. For this reason, the type
field has been removed. Instead, the fields for expressing the length information of the message
(Length Field and Extended Length Field) have been added, since the TCP header does not include the
field for the length information. Figure 5 shows the CoAP over TCP header format.
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If CoAP over TCP is used for streaming service, the TCP flow control and error control mechanisms
will be used [15]. As shown in step (1) and (2) of Figure 6, it is possible to take advantage of the TCP
cumulative ACK function. Thus, we expect that the CoAP over TCP can provide better performance
than the CoAP over UDP, if data messages must be processed sequentially. However, for IoT devices
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in a wireless network, the TCP three-way handshake messages (shown in step (3) of Figure 6) will
become a burden. Hence, this may induce the performance degradation.Electronics 2020, 9, x FOR PEER REVIEW 5 of 19 
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Figure 7 shows the error handling mechanism of CoAP over TCP. In step (1), the PUT message
(/stream/10) has been lost, and a retransmission message was immediately sent by the fast retransmission
algorithm of TCP. In addition, TCP may reduce the number of retransmissions through linear
combinations of the data and cumulative ACK [16–18]. In step (2), we can see that the size of the
retransmitted TCP packet has increased. This is because this packet includes the two PUT messages
(/stream/10,/stream/11). We can also see the cumulative ACK in the figure.
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The ACK message of TCP can reduce the retransmission delay. However, it may increase the
number of retransmissions due to the loss of the ACK message. Figure 8 illustrates this situation.
In this figure, the PUT message (/stream/12) has been retransmitted because of ACK loss.
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Moreover, the TCP three-way handshake mechanism will not be suitable for streaming transport of
real-time IoT data in mobile networks, in which many re-connections may occur. In Figure 9, the sender
is reconnected to the receiver due to a handover. At this time, a delay of about 500 ms occurred
due to the three-way handshake process. In addition, we can see that the transmitted PUT message
(/stream/14,/stream/15) was lost, until the sender confirmed that the connection was disconnected. TCP
provides reliability during the connection, but it does not provide reliability when reconnection occurs.
Thus, the developer must perform additional works in the application layer. The delay caused by a
three-way handshake or additional work makes TCP unsuitable for real-time streaming services.
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Moreover, the CoAP over TCP tends to inherit the performance degradation issues of TCP, such as
the Head of Line (HoL) blocking problem in wireless networks, since it operates on top of TCP [19–21].
Another drawback of CoAP over TCP is that we have to modify the kernel to solve these problems [22].

3. Proposed CoAP Streaming Control Scheme

Based on the analysis given in the previous section, this paper proposes an enhanced CoAP
scheme with streaming control (CoAP-SC) for IoT streaming transport. Since UDP does not provide
error handling and flow control functions, TCP may be used for the services that require the reliability.
However, the CoAP over TCP is still subject to the kernel modification and the performance degradation
for IoT streaming transport. Thus, in this paper, we design the CoAP-SC scheme based on CoAP
over UDP.

In the proposed scheme, we assume that a sender (client) transmits the streaming data to a
receiver (server) periodically and sequentially for IoT streaming transport. We propose the streaming
control mechanisms for throughput enhancement. The proposed control mechanism performs the
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error handling and flow control functions. To do this, the sequence number (SN) is assigned to each
data message by sender, and the ACK number (AN) is given by the receiver to confirm successful
reception of data message.

3.1. Initialization for CoAP-SC

The proposed scheme uses the existing CoAP initialization operation so as to arrange the resources
for streaming transport between the two end nodes. These operations will be helpful to create a
connection for streaming transport. Figure 10 shows the initialization process in the CoAP-SC.

In the figure, the sender first requests the creation of a resource to the receiver with a POST
message. This message will include the parameters associated with the streaming service, such as
authentication information. For CoAP-SC, the buffer size of the sender for streaming transport should
also be included into the POST message. It is noted that the other information and operations are the
same with those of the existing CoAP. When the resource is successfully created, the receiver returns
the URL of the generated resource via the 2.01 response message. Then, the sender issues a GET
request to the received URL, and the receiver responds with the 2.05 response message.

It is noted that the GET and its response messages should contain the sequence number (SN) and
ACK number (AN) fields. SN is sequentially assigned for each data message by the sender, whereas AN
is determined by the receiver to indicate that the corresponding data messages have been successfully
received. Note that AN is used as a cumulative ACK number. In the initialization process, both SN
and AN will be set to 0.
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3.2. Error Handling for CoAP-SC

In CoAP with streaming control, the sender transmits data messages to the receiver, and the
receiver responds to the sender with ACK messages, if necessary, as per the error handling and
flow controls.

All data messages generated by the sender should contain the CoAP-SC option, which will be
specified in Section III-D of this paper. The CoAP-SC option in a data message includes the SN and
AN fields, which are denoted by dataMsg.SN and dataMsg.AN, respectively. The first data message will
have dataMsg.SN = 1 and dataMsg.AN = 0.

Each time the receiver receives a data message from the sender, it will update its own AN value
(denoted by receiver.AN and initially set to 0) as the largest SN value of data messages that have been
received successfully and cumulatively. As done in the existing CoAP, if the receiver does not receive
any data message for a specific time, it sends an ACK message to inform the sender of the AN status.
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In the normal operation, the receiver will receive a data message with dataMsg.SN = receiver.AN + 1,
and then it will update its receiver.AN as dataMsg.SN.

Based on this description, in the error handling of CoAP-SC, the loss of data message is determined
by the receiver, if the following condition is true:

dataMsg.SN− receiver.AN > 1

Note that the above condition indicates there may be some losses of data messages, since the
receiver will expect the data message with dataMsg.SN = receiver.AN + 1. In this way, if a data loss is
detected, the receiver sends an ACK message to the sender as a retransmission request. This ACK
message includes the CoAP-SC option with the SNs of the data messages to be retransmitted.

Figure 11 shows an example of error handling operations for CoAP-SC. In the figure, the first
data (SN = 1, AN = 0) is transmitted, and the receiver will update its receiver.AN as 1. The second data
message is lost, and the third one is successfully received by the receiver. In this case, dataMsg.SN (=3)
> receiver.AN (=1) + 1, which indicates the loss of data message with SN = 2. This loss detection induces
the receiver to generate the ACK message with SN = 2 and AN = 1. Such ACK message is repeatedly
generated until the concerned data message is retransmitted and recovered, as shown in the figure.
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In Figure 12, the receiver confirms that the PUT messages (SN: 39~43, AN: 36) have been lost,
when it receives a PUT message (SN: 44, AN: 36) and sends the control messages (SN: 39~43, AN: 38)
in order to request retransmission. The sender retransmits the requested messages. In CoAP-SC,
the error handling mechanism can overcome the disadvantages of CoAP over UDP by providing the
fast retransmission.
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3.3. Flow Control for CoAP-SC

In the error handling, the receiver will generate the ACK message if a data loss is detected.
The ACK messages will be also generated for flow control. This ACK message is purposed to provide
the up-to-date AN information to the sender and thus facilitate the sender to transmit as much data as
possible. This will result in the throughput enhancement.

The flow control for CoAP-SC is designed by considering the following two points. First, the ACK
message of the receiver may be lost in the network. Secondly, ACK messages are helpful for throughput
enhancement, whereas too much generation of ACK messages may rather degrade throughput
performance. Thus, the ACK generation for flow control needs to be controlled appropriately.

Based on these considerations, the receiver will generate the ACK messages based on the SN
and AN values of the data message and the buffer size of the sender. Note that the buffer size of the
sender is already informed to the receiver in the initialization process (see Section 3.1). Specifically,
on reception of a data message, the receiver will send an ACK message to the sender, if the following
conditions are true:

(a) dataMsg.SN− dataMsg.AN ≥
1
3
·bu f size or

(b) dataMsg.SN− dataMsg.AN ≥
2
3
·bu f size

When condition (a) becomes true, an ACK message is generated only once. On the other hand,
whenever condition (b) is true, an ACK message is generated for each data message. Note that the
condition (a) indicates a prior alarm for buffer fullness, whereas condition (b) represents a critical
signal for buffer fullness, which may be derived from the loss of ACK message.

Figure 13 shows an example of flow control operations for CoAP-SC. In the figure, it is assumed
that the sending buffer can store the maximum of six data messages (buffer size = 6). The first ACK
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message for flow control is generated by condition (a), when the receiver receives the second data
message (SN = 2, AN = 0). The second ACK message is also generated by condition (a) for the data
message (SN = 4, AN = 2), but it is lost. The third ACK message is generated by condition (b) for the
data message (SN = 6, AN = 2). The ACK messages for flow control contain the same SN and AN
values, as shown in the figure.
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In Figure 14, the control message (SN: 21, AN: 21) has been lost. In the case of TCP, ACK loss
causes retransmission. However, in CoAP-SC, the sender does not need to retransmit. In the figure,
when the receiver receives the control message (SN: 25, AN: 18), it checks that the sender’s buffer is
more than 2/3 of fullness and then transmits a control message so as to flush the buffer, each time
it receives a data message. In this figure, the control messages (SN:25, AN:25/SN:26, AN:26, SN:27,
AN:27/SN:28, AN:28) were transmitted. The sender who receives control messages flushes the buffer
and updates its AN value. After receiving the control message (SN: 28, AN: 28), it can be confirmed
that the AN value has been updated in the PUT message (SN: 29, AN: 28).
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3.4. CoAP Option for CoAP-SC

For CoAP-SC, we define the CoAP-SC option header, as shown in Figure 15, which includes
8-byte Option Delta, 4-byte SN, and 4-byte AN fields. All data messages and ACK messages used for
error and flow controls will include this CoAP-SC option. In this Letter, the CoAP-SC option number
is arbitrarily set to 100.
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4. Performance Analysis by Experimentations

For performance analysis, the proposed CoAP-SC scheme is implemented and compared with the
existing schemes. The existing CoAP over TCP and CoAP over UDP schemes are experimented by
using the go-coap open source libraries [23]. The proposed CoAP-SC scheme is also implemented by
using the go-coap, and the resulting source codes are publically distributed [24].

For experimentation, Raspberry Pi was used as a sender, and a general-purpose personal computer
was used as a receiver. Figure 16 shows the testbed environment. The senders and receivers are
connected via the access point (AP). The bandwidth between APs was set to 1 Mbps. In order to
simulate packet losses, we generate a packet loss event by using a randomly generated number at the
AP every second, as shown in Figure 17.
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To evaluate overall performance of CoAP-SC in the network with error rate 0.1, we first compared
the average transmission delays for the three candidate schemes. In this experiment, a client measures
the temperature at each 500 ms intervals, and it sends the measured data (via 100 messages) to a server.
In total, we performed 10 experiments and got the average delays.

Figure 18 shows the average delays required for transmission of 100 messages sequentially over
10 trials. In this figure, we can see that CoAP over UDP gives larger latency than CoAP over TCP.
This is due to the disadvantage of CoAP over UDP, which is retransmitted when a timeout event occurs
for a packet loss. In addition, we can see that the proposed CoAP-SC scheme provides lower delays
than the existing two schemes. This is because CoAP-SC provides fast retransmission and also because
the retransmissions by ACK loss can be reduced.
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From now on, we conduct some more various experimentations to evaluate the performance
of the proposed CoAP-SC scheme. For streaming transport, the sender transmits totally 600 data
messages (N), with the payload size of 150 bytes, to the receiver. The time interval between the two
consecutive data messages is set to 500 ms. On the other hand, the different packet error rates and
buffer sizes are employed for performance evaluation. The packet error rates (P(E)) in the network are
configured by 0–0.3 (30%), and the buffer size of the sender is ranged from 1 to 10 data messages.

For each experiment, the three performance metrics are measured: Number of Retransmitted
Packets (NRP), Total Blocking Time (TBT) and Total Transmission Delay (TTD).

4.1. Number of Retransmitted Packets (NRP)

NRP represents the total number of data messages that have been retransmitted by the sender
during data transmission. It is noted that NRP will depend on how effectively the flow control is
performed in streaming transport. Usually, the retransmission occurs when a data packet is lost.
The retransmission will also occur unnecessarily, if an ACK packet is lost. Note that the proposed
scheme was designed by considering the ACK loss.

Figure 19 shows the NRP performance for different error rates. In the figure, we see that NRPs get
larger, as the packet error rates increase for all candidate schemes. However, we note that the proposed
CoAP-SC scheme gives smaller NRPs than the existing CoAP schemes. The gaps of performance get
larger, as the error rates increase. This is because the proposed scheme performs the error handling and
flow controls by considering the ACK loss, whereas the existing schemes tend to perform unnecessary
retransmissions. In the case of existing schemes, if the ACK message of the data message is lost,
the data message is also retransmitted. Among the existing schemes, the TCP-based CoAP provides
better performance than the UDP-based CoAP. This is because the CoAP over TCP scheme supports
cumulative ACK, and thus the number of retransmissions due to loss of ACK packet can be reduced,
compared to the CoAP over UDP scheme. From the results, we note that the proposed CoAP-SC scheme
utilizes the advantages of selective ACK as well as cumulative ACK through the streaming control
with SN and AN. Overall, we can see that the proposed CoAP-SC scheme gives better performance
than the existing two schemes.
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Figure 20 compares the NRP performance for different buffer sizes. The CoAP over UDP scheme
provides larger NRPs than CoAP over TCP and CoAP-SC. It is noted that CoAP-SC gives better
performance than CoAP over TCP for larger buffer sizes. This is because the proposed scheme can
reduce unnecessary retransmissions by using the error handling and flow controls. It is noted that the
proposed CoAP-SC scheme performs the flow control, based on the sending buffer. So, the number
of ACK messages can be reduced, since the receiver will check the sender’s buffer status by using
the SN and AN values. The receiver can also transmit a control message actively so as to flush the
sender’s buffer.
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4.2. Total Blocking Time (TBT)

TBT means the time duration in which the sending buffer is in the fullness state, during which
further data transmissions will be blocked. It is noted that TBT will depend on how effectively the flow
control is performed in streaming transport.

Figure 21 shows the TBTs of candidate schemes for different error rates. All candidate schemes
provide almost the same TBTs for low error rates. However, the proposed CoAP-SC scheme gives better
performance than the existing two schemes for high error rates. This is because the proposed scheme
can perform the flow control effectively even in the lossy network environments. In the CoAP over
UDP scheme, the flow control is not performed. So, all messages are removed from the buffer when
the corresponding ACK message is received. However, CoAP over TCP provides cumulative ACK
with fast retransmission. This makes it less sensitive to the ACK loss event, compared to the CoAP
over UDP. In the meantime, CoAP-SC provides cumulative ACK and fast retransmission, as done in
TCP. In addition, since the receiver transmits a control message according to the buffer status of the
sender, it is helpful to reduce the blocking time.
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Figure 22 compares the TBTs of the candidate schemes for different buffer sizes. As the buffer size
gets larger, TBTs tend to decrease for all candidate schemes. In the meantime, we see that the proposed
CoAP-SC scheme gives the best performance among the three candidate schemes by using the effective
flow control, when the buffer size is small.
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4.3. Total Transmission Delay (TTD)

TTD means the time duration in which packets have been delivered successfully. It is noted that TTD
depends on how effectively the flow control and error handling are performed in streaming transport.

Figures 23 and 24 show the TTDs of three candidate schemes for different error rates and buffer
sizes, respectively. From the figures, we can see that the proposed scheme provides lower TTDs than
the two existing schemes for all experiments. This performance gain comes from the error and flow
controls of the proposed scheme. The gaps of performance get larger, as the error rate and buffer size
increase in the network.

CoAP over UDP performs timeout-dependent retransmission when an error occurs, but CoAP
over TCP reduces delay by performing ACK-based fast retransmission. CoAP-SC also performs the
fast retransmission. However, unlike TCP, retransmissions will be reduced in CoAP-SC, because the
receiver requests retransmission only when the next data message is received. This tends to give the
best performance in terms of the total transmission delay for all messages.
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5. Conclusions

In this paper, we proposed a CoAP streaming control scheme with error handling and flow
control for IoT streaming transport. From the experimentation results, we see that the proposed
scheme provides better throughput than the existing UDP-based CoAP and TCP-based CoAP schemes.
It seems that this performance gain comes from the streaming control operations based on the sequence
number (SN), ACK number (AN), and the sending buffer. In conclusion, the existing CoAP/UDP and
CoAP/TCP schemes can be used for reliable services. However, the proposed scheme may also be
considered as a candidate scheme for real-time streaming services, in particular, in the IoT networks
with data losses, with the management of the associated parameters, such as SN and AN, etc.

On the other hand, it seems that the proposed scheme still requires some more works to reduce
the packet size for IoT environment. For further study, some methods need to be investigated,
which include linear combinations of the data, erasure coding and header compression [25].
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