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Abstract: Convolution neural networks (CNNs) have proven effectiveness, but they are not applicable
to all datasets, such as those with heterogeneous attributes, which are often used in the finance
and banking industries. Such datasets are difficult to classify, and to date, existing high-accuracy
classifiers and rule-extraction methods have not been able to achieve sufficiently high classification
accuracies or concise classification rules. This study aims to provide a new approach for achieving
transparency and conciseness in credit scoring datasets with heterogeneous attributes by using a
one-dimensional (1D) fully-connected layer first CNN combined with the Recursive-Rule Extraction
(Re-RX) algorithm with a J48graft decision tree (hereafter 1D FCLF-CNN). Based on a comparison
between the proposed 1D FCLF-CNN and existing rule extraction methods, our architecture enabled
the extraction of the most concise rules (6.2) and achieved the best accuracy (73.10%), i.e., the highest
interpretability–priority rule extraction. These results suggest that the 1D FCLF-CNN with Re-RX
with J48graft is very effective for extracting highly concise rules for heterogeneous credit scoring
datasets. Although it does not completely overcome the accuracy–interpretability dilemma for deep
learning, it does appear to resolve this issue for credit scoring datasets with heterogeneous attributes,
and thus, could lead to a new era in the financial industry.

Keywords: convolutional neural networks; transparency; rule extraction; conciseness; heterogeneous
attribute; dimension reduction; feature selection; credit scoring; risk assessment

1. Introduction

1.1. Background

Historically, assessing credit risk has been very important, yet extremely difficult. The banking
industry faces numerous types of risk that affect not only banks but also customers. A key element of
risk management in the banking industry is the need for appropriate customer selection. Credit scoring
is an effective approach used by banks to analyze money borrowing and lending [1]. To manage
financial risks, banks need to collect information from customers and other financial institutions to
be able to make sound decisions in terms of whether to lend money to clients; to this end, collecting
financial information can help differentiate safe from risky borrowers. Recently, the extraordinary
increases in computing speed coupled with considerable theoretical advances in machine learning
algorithms have created a renaissance in high modeling capabilities, with credit scoring being one of
numerous examples. Indeed, with advanced modeling capabilities, researchers have achieved very
high performances in making financial risk predictions [2].
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1.2. Types of Data Attributes

Data attributes consist of two major classes: categorical and numerical. Categorical attributes are
composed of two subclasses—nominal attributes and ordinal attributes—with the latter inheriting some
properties of the former. Similar to nominal attributes, all of the categories (i.e., the possible values) of
attributes in ordinal data—in other words, the data associated with only the ordinal attributes—are
qualitative and, therefore, unsuitable for mathematical operations; however, they are naturally ordered
and comparable [3].

1.3. Heterogeneous Credit Scoring

Credit scoring is a method used to assess the creditworthiness of a person or company applying for
bank credit. The characteristics of the dataset differ from those of structured datasets that contain only
ordinal attributes, such as the Australian credit scoring dataset (https://archive.ics.uci.edu/ml/datasets/
Statlog+(Australian+credit+approval)). From a practical perspective, categorical data that involve a
mix of nominal and ordinal attributes are common in credit scoring datasets [3]. In many cases, credit
scoring datasets contain customer profiles that consist of numerical, ordinal, and mainly nominal
attributes. Hereafter, we refer to these as heterogeneous credit scoring datasets. The German (-category)
credit scoring dataset (https://archive.ics.uci.edu/ml/datasets/statlog+(German+credit+data)) is typical
of heterogeneous credit scoring datasets. The heterogeneous (mixed attributes) structure of this dataset
makes it difficult to achieve very high accuracy in terms of credit scoring. Therefore, a number of
alternative approaches have been developed for credit scoring in the Australian and German datasets
in recent years, including support vector machines (SVMs) [4], ensemble classifiers [5,6], feature
selection [7], extreme learning machines [8], and deep learning (DL)-inspired classifiers [1,9].

Datasets that consist of heterogeneous attributes, such as the Australian and German datasets,
contain both numerical (continuous) and categorical attributes. Some classification and rule extraction
algorithms, such as SVMs and neural networks (NNs), do not work well with heterogeneous attributes
because to convert categorical into continuous values, a unique integer is assigned to each categorical
value in each feature set [10].

1.4. Accuracy–Interpretability Dilemma

In credit scoring, not only accuracy but also model interpretability is crucially important for three
main reasons. First, bank managers require interpretable models to be able to justify any reason given
for denying credit. Second, an interpretable model reduces the reluctance of bank managers to use
statistical techniques for making credit-related decisions [11]. Third, bank managers gain insight into
factors that affect credit only to the degree that they understand the information they receive [12].

Accuracy and interpretability have always been difficult to balance, and this is known as the
accuracy–interpretability dilemma [13]. Although a variety of complicated predictive high-performance
models have been proposed in the literature, in practice, interpretable models are still required by the
financial industry [12,14,15].

1.5. Rule Extraction and the “Black Box” Problem

Rule extraction was originally proposed by Gallant [16] for a shallow NN and by Saito and
Nakano [17] for the medical domain. For many years, extensive efforts have been made by many
researchers to resolve the “black box” problem of trained NNs using rule extraction [18]. Rule extraction
is a powerful type of artificial intelligence (AI)-based data mining that provides explanations and
interpretable capabilities for models generated by shallow NNs. Rule extraction attempts to reconcile
accuracy and interpretability by building a simple rule set that mimics how a well-performing complex
model (i.e., a “black box”) makes decisions for users [19]. The present author [20] previously conducted
a highly-cited survey on rule extraction algorithms and methods under a soft computing framework.
Bologna [21] proposed a new technique to extract “if-then-else” rules from discretized interpretable

https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+credit+approval
https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+credit+approval
https://archive.ics.uci.edu/ml/datasets/statlog+(German+credit+data
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multi-layer perceptron (DIMLP) ensembles, which was a pioneering work on rule extraction for NN
ensembles. Setiono et al. [22] first proposed a unique algorithm for concise rule extraction using the
concept of recursive-rule extraction. As a promising means to address the “black box” problem, a rule
extraction technology that is well-balanced between accuracy and interpretability was proposed for
shallow NNs [22]. Recently, Hayashi and Oisi [23] proposed a high-accuracy priority rule extraction
algorithm to enhance both the accuracy and interpretability of extracted rules; this is realized by
reconciling both of these criteria.

However, recently, a “new black box” problem caused by highly complex deep neural networks
(DNNs) generated by DL has arisen. To resolve this “new black box” problem, transparency and
interpretability are needed in DNNs. Symbolic rules were initially generated from deep belief
networks (DBNs) by Tran and Garcez d’Avila [24], who trained a DBN using the MNIST dataset.
The present author previously carried out a survey on the right direction needed to develop “white
box” deep learning for medical images [25] and also provided new unified insights on deep learning
for radiological and pathological images [26].

1.6. Recursive-Rule Extraction (Re-RX) and Related Algorithms

The Re-RX algorithm developed by Setiono et al. [22] repeats a backpropagation NN (BPNN),
NN pruning [27], and a C4.5 decision tree (DT) [28] in a recursive manner. A major advantage of
the Re-RX algorithm, which was designed as a rule extraction tool, is that it provides a hierarchical,
recursive consideration of discrete variables prior to the analysis of continuous data. Additionally,
it can generate classification rules from NNs that have been trained based on discrete and continuous
attributes. We previously proposed Re-RX with J48graft [29] for improving the interpretability of
extracted rules, Continuous Re-RX [30] for improving the accuracy of rule extraction, and Continuous
Re-RX with J48graft [18] for high accuracy-priority rule extraction.

2. Motivation for This Work

Motivation for Research

Recently, DL has been applied in many fields because of its theoretical appeal and remarkable
performance in terms of predictive accuracy. Despite comparisons with standard data mining
algorithms that highlight the superiority of such tools, its application to credit scoring for datasets
with heterogeneous attributes remains limited. Thus, it has become increasingly important to interpret
“black boxes” in machine learning, particularly in regard to convolutional neural networks (CNNs),
because of their lack of transparency. However, previous rule extraction methods are inappropriate for
CNNs, largely because they cannot generate concise and interpretable rules [25].

Explanations are particularly relevant in the banking sector, so “black box” models are approached
with caution. Actually, banking managers are typically unwilling to use DL for credit scoring when
credit is denied to a customer.

As shown in Figure 1, the best trade-off is when accuracy and interpretability can be enhanced
simultaneously. The black line indicates the trade-off curve (Pareto optimal), which balances accuracy
and interpretability. The red arrow indicates a shift from the trade-off curve to the ideal point
(high-accuracy and high-interpretability; most concise). We previously proposed a method to achieve
high accuracy-priority rule extraction [18]. “Black box” classifiers can be plotted as black dots placed
vertically on the axis for the test dataset accuracy (TS ACC). These accuracies are often higher than
those obtained using high accuracy-priority rule extraction for credit scoring datasets, which indicates
that the latest high-performance classifier for the Australian dataset does not completely overcome the
accuracy–interpretability dilemma [10]. In this section, as Re-RX with J48graft is the most important
component of our proposed method, we depict it using mathematical notations in Figure 2.
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The highest accuracy achieved for the German (-categorical) dataset was 86.57% by Tripathi et 
al. [7]. Kuppili et al. [8] and Tripathi et al. [9] achieved considerably higher accuracies using an SVM 
and NN requiring that each data instance was represented as a vector of real numbers. However, 
they did not handle nominal attributes appropriately as they converted these into numerical 
attributes before feeding them into classifiers. To handle datasets with heterogeneous attributes 
appropriately and maintain the characteristics of the nominal attributes, we believe that no such 
conversion should be conducted. For example, as follows, we show descriptions of three attributes 
of the German dataset: 

Attribute 1: (category—ordinal) 
Status of existing checking account 
A11: ... < 0 DM (Deutsche Mark) 
A12: 0 ≤ ... < 200 DM 
A13: ... ≥ 200 DM/salary assignments for at least 1 year 
Attribute 2: (continuous, numerical) 

Figure 1. Trade-off curve for accuracy-oriented and “black box” classifiers, high accuracy-priority
rule extraction, high interpretability–priority rule extraction, and high-accuracy and interpretability
rule extraction.
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Figure 2. The Recursive-Rule Extraction (Re-RX) with J48graft algorithm.

The highest accuracy achieved for the German (-categorical) dataset was 86.57% by
Tripathi et al. [7]. Kuppili et al. [8] and Tripathi et al. [9] achieved considerably higher accuracies
using an SVM and NN requiring that each data instance was represented as a vector of real numbers.
However, they did not handle nominal attributes appropriately as they converted these into numerical
attributes before feeding them into classifiers. To handle datasets with heterogeneous attributes
appropriately and maintain the characteristics of the nominal attributes, we believe that no such
conversion should be conducted. For example, as follows, we show descriptions of three attributes of
the German dataset:

Attribute 1: (category—ordinal)
Status of existing checking account
A11: . . . < 0 DM (Deutsche Mark)
A12: 0 ≤ . . . < 200 DM
A13: . . . ≥ 200 DM/salary assignments for at least 1 year
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Attribute 2: (continuous, numerical)
Duration in months
Attribute 3: (category—nominal)
Credit history
A30: no credit taken/all credits paid back duly
A31: all credits at this bank paid back duly
A32: existing credits paid back duly until now
A33: delay in paying off in the past
A34: critical account/other credits existing (not at this bank)

Despite the effectiveness of CNNs, researchers tend to overlook three issues; they are only
applicable to: (1) datasets with rich information hidden in the data, as in computer vision; (2) structured
datasets consisting of ordinal attributes; and (3) feature extraction from images. Resolving these issues
could expand the utility of CNNs to interpretable AI for wider and practical applications in finance
and banking. Therefore, this study aims to provide a new approach for transparency and conciseness
in heterogeneous attribute datasets using a one-dimensional (1D) CNN and the Re-RX algorithm
with J48graft.

Table 1 highlights our motivation. The advantage of our proposed method is that it provides
transparency and conciseness for datasets with heterogeneous attributes, whereas the disadvantage is
that it achieves slightly lower classification accuracy.

Table 1. Recent rule extraction methods for various data attributes (types).

Methods Data Attributes (Types) Ref.

Rule extraction for black box Numerical/categorical [4–8]

Deep Learning (DL)-inspired
rule extractionfor new black box

Images (pixels) [24–26]

Numerical/categorical [1,9,10]

Numerical/ordinal/nominal The proposed method

In the following section, we describe the Re-RX algorithm, Re-RX with J48graft, and 1D
fully-connected layer first CNN (1D FCLF-CNN). In Section 4, we propose highly concise rule
extraction using the 1D FCLF-CNN with Re-RX with J48graft. In Section 5, we describe experiments
involving two credit scoring datasets. In Section 6, we present the results based on the performance of
our and existing rule extraction methods. In Section 7, we discuss the significance of the 1D FCLF-CNN
with Re-RX with J48graft in terms of transparency and conciseness in heterogeneous credit scoring.
Finally, in Section 8, we summarize our findings.

3. Methods

3.1. Re-RX Algorithm with J48graft

To achieve both highly concise and accurate extracted rules, we recently proposed Re-RX with
J48graft [29,31], which is a “white box” model capable of providing highly accurate and concise
classification rules. As the potential capabilities of Re-RX with J48graft are somewhat unclear in
regard to extracting highly accurate and concise classification rules, we decided to elucidate the
synergistic effects between grafting and subdivision, which work effectively in combination. For a
better understanding of the mechanism underlying Re-RX with J48graft, a schematic overview is
provided in Figure 2.

As shown in Figure 3, a credit scoring dataset with all attributes was fed into a BPNN using a BP
classifier and pruned to remove irrelevant and redundant attributes. Next, a DT was generated using
J48graft [32] (grafted C4.5, i.e., C4.5A [33]).
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We also created if-then rules from the DT using postprocessing of J48graft. Each rule generated
using J48graft was not satisfactory for the given criterion, so the rule was further subdivided
(i.e., classification accuracy was enhanced, while the number of attributes per extracted rule and rules
per rule set increased) by the Re-RX algorithm.

We defined support for a rule as being based on the percentage of samples covered by that rule.
The support and corresponding error (incorrectly classified) rate of each rule were then checked. If the
error exceeded the covering rate while the support met the minimum threshold, then the rule was
further subdivided by calling the Re-RX algorithm recursively.

In contrast to existing “black box” models, Re-RX with J48graft provides high classification
accuracy and can be easily explained and interpreted in terms of concise extracted rules; that is, Re-RX
with J48graft is a “white box” (more understandable) model.

3.2. Deep Convolutional Neural Networks (DCNNs) and Inception Modules

DCNNs consist of a large number of connected NN convolutional or pooling layers. In addition,
DCNN structures have many overlapping layers; this increases the size of the features, including
the fully connected layers. Krizhevsky et al. [34] proposed AlexNet, which has achieved remarkably
improved performance, and this success has attracted much attention in DCNNs. Simonyan and
Zisserman [35] proposed VGGNet, which consists of 19 layers, and is therefore deeper than AlexNet.
VGGNet uses a 3 × 3 sized filter to extract more complex and representative features. VGGNet can
better approximate the objective function with increased nonlinearity and obtain a better feature
representation as the depth of the layer increases. However, DCNNs such as VGGNet are faced with a
number of problems, including degradation and high computational requirements in terms of both
memory and time.

Szegedy et al. [36] proposed GoogLeNet, a deeper and wider network than previous architectures.
In GoogLeNet, a new module called inception, which is a combination of layers with concatenated
convolution filters, was introduced. Inception modules [36] are basically stacked on top of each other
to comprise a network. The main idea was to consider a sparse structure in the CNN architecture and
cover the available dense components [37].

3.3. One-Dimensional Fully-Connected Layer First CNN (1D FCLF-CNN)

Liu et al. [38] first proposed a 1D FCLF-CNN to improve the classification performance of
structured datasets. In this network, the input layer is first connected to several fully connected layers,
followed by a typical CNN. Structured datasets are similar to disrupted image data, which appear
to have no local structure. In the 1D FCLF-CNN, the fully-connected layers before the convolutional
layers are seen as an encoder. Liu et al. [38] also used a fully-connected layer as an encoder by adding
a Softmax layer, which normalizes the output of fully-connected layers to 0–1, where 0 means that
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the degree of confidence is the lowest, and 1 the highest, thereby providing an important degree of
confidence for classification [39]. The encoder could transfer raw instances into representations with a
better local structure. Therefore, they believed that a 1D FCLF-CNN using a fully-connected layer as
an encoder would offer better performance than a pure 1D CNN. Thus, 1D FCLF-CNNs represent an
encoder-CNN stacking method capable of providing better performance than pure CNNs, particularly
for structured data.

For the convolutional layers of the 1D CNN and 1D FCLF-CNN, Liu et al. used variants of the
inception module [40], i.e., a bank of filters with different filter sizes. The inception module was used
because of its computational efficiency, and Keras [41] was implemented to build the 1D FCLF-CNN.

4. Theory

4.1. Highly Concise Rule Extraction Using a 1D FCLF-CNN with Re-RX with J48graft

As shown in Figure 2, Re-RX with J48graft consists of an NN and a J48graft classifier [18].
The Re-RX algorithm [22] does not make any assumptions regarding the NN architecture or pruning
method. Thus, the NN classifier was replaced with a 1D FCLF-CNN (Figure 4) to improve the accuracy
and drastically reduce the input features. We constructed a 1D FCLF-CNN using the inception module
shown in Figure 5.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 15 

 

For the convolutional layers of the 1D CNN and 1D FCLF-CNN, Liu et al. used variants of the 
inception module [40], i.e., a bank of filters with different filter sizes. The inception module was used 
because of its computational efficiency, and Keras [41] was implemented to build the 1D FCLF-CNN. 

4. Theory 

4.1. Highly Concise Rule Extraction Using a 1D FCLF-CNN with Re-RX with J48graft 

As shown in Figure 2, Re-RX with J48graft consists of an NN and a J48graft classifier [18]. The 
Re-RX algorithm [22] does not make any assumptions regarding the NN architecture or pruning 
method. Thus, the NN classifier was replaced with a 1D FCLF-CNN (Figure 4) to improve the 
accuracy and drastically reduce the input features. We constructed a 1D FCLF-CNN using the 
inception module shown in Figure 5. 

 
Figure 4. Schematic overview of the one-dimensional fully-connected layer first convolutional neural 
network (1D FCLF-CNN). 

Next, Re-RX with J48graft was applied to extract highly concise rules for datasets consisting of 
heterogeneous attributes (nominal, categorical, and numerical attributes). The 1D FCLF-CNN with 
Re-RX with J48graft (Figure 6) achieved highly concise rule extraction. 

 
Figure 5. One-dimensional fully-connected layer first convolutional neural network (1D FCLF-CNN) 
constructed using the inception module. 

Figure 4. Schematic overview of the one-dimensional fully-connected layer first convolutional neural
network (1D FCLF-CNN).

Electronics 2020, 9, x FOR PEER REVIEW 7 of 15 

 

For the convolutional layers of the 1D CNN and 1D FCLF-CNN, Liu et al. used variants of the 
inception module [40], i.e., a bank of filters with different filter sizes. The inception module was used 
because of its computational efficiency, and Keras [41] was implemented to build the 1D FCLF-CNN. 

4. Theory 

4.1. Highly Concise Rule Extraction Using a 1D FCLF-CNN with Re-RX with J48graft 

As shown in Figure 2, Re-RX with J48graft consists of an NN and a J48graft classifier [18]. The 
Re-RX algorithm [22] does not make any assumptions regarding the NN architecture or pruning 
method. Thus, the NN classifier was replaced with a 1D FCLF-CNN (Figure 4) to improve the 
accuracy and drastically reduce the input features. We constructed a 1D FCLF-CNN using the 
inception module shown in Figure 5. 

 
Figure 4. Schematic overview of the one-dimensional fully-connected layer first convolutional neural 
network (1D FCLF-CNN). 

Next, Re-RX with J48graft was applied to extract highly concise rules for datasets consisting of 
heterogeneous attributes (nominal, categorical, and numerical attributes). The 1D FCLF-CNN with 
Re-RX with J48graft (Figure 6) achieved highly concise rule extraction. 

 
Figure 5. One-dimensional fully-connected layer first convolutional neural network (1D FCLF-CNN) 
constructed using the inception module. 

Figure 5. One-dimensional fully-connected layer first convolutional neural network (1D FCLF-CNN)
constructed using the inception module.



Electronics 2020, 9, 1318 8 of 15

Next, Re-RX with J48graft was applied to extract highly concise rules for datasets consisting of
heterogeneous attributes (nominal, categorical, and numerical attributes). The 1D FCLF-CNN with
Re-RX with J48graft (Figure 6) achieved highly concise rule extraction.Electronics 2020, 9, x FOR PEER REVIEW 8 of 15 
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neural network (1D FCLF-CNN) with Re-RX with J48graft.

4.2. Rationale Behind the Architecture for the 1D FCLF-CNN with Re-RX with J48graft

The proposed architecture can be applied to heterogeneous credit datasets because the Re-RX
algorithm uses the J48graft DT. In the present method, the 1D FCLF-CNN provides selected attributes for
inputs via dimensionality reduction, which enables Re-RX with J48graft to extract highly concise rules.
Generally, rules can be extracted using pedagogical [19] approaches, such as C4.5 [28], J48graft [29,32],
Trepan [42], and ALPA [24], regardless of the input and output layers of DL networks for structured
datasets [25]. However, the proposed method can extract highly concise rules more effectively.

4.3. Attribute Selection by Dimension Reduction Using a 1D FCLF-CNN for Datasets with Heterogeneous
Attributes

The advantages of inception include feature extraction, dimensionality reduction,
and computational complexity reduction [37]. Therefore, variants of inception were used as the
convolutional layers in the 1D CNN and 1D FCLF-CNN [38]. The 1D FCLF-CNN offers better
classification performance because it detects more complex relations and reduces the number of input
attributes for structured datasets. Additionally, it facilitates the classification process by separating a
structured dataset belonging to different classes.

In this study, the 1D FCLF-CNN functioned as a classifier with high accuracy by eliminating
unnecessary attributes. The number of attributes input in Re-RX with J48graft were considerably
decreased. As a result, Re-RX with J48graft extracted drastically reduced numbers (−66.6%) of attributes
compared with those obtained by Chakraborty et al. [43]. We can easily set the values for the covering
and error rates in Re-RX with J48graft to minimize the number of subdivisions.

5. Experimental Procedure

In this study, k-fold cross-validation (CV) [44] was used to evaluate the classification rule accuracy
of the test datasets and guarantee the validity of the results. Structured datasets were trained using the
1D FCLF-CNN with Re-RX with J48graft. Then, the average classification accuracy using 10CV for the
test dataset (TS ACC), the number of extracted rules (# rules), and the area under the receiver operating
characteristic curve (AUC-ROC) [45] were obtained for the test dataset. The 1D FCLF-CNN with
Re-RX with J48graft took approximately 160 and 270 s to train the German and Australian datasets,
respectively, on a conventional PC (Intel Core i7 7500U; 2.7 GHz Intel; 8 GB RAM). The testing time
was negligible. In this study, Keras was used with Python for the German and Australian datasets.
We used ReLU and tanh as activation functions for the Australian and German datasets, respectively.
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We used Tree-structured Parzen Estimators (TPEs) [46] to optimize the hyperparameter values shown
in Table 2. We also used TPEs to optimize the type of activation functions because they optimize
discrete functions to determine the type of functions. The numbers of layers in the inception module
and the structure are shown in Figure 5.

Table 2. Parameter settings for training the 1D FCLF-CNN with Re-RX with J48graft using the German
and Australian credit scoring datasets.

Dataset German Australian

Pruning stop rate for 1D FCLF-CNN 0.13 0.20
# First layer in hidden units for 1D FCLF-CNN 4 3

Learning rate for 1D FCLF-CNN 0.0182 0.0106
Momentum factor for 1D FCLF-CNN 0.1154 0.7549

# Filters in each branch in the inception module 19 8
# Channels after concatenation 57 24

δ1 in Re-RX with J48graft 0.08 0.39
δ2 in Re-RX with J48graft 0.12 0.10

In previous works, the German dataset has been considered to have 13 categorical attributes;
however, based on the purposes of these attributes, 11 of them should in fact be treated as nominal
attributes, as shown in Table 3.

Table 3. Characteristics of the German and Australian credit scoring datasets.

Dataset German Australian

# Instances 1000 690
# Total features 20 14

Categorical nominal 10 0
Categorical ordinal 3 8

Continuous 7 6

6. Results

A comparison of the TS ACC and the average number of extracted rules (conciseness) for the
German dataset is shown in Tables 4 and 5, respectively. Similarly, a comparison of the TS ACC and
the average number of extracted rules (conciseness) for the Australian dataset is shown in Tables 6
and 7, respectively. Here, the parameters in Table 2 were used.

Table 4. Comparison of the performance of recent high-accuracy classifiers for the German credit
scoring dataset.

Methods TS ACC (%) AUC-ROC (%)

Neighborhood rough set + multilayer ensemble classification (10CV)
(Tripathi et al., 2018) [7] 86.57 —-

SVM + metaheuristics (10CV) (Hsu et al., 2018) [47] 84.00 —-
Information gain directed feature selection algorithm (10CV) (Jadhav et al.,

2018) [48] 82.80 0.753

Ensemble method based on the SMOTE (10CV) (Shen et al., 2019) [49] 78.70 0.810
Extreme Learning Machine (10CV) (Bequé and Lessmann, 2017) [50] 76.40 0.801

“—-” means that no information about the AUC-ROC was provided in the literature; SVM: support vector machine;
SMOTE: synthetic minority over-sampling technique.
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Table 5. Comparison of the performance of recent rule extraction methods and the proposed method
(in bold) for the German credit scoring dataset.

Method Average
# TS ACC (%)

Average
# Rules

Average
#AUC-ROC

Continuous Re-RX with J48graft (10 × 10CV) (Hayashi and
Oisi, 2018) [18] 79.0 44.9 0.72

Correlated-adjusted decision forest (mixed) (10CV)
(Florez-Lopez and Ramon-Jeronimo, 2015) [13] 77.4 49.0 0.79

Boosted shallow tree-G1 (10 × 10CV) (Bologna and
Hayashi, 2017) [51] 77.1 102.7 —-

Continuous Re-RX (10 × 10CV) (Hayashi et al., 2015) [30] 75.22 39.6 0.692
Electric rule extraction from a neural network with a

multihidden layer for a DNN trained by a DBN (5CV) [43] 74.50 8.0 —–

1D FCLF-CNN with Re-RX with J48graft (10CV)
(present paper) 73.10 6.2 0.622

Re-RX with J48graft (10 × 10CV) (Hayashi et al., 2018) [18] 72.80 16.65 0.650

10 × 10CV:10 runs of 10-fold cross validation.

Table 6. Comparison of the performance of high-accuracy classifiers for the Australian credit
scoring dataset.

Method TS ACC (%) AUC-ROC (%)

Deep genetic cascade ensemble of SVM classifier (10CV)
(Pławiak et al., 2019) [1] 97.39 —-

Spiking extreme learning machine (10CV)
(Kuppili et al., 2019) [8] 95.98 0.970

SVM + metaheuristics (10CV) (Hsu et al., 2018) [47] 92.75 —-
DL techniques: SNN and CNN (10CV)

(Tai and Huyen, 2019) [52] 87.54 —-

SNN: sequential neural network.

Table 7. Comparison of the performance of recent rule extraction methods and the proposed method
(in bold) for the Australian credit scoring dataset.

Method TS ACC (%) # Rules AUC-ROC (%)

Electric rule extraction from a neural network with a
multihidden layer for a DNN trained by a DBN (5CV) [43] 89.13 7.0 —-

Boosted shallow trees (gentle boosting) BST-G2 (10 × 10CV)
(Bologna and Hayashi, 2017) [51] 87.90 73.4 —-

Continuous Re-RX with J48graft (10 × 10CV) (Hayashi and
Oisi, 2018) [18] 87.82 14.1 0.870

Cont. Re-RX (10×10CV) (Hayashi et al., 2015) [29] 86.93 14.0 0.689
1D FCLF-CNN with Re-RX with J48graft (10 × 10CV)

(present paper) 86.53 2.6 0.871

Discretized interpretable MLP (DIMLP)-B (10 × 10CV)
(Bologna and Hayashi, 2017) [51] 86.5 21.4 —-

An example rule set for the German dataset (73.0% TS ACC) extracted by the proposed architecture
is presented below:

Rule 1: IF A1 = 1 AND A3 ≤ 2 THEN Class 1
Rule 2: IF A1 = 1 AND A3 > 2 THEN Class 0
Rule 3: IF A1 = 2 AND A12 = 4 THEN Class 1
Rule 4: IF A1 = 2 AND A12 , 4 THEN Class 0
Rule 5: IF A1 ≥ 3 THEN Class 0

where Class 0 is a good payer; Class 1 is a bad payer; A1 is the status of an existing checking
account; A1 = 1 is <0 DM—no checking account; A1 = 2 is <200 DM; A1 > 3 is ≥200 DM/salary
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assignments; A3 is credit history; A3 = 1 is all credit at this bank paid back duly; A3 = 2 is existing
credits paid back duly until now; A3 = 3 is the delay in paying off debt in the past; A12 is property;
and A12 = 4 is unknown/no property.

An example rule set for the Australian dataset (87.14% TS ACC) extracted by the proposed
architecture is presented below.

Rule 1: IF A8=0 THEN Class 0.
Rule 2: IF A8=1 AND A9=0 THEN Class 0.
Rule 3: IF A8=1 AND A9 =1 THEN Class 1.

7. Discussion

7.1. Discussion

The highest classification accuracy achieved for the German dataset (86.57%; [7]) was considerably
lower than that for the Australian dataset [9], which suggests that the German dataset was more
difficult to classify. The accuracy–interpretability dilemma often needs to be overcome based on the
performance obtained using interpretability–priority rule extraction, which is an accuracy-oriented and
“black box”-type classifier. Even if DL-inspired techniques are effective in improving the classification
accuracy, these methods could not be expected to transform the “black box” nature of DNNs trained
using DL into a “white box” nature consisting of a series of interpretable classification rules.

We demonstrated a trade-off between the average accuracy and number of extracted rules in
previous rule extraction methods [18]. As we previously described [31], when comparing rule sets
before and after subdivision, accuracy is expected to increase if a rule set has a higher average number
of antecedents; however, the higher the number of antecedents, the more complex the extracted
rules. In this case, not only decreased interpretability but also decreased generalization capability and
overfitting were observed for the test dataset.

Although Hayashi and Oisi [18] achieved the highest accuracy reported, their number of extracted
rules was 44.9, and a trade-off was apparent between accuracy and interpretability (reciprocal of
the number of rules) for high accuracy-priority rule extraction. By contrast, Setiono et al. [53]
proposed MINERVA, which achieved lower accuracy (70.51%) and extracted 8.4 concise rules for high
interpretability–priority rule extraction.

Recently, Santana et al. [54] reported classification rules for the German dataset using an NN with
a self-organization map (SOM) [55] and particle swarm optimization (PSO) [56]. The average number
of rules was 6.344 and the precision was 0.69. However, the number of rules to classify was slightly
larger, and the precision was inferior compared with that in the present study (73.10%). Very recently,
Chakraborty et al. [43] proposed rule extraction from a DNN using a deep belief network and BP
(ERENN-MHL). They achieved a TS ACC of 74.50% and an average number of 8.0 rules using 5CV for
the German dataset.

In this paper, we achieved the most concise rules (6.2) and the best accuracy (73.10%), i.e.,
the highest interpretability–priority rule extraction, for credit scoring datasets with heterogeneous
attributes. Re-RX with J48graft achieved slightly lower accuracy (72.78%) and extracted many more
rules (16.65) [18], which were the fewest for this level of accuracy. However, in terms of accuracy or
interpretability, no further major developments were achieved.

To solve the dilemma for datasets with heterogeneous attributes, the 1D FCLF-CNN with Re-RX
with J48graft functioned as a high-accuracy classifier by eliminating unnecessary attributes, which
drastically reduced the number of extracted rules. Therefore, the proposed method provided the most
concise rules (see Table 4).

For the Australian dataset, the 1D FCLF-CNN with Re-RX with J48graft achieved the most concise
rules (2.6) and considerably lower accuracy (86.53%) than the highest accuracy classifier (97.39%).
However, unlike the German dataset, the Australian dataset contains no nominal attributes; hence,
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it can be easily handled by DL-inspired classifiers [10]. Furthermore, the proposed algorithm achieved
a slightly lower accuracy than the DL-based method [52].

On the other hand, Santana et al. (2017) reported classification rules for the Australian dataset
using an NN with an SOM and PSO. The average number of rules was 3.01, and the precision was 0.858.
Although, the number of classification rules was substantially larger, the precision was inferior to that
achieved in the present study (86.53%). These results suggest that the proposed 1D FCLF-CNN with
Re-RX with J48graft is very effective for extracting highly concise rules for heterogeneous credit datasets.

7.2. Common Issues with Re-RX with J48graft and ERENN-MHL

Both Re-RX with J48graft and ERENN-MHL use the support (covering) and error rates to
reconcile accuracy and interpretability. Chakraborty et al. achieved a TS ACC of 74.50% and 8.0
rules for the German dataset. These rates were quite sensitive in terms of balancing accuracy and
interpretability [22,43]. Chakraborty et al. used 12 and 5 attributes for the German and Australian
datasets, respectively, to achieve average numbers of 1.6 and 1.0 antecedents (attributes per rule),
respectively. By contrast, our proposed method achieved average numbers of 1.24 and 0.86 antecedents
for the German and Australian datasets, respectively. Therefore, our method achieved substantially
more conciseness than ERENN-MHL.

Regarding the German dataset, attributes A1 and A3 were identical to the selected attributes
according to all six feature selection approaches [7], whereas A12 was selected by three feature
selection approaches. For the Australian dataset, A8 was identical to the selected attributes according
to all feature selection approaches, whereas A9 was selected by five feature-selection approaches.
Furthermore, the number of rules in the German and Australian datasets drastically decreased to 6.2
and 2.6, respectively. These results suggest that the dimension reduction in the 1D FCLF-CNN was
extremely effective in terms of feature selection for Re-RX with J48graft and enabled highly concise
rule extraction.

In summary, the main contribution of this study is the proposal of a 1D FCLF-CNN with Re-RX
with J48graft. We believe that by eliminating unnecessary attributes, this method enables highly
accurate classification, and as a result, Re-RX with J48graft avoids the disadvantages described in
Section 3.1 and can extract highly concise rules for heterogeneous credit scoring datasets effectively.

8. Conclusions

Datasets with heterogeneous attributes are often used in the finance and banking industries.
However, such datasets (e.g., the German dataset) are difficult to classify, and to date, existing
high-accuracy classifiers and rule-extraction methods have not been able to achieve sufficiently high
classification accuracies or concise classification rules. In this study, a 1D FCLF-CNN with Re-RX with
J48graft was proposed to extract highly concise rules for credit scoring datasets with heterogeneous
attributes. Although the 1D FCLF-CNN with Re-RX with J48graft does not completely overcome
the accuracy–interpretability dilemma for DL, it does appear to resolve this issue for credit scoring
datasets with heterogeneous attributes. Therefore, the proposed method could lead to a new era in the
financial industry.
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Notations

1/# Reciprocal number
TS ACC Test accuracy
# rules Number of rules
10 × 10CV 10 runs of 10-fold cross-validation

Abbreviations

CNN Convolutional neural network
1D One-dimensional
FCLF Fully-connected layer first
Re-RX Recursive-rule eXtraction
SVM Support vector machine
DL Deep learning
NN Neural network
DNN Deep neural network
AI Artificial intelligence
DCNN Deep convolutional neural network
BPNN Backpropagation neural network
CV Cross-validation
AUC-ROC Area under the receiver operating characteristic curve
SMOTE Synthetic minority over-sampling technique
DM Deutsche Mark
SOM Self-organization map
PSO Particle swarm optimization

ERENN-MHL
Electric rule extraction from a neural network with a
multi-hidden layer for a DNN
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