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Abstract: Machine learning becomes increasingly promising in specific emitter identification (SEI),
particularly in feature extraction and target recognition. Traditional features, such as radio frequency
(RF), pulse amplitude (PA), power spectral density (PSD), and etc., usually show limited recognition
effects when only a slight difference exists in radar signals. Numerous two-dimensional features on
transform domain, like various time-frequency representation and ambiguity function are used
to augment information abundance, whereas the unacceptable computational burden usually
emerges. To solve this problem, some artfully handcrafted features in transformed domain are
proposed, like representative slice of ambiguity function (AF-RS) and compressed sensing mask
(CS-MASK), to extract representative information that contributes to machine recognition task.
However, most handcrafted features only utilizing neural network as a classifier, few of them focus
on mining deep informative features from the perspective of machine cognition. Such feature
extraction that is based on human cognition instead of machine cognition may probably miss some
seemingly nominal texture information which actually contributes greatly to recognition, or collect
too much redundant information. In this paper, a novel data-driven feature extraction is proposed
based on machine cognition (MC-Feature) resort to saliency detection. Saliency detection exhibits
positive contributions and suppresses irrelevant contributions in a transform domain with the
help of a saliency map calculated from the accumulated gradients of each neuron to input data.
Finally, positive and irrelevant contributions in the saliency map are merged into a new feature.
Numerous experimental results demonstrate that the MC-feature can greatly strengthen the slight
intra-class difference in SEI and provides a possibility of interpretation of CNN.

Keywords: feature extraction; machine cognition; machine learning; specific emitter identification;
saliency detection

1. Introduction

Feature extraction is an important part in specific emitter identification (SEI), but it is more
than challenging because in modern complex electromagnetic environment, it is no longer enough
to accomplish SEI tasks only relying on some primitive properties of radar signals, like radio
frequency (RF), pulse amplitude (PA), pulse width (PW), power spectral density (PSD), and etc. [1–4].
Various two dimensional (2D) transform features, like short time Fourier transform (STFT), Wavelet
transform (WT), S transform (ST), Winger-Ville distribution (WVD), ambiguity function (AF), and etc.,
are used as feature input to classifier in order to represent more comprehensive information in
a feature. Although they can achieve good results, the information representation capacity of a
transformed feature and its data dimensionality are always a pair of paradox. Based on this problem,
some compressive sensing (CS) extraction methods are proposed: Wang, L. and Ji, H. propose a
representative slice of ambiguity function (AF-RS) in [5] which selects the most representative slice in a
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certain Doppler-lag. Zhu, M. and Zhang, X. propose compressive sensing mask (CS-MASK) in [6] which
is a low-dimensional feature with good representation by constraining the reconstruction error between
inverse transformation of the selected ambiguity function and the WVD of original signal. Reference [7]
performs synchrosqueezing transform on STFT, obtaining a more concentrated energy band and more
accurate instantaneous frequency trajectory which are merged into a new feature matrix. These are
all excellent handcrafted features that can achieve satisfying recognition rate in different scenarios.
However, there are still imperfections which can still be improved: (1) When AF-RS processing complex
modulated signals, only a single slice can rarely reflect all the key information in ambiguity domain.
As for CS-MASK, it is considerably complicated to find an appropriate optimization method in order to
satisfy the constraint condition for various signals. (2) The SST feature has better identification ability
for complex modulated signals in comparison to the former methods, whereas its effect fluctuates
when used to process simple modulated signals. In addition, some recognition methods in like acoustic
and speech identification, like Gaussian Mixed Model (GMM) may also be migrated to SEI signal
recognition [8,9]. However, there still exist some problems: GMM is based on a principle that the
datasets should be large enough, unfortunately, it is not easy to realize in SEI, because radar signal
acquisition needs higher experimental conditions, such as radar, microwave anechoic chamber, etc.
An effective feature is required that can achieve high recognition accuracy, even under small number
of datasets.

Various handcrafted features are proposed based on the authors’ firm conviction that the
information contained in these features caters recognition network. Concretely, in AF-RS, it is believed
that the slice located near origin in AF domain may represent most useful information, because of its
high amplitude and in CS-MASK, a low reconstruction errors is believed to have a good representation
of original AF. In the SST feature, it is believed that more accurate instantaneous frequency and
suppressed power band are probably the keys for recognition network to distinguish different types
of signals. Note that all of these handcrafted features mentioned above are based on the authors’
cognition. Nevertheless, does the recognition network really “looks” at this extracted information
when it does a recognition task? Does the extracted information still include redundant or even
interference information? Few references analyze these questions from the perspective of machine
cognition. Linear relevance propagation (LRP) is used in [7] to create a heat map, endeavoring to
demonstrate the validation of SST feature, which is a heuristic spirit, even though the interpretation
in [7] is quite simple and conjectural.

Machine learning (ML) has made tremendous success in computer vision during recent years,
especially in image enhancement, object detection, scene reconstruction, and etc. In the field of
object detection, lots of methods are used to segment the foreground object and background in an
image [10–12]. Simonyan, K. and Vedaldi, A proposed an image specific class saliency visualization
in [12] where a saliency map is created to reflect how different pixels in each grid impacts the final
classification result. Inspired by [7,12], a novel data-driven feature that is based on machine cognition
(MC- feature) is proposed in this paper combined with specific class saliency visualisation to “tell”
us where the network “looks” at and where the network “disinterest”, and then manipulate this
information into a feature. MC-feature has extraordinary representative capability of intra-class
fingerprint information of signals in SEI. This superiority is due to the understanding of the process
of feature extraction in machine rather than the complex manipulation on 2D features, which avoids
the difficulty of selecting the optimal parameters in AF-RS and CS-MASK. Additionally, MC-feature
can reflect the preference to different class signals, which provides a possibility of interpreting clear
physical meaning of MC-feature and innate recognition mechanism of machine.

The paper is arranged, as follows: Section 2 introduces two classical 2D transform domain feature
as well as two ingenious handcrafted features as the comparative algorithms. Section 3 elaborates the
mathematical rationale and procedures of the proposed algorithm. Numerous experimental results are
shown and analyzed in Section 4. Section 5 is the paper conclusion.
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2. 2D Transform Domain Feature

With the increasing complexity of signal form and modulation mode, particularly signals
with time-varying information, traditional one-dimensional features, such as RF ,PA, PW, and PSE,
have been difficult to satisfy the recognition requirements. Lots of two-dimensional transform domain
features have been proposed to allay the limitation of inadequate representation of one-dimensional
features. These features can be divided into primitive 2D transformation features and handcrafted 2D
transform features, which are introduced in Section 2.1 and Section 2.2, respectively.

2.1. Primitive Transform Domain Feature

Numerous 2D transforms or representation are proposed, such as STFT, WT, ST, WVD, and AF.
These features can capture time-varying information of frequency or amplitude of signals, meaning a
larger capacity of representation in comparison to one dimensional features. In this section, STFT and
AF will be introduced in details, because the MC-feature and two comparative features are based on
STFT and AF, respectively.

2.1.1. Short Time Fourier Transform

STFT is a widely used time-frequency representation tool in signal processing. STFT transforms
signals into time-frequency domain by performing Fourier Transform in a fixed window traversing
the entire time domain. The STFT of a given signal x(t) with a window g(t) in Schwartz class,
is defined as [13]:

Vg
x (t, f ) =

∫
R

x(τ)g∗(τ − t)e−i2π f τdτ, (1)

where g∗(t) is the complex conjugate of g(t), τ is time delay, and f is frequency. Compared with
one-dimensional features, STFT can reflect the variation of the frequency of each component with time;
hence, STFT holds a larger capacity of information representation. Nonetheless, the time window
with fixed width limits time-frequency resolution. Subsequently, to assuage the limitation of STFT,
numerous time-frequency transform methods with variable time-frequency resolution are proposed,
such as WT and ST. Even though the time-frequency resolution of STFT is limited, the concise and
easily implemented mathematical form makes STFT one of the most prevalently used time-frequency
analysis tools in signal processing. Here, four typical frequency modulation (FM) signals are taken as
examples: single-frequency x1(t), linear frequency modulation (LFM) x2(t), second-order frequency
modulation x3(t), and triangle frequency modulation x4(t), to show effects of STFT. The sampling
frequency and sampling time is set to 256 Hz and 1 s respectively. The specific forms of signals are
as follows:

x1(t) =sin(2π20t) (2)

x2(t) =sin(2π(20t2 + 20t)) (3)

x3(t) =sin(2π(15t3 + 20t)) (4)

x4(t) =sin(2π10(cos(2π0.5t))) (5)

Figure 1 shows the waveform and STFT of each signal. It can be seen that STFT can clearly reflect
the variation of frequency with respect to time, whereas the time-frequency resolution is fixed no
matter when the frequency is low or high.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Short time Fourier transform (STFT) of several typical simulation signals. (a–d) are time
domain waveform of x1(t), x2(t), x3(t), x4(t); (e–h) are corresponding STFT.

2.1.2. Ambiguity Function

AF is the inverse Fourier transform of the instantaneous autocorrelation function of a signal over
the time variable. Different from STFT that transforms signals in joint time-frequency domain (TFD),
AF transforms signals to time lag-Doppler lag domain [7]. The AF of signal x(t) is defined by:

Ax(τ, ν) =
∫ ∞

∞
x(t +

τ

2
)x∗(t− τ

2
)e−jντdt, (6)

where τ is time-lag and ν is Doppler-lag. It is clear from (6) that, when Doppler-lag is 0,
the AF degenerates into the integral of autocorrelation function of the signal with respect to
time. Therefore, the peak value of AF is located in the origin according to the property of
autocorrelation function.

Figure 2 shows the AF of each signal. From Figure 2, the energy is mostly concentrated near
the origin in AF domain, and the difference of each signal can be easily detected from sidelobes in
disparate shapes.

(a) (b) (c) (d)

Figure 2. AF of several typical simulation signals. (a–d) are AF of x1(t), x2(t), x3(t), x4(t).

2.2. Handcrafted Transform Domain Feature

While the primitive 2D features can represent more informative details of signals, the data
quantity of primitive 2D features is usually squared with the data quantity of the processed signal,
leading to unacceptable computation burden. With the development of theory of compressed sensing
(CS), some algorithms that are based on CS are proposed to alleviate this problem by extracting
some most representative parts of primitive 2D features as a new feature with smaller data quantity.
However, such compression inevitably jettisons some detailed texture information more or less;
hence, we usually attempt to seek a trade off between representative capability and data quantity.
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In this section, two excellent handcrafted transform domain features that are based on AF, AF-RS,
and CS-MASK, are introduced.

2.2.1. Representative Slice of Ambiguity Function

Because the energy of AF shows a peak value at origin, the slices of AF in a certain Doppler-lag
near zero (including zero-slice) could be considered as the major representative feature of radar signals
named representative slice.

A class-dependent algorithm to classify radar emitter is proposed by Gillespie and Atlas [14,15],
which is used to extract representative features of radar signals, followed by a kernel optimization
scheme in the AF domain. Direct Discriminant Ratio (DRR) is used as a criterion to rank the kernel
in [14], defined as:

DRR(τ, ν) =
C

∑
i=1

C

∑
j=1
| Āi − Āj |2, (7)

here, Āi means the "average" auto-ambiguity function of Class i. Frequency offset ν is usually set
near zero in order to rank the points along the major direction of ambiguity function distribution.
By this norm, AF-RS extracts the slices near the origin in delay-frequency offset domain as a feature set.
The most representative slice is selected as the feature, resulting in a great reduction in data quantity.
Figure 3 shows the AF-RS of each signal. It is clear that this feature with low data quantity (24× 24)
can vividly exhibit the difference of each signal in a very visible form.

(a) (b) (c) (d)

Figure 3. Representative slice of ambiguity function (AF-RS) of several typical simulation signals.
(a–d) are AF-RS of x1(t), x2(t), x3(t), x4(t).

It is necessary to note that there are still some small flaws that can be improved on AF-RS [7],
mainly in: (1) a sole slice at a fixed frequency may neglect other slices which contribute to identification
in other Doppler-lag. (2) The selection of representative slice must by implemented by complex feature
fusion optimization, which probably makes it unfeasible to achieve real-time optimization. It must be
based on recognition rate feedback, which results in large computational complexity.

2.2.2. Compressed Sensing Mask

CS-MASK is an ingenious handcrafted feature extraction method combining CS theory and
properties of AF and WVD [6]. CS-MASK seeks for a small-sized region in AF, where most
representative information is included by constraining the error between WVD reconstructed from
CS-MASK and original WVD.

It can be seen from (6) that the two-dimensional inverse Fourier transform of the Wigner–Ville
distribution is the ambiguity function, as shown below:

Ax(τ, ν) =
∫ ∞

∞
x(t +

τ

2
)x∗(t− τ

2
)e−jντdt (8)

=
∫ ∞

∞

∫ ∞

∞
WVDx(t, f )e−j(ντ+τ f )dtd f , (9)
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where WVDx(t, f ) is Winger–Ville Distribution (WVD) of signal x(t), a kind of quadratic
time-frequency representation tool, defined as:

WVDx(t, f ) =
∫ ∞

∞
x(t +

τ

2
)x∗(t− τ

2
)e−j2π f τdt. (10)

Set WVD and ambiguity in the form of column vectors in size of N × 1; hence, the matrix form of
AF can be written as:

Ax(N×1) = Ψ(N×N) ·WD(N×1), (11)

where Ψ is Fourier transform matrix in size of N × N, and WD is the matrix form of WVD of x(t).
To reconstruct Wigner–Ville distribution from ambiguity function with high accuracy and low data
dimension, a measurement matrix Φ in size of M× N (M� N) based on CS is used to extract those
large non-zero values in Ax. Feature Θ(M×1), an M sparse measurement of AF, is obtained, as follows:

Θ(M×1) =Ψ(N×N) ·Ax(N×1) (12)

=Φ(M×N) ·Ψ(N×N) ·WD(N×1). (13)

The optimal CS-MASK ΘBest can be implemented as following constraint:

ΘBest = arg
A

min‖Ax‖1, (14)

s.t.
N

∑
k=1

M

∑
n=1

1
MN

[F−1
2d {Θ

Best} −WD] ≤ ε, (15)

where F−1
2d is two-dimensional (2D) Fourier inverse transform, ε represents a user-specified bound to

constrain the error in an acceptable range. Because the 2D Fourier transform of ambiguity function
is WVD, the efficacy of the feature CS-MASK can be examined by the error between its 2D Fourier
inverse transform and WVD according to Equation (15) .

Figure 4 depicts CS-MASK of each signal. The signal length is 256, the size of the original
ambiguity function is 256 × 256, in comparison, the size of CS-MASK extracted according to
Equations (14) and (15) is 24× 24, meaning a great reduction of the feature size.

(a) (b) (c) (d)

Figure 4. Compressive sensing mask (CS-MASK) of several typical simulation signals. (a–d) are CS-MASK of
x1(t), x2(t), x3(t), x4(t).

The representative information contained in CS-MASK can be measured by the error between its
recovered WVD and original WVD. Figure 5 shows the WVD of the original signal and WVD of the
signal reconstructed by CS-MASK. It is really laudable that, even though CS-MASK only takes the zone
in size of 24× 24 near the origin, it contains the most information to reconstruct the complete WVD.

Nevertheless, there are still some imperfections in CS-MASK [7]: (1) the selection of the mask
region is based on the optimization criterion related to reconstructed WVD, so the calculation amount
is large, even though the rapid optimization method in two projects is proposed [6]; (2) the size of the
optimized feature is not fixed, but it will change with certain factors, such as signal modulation and
noise interference.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Comparison of inverse-transformed CS-MASK and WVD. (a–d) are WVD of x1(t), x2(t),
x3(t), x4(t); (e–h) are WVD inverse-transformed from CS-MASK respectively.

3. MC-Feature

In this section, the rationale of MC-feature is elucidated in details. As discussed above, 2D features
can be regarded as gray scale images, since the neural network perceive a 2D input from value of
each pixel not the object in human cognition. Therefore, a lot of saliency detection methods used
in image processing, like LRP, input cropping, deconvolution, and gradient algorithms [16] can be
also applied in SEI. Image-specific class saliency visualization (ISCSV), an effective saliency detection
technique based on gradient algorithm, is the theoretical basis of our proposed method. Firstly, ISCSV is
introduced in Section 3.1,. Subsequently, the production of saliency maps is shown in Section 3.2.
Finally, the operation procedures of the proposed method are presented in Section 3.3.

3.1. Image-Specific Class Saliency Visualisation

With the rapid development of computing capability of electronic devices, deep network,
especially deep Convolutional Neural Networks (CNN) [17,18] now being one of the most
prevalent choices for image classification [19,20] and remarkable achievements have been made.
However, the inner recognition mechanism of CNN is still in lack of systematic interpretation.
Understanding the cognition of CNN has become increasingly important and necessary when
CNN is applied in some special scenarios where nearly any nominal error is unacceptable,
like driverless automobiles, missile guidance, military radar image processing, and etc.. In a
previous work, [21] visualised deep network by seeking an input image which maximises the
neuron activity of an optimisation in the image space. Recently, the problem of CNNs visualisation
was addressed in [22] by the Deconvolutional Network (DeconvNet) architecture, which aims to
approximately reconstruct the input of each layer from its output. Yet, both of these two methods
consume large computational resources [21,22]. Ref. [12] proposed a very handy method to obtain
image-specific class saliency visualization (ICSV) by calculating the accumulated gradients of each
pixel during back propagation. In this paper, ISCSV is used as the visualization tool to generate a
kind of saliency map that reflects the contribution of each pixel in 2D transform domain to recognition
network. The details of processing is shown, as follows:

Assume that Vg
x (t, f ) is corresponding to a class i. A class score activation function Ci(·)

describes the relationship between the input and output of classification CNN. Generally, a CNN
contains multiple convolutional and full connection layers with their corresponding activation
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functions; hence, Ci(·) is a highly non-linear function. The complete Taylor expansion of Ci(·) in
the neighbourhood of Vg

x (t, f ) can be expressed as:

Ci(V)|V=Vg
x
=

∞

∑
n=0

C(n)
i (Vg

x )

n!
(V −Vg

x )
n. (16)

Here, we approximate Si(·) with a linear function in the neighbourhood of Vg
x (t, f ) by computing

the first-order Taylor expansion:

Si(V)|V=Vg
x
≈ Ci(V

g
x ) + C

′
i(V

g
x )(V −Vg

x )

= C
′
i(V

g
x )V + Ci(V

g
x )− C

′
i(V

g
x )V

g
x . (17)

Usually, there is a loss function J(Ci, L) with respect to Si and true labels L to measure the error
between the current output of NN and target labels. Noting that the second and third item in right
side of Equation (17), Ci(V

g
x )− C

′
i(V

g
x )V

g
x , can be regarded as a constant, the partial derivative of Ci(·)

and Jwith respect to the STFT V at Vg
x can be expressed as:

∂Ci
∂V

∣∣∣∣
V=Vg

x

= C
′
i(V

g
x ) (18)

∂J
∂V

∣∣∣∣
V=Vg

x

=
∂J
∂Ci

∂Ci
∂V

=
∂J
∂Si

C
′
i(V

g
x ). (19)

It is clear from Equation (19) that the magnitude of the derivative indicates which pixels need
to be changed the least to affect the class score the most; therefore, it visible to detect the positive
contributing pixels in 2D feature as well as irrelevant pixels if the gradient of each pixel can be obtained.

3.2. Saliency Map

Based on successful applications of ISCSV in saliency detection, it is considered that the
inner recognition mechanism can probably be reflected by ISCSV. As mentioned in Section 1,
various transformed features with 2 dimension can be regarded as an equivalent to the input in
Equation (16). In the beginning of forward propagation of CNN, each pixel in 2D transformed feature
is perceived by different convolutional kernel. The partial derivative of the loss between network
output and label with respect to network input is propagated back from layer-to-layer in the form of
neuron error δ. An overview of back propagation as well as its detailed algorithmic presentation can
be found in [23]. Here, we take a simple network model to explain how to obtain saliency maps of 2D
transform feature.

Figure 6 shows the structure of a simple neuron network. ω
(q)
ij denotes the weight from jth neuron

in (q− 1)th layer to ith neuron in qth layer, b(q)i denotes the bias of ith neuron in qth layer, and s(q)i is
the weighted input of ith neuron in lth layer defined as:

s(q)i =
N−1

∑
j=1

ω
(q)
ij x(q−1)

j , i, j = 1, 2, · · · , N, q = 1, 2, · · · , Q, (20)

x(q)j denotes the output of jth neuron in qth layer defined as:

x(q)i = σ(s(q)i + b(q)i ), (21)
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where σ(·) denotes the activation function of qth layer. The output of this network yi equals the output
of last layer x(Q)

i . This process is called forward propagation.

Figure 6. Structure of a neural network.

Now, we assume that there are P learning samples x(0)p (STFT of processed radar signals) with
their corresponding labels LP as below:

x(0)p =[x(0)p1 , · · · , x(0)pn0 ], (22)

Lp =[Lp1, · · · , LpnQ ]. (23)

After forward propagation, the output of last layer x(Q)
p can be obtained, and then a loss

Ep(Lp, x(Q)
p ) is used to measure the error between the output of network and true labels. The loss

function J can be formulated as the summation of each error:

J =
P

∑
p=1

Ep. (24)

Now, the partial derivative of the loss function J with respect to each weight ω
(q)
ij can be

expressed as:

∂J

∂ω
(q)
ij

=
P

∑
p=1

∂Ep

∂ω
(q)
ij

. (25)

Accordingly, we can set q = 1 to obtain the gradient Gp of J with respect to weights ω
(1)
ij connecting

the input data to the network:

Gp =
∂J

∂ω
(1)
ij

=
P

∑
p=1

∂Ep

∂ω
(1)
ij

, (26)
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where Gp is a matrix with the same size of the input data. Usually, the NN will be trained lots of
epochs, and the gradient is accumulated in every epoch; hence, the final saliency map Hp can be
calculated by the following formula:

Hp =
K

∑
n=1

Gp,n (27)

where n denotes the number of epoch, and K is the maximum of epoch.

3.3. MC-Feature

The proposed method can be compartmentalized into three main parts: initial training,
saliency map production, and re-training. Firstly, the 2D transform feature of radar signals are
divided into training set and testing set, then the training set is fed into a network1 as input to train
it, and the testing set is used to measure the performance of network1. Secondly, all of the data are
sent to forward propagate the well-trained network1 again, and then back propagate the error to the
first hidden layer. In this way, a set of saliency maps for each 2D transform feature can be obtained.
Thirdly, the saliency maps of original training set are sent to a new network with identical structure
of network1 to do training. The performance of this new network can be measured by the saliency
maps of original testing set. Figure 7 shows the flowchart of the proposed algorithm and Algorithm 1
elaborates the detailed steps of this algorithm.

Figure 7. Data flow diagram of the proposed algorithm.
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The procedures of the proposed algorithm (Algorithm 1)

Algorithm 1: Machine Cognition Based Feature Extraction

Input: V the transform feature of radar signals in size of (N,C,W,H) as well as corresponding labels L in size of (N,l),
N, C, W, H denote the number, channel, width, and height of the V, training rate λ represents a ratio of the
number of training set to testing set

Step1: Data Partition: Training set:
Vtr=V (1:λN),Ltr=L (1:λN); Testing set: Vte=V (λN+1:N), Lte=L (λN+1:N)

Step2: Feed the network1 with Vtr and Ltr:
do:

output1 = network1.model(Vtr) B train the network with both forward and back propagation
loss = J(output1, Ltr) B loss function
loss.backward()

while loss > µ || epoch< K B µ is the lowest acceptable loss, and K is the maximum of epochs
Obtain a well trained network1

Step3: Saliency maps production:
score = network1.forward(V) B the classification result of network1
score.backward(L)
Hp = V.grad.data

Step4: Retrain a new network2 whose structure is identical with network1
Feed the network2 with Hp(1 : λN) and L(1 : λN)

Repeat Step2
Obtain a well trained network2̂

Step5: Test the network2̂ with Hp(λN + 1 : N) and L(λN + 1 : N)

Output: network2̂ and Hp

4. Experimental Results

In this section, the detailed experimental results are presented and analyzed. Section 4.1 introduces
the detailed information about the data used in our experiment. Section 4.2 depicts the structure of the
recognition CNN. Section 4.3 shows the analysis of experimental results, including the interpretation
of CNN and comparison of recognition rate by different features.

4.1. Data Information

In real scenarios, there are numerous complex types of radar signals for different applications.
According to types of radar transmission, signals can be divided into impulse radar signal,
swept frequency radar signal, and continuous-wave radar signal [24]. According to the modulation
mode, the radar signal can be divided into analog modulated signal and digital modulated signal.
Analog modulation includes linear frequency modulation, quadrature amplitude modulation (QAM),
triangular frequency modulation, and etc. [25]. Digital modulation includes binary phase shift keying
(BPSK), quadrature phase shift keying (QPSK), 8 phase shift keying (8PSK), and etc. Besides, ultra wide
bandwidth (UWB) signal has been used successfully in radar systems for many years [26]. In this
experiment, four datasets are selected. In each dataset, the signals are set with the same parameters
(such as radio frequency and frequency modulation mode) and transmitted by 10 radars of same
type produced by the same manufacturer. 10 types of 500 approximate single-frequency signals from
10 civil aviation meteorological radars are involved in Database I. Database II contains 10 types of 500
single-frequency signals from 10 radar generators. Database III and database IV include 10 types of
500 (LFM) signals gleaned from radar signal generators. The time sampling points of each signal is
in length of 500. The reasons why these databases are selected are because (1) they are typical and
representative radar signals in SEI; and, (2) limited by experimental conditionals, signals with more
complex modulation are unavailable for us. We randomly select a signal from each dataset to show its
STFT in Figure 8.
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(a) (b) (c) (d)

Figure 8. STFT spectrum of each database, the signal in (a) is from DatasetI, the signal in (b) is from
DatasetII, the signal in (c) is from DatasetIII, the signal in (d) is from DatasetIV.

4.2. Recognition CNN Structure

The structure of CNN influences the final recognition effect greatly, hence, some extraordinary
artificial intelligence professions delved into network structure and numerous effective network
structures were designed, like LeNet-5 designed by Yann LeCun [27], AlexNet proposed by Hinton
and Alex Krizhevsky [28], VGG proposed by Oxford Visual Geometry Group [29], GoogleNet proposed
by Christian Szegedy [30], and etc.. It should be noted that this paper focuses on studying “what”
is learned by a certain network other than the difference between various networks. Accordingly,
LeNet-5, a very simple and effective CNN is used as classfier in this paper. Figure 9 shows the
structure of LeNet-5 which contains 7 hidden layers: 2 convolutional layers, 2 pooling layers, and 3
fully connected layers. It should be pointed that this kind of parameters setting is only suitable for
STFT and MC-feature. As for AF-RS and CS-MASK, the parameters of convolutional kernel and fully
connected layers should be adjusted according to the size of these two features.

Figure 9. Structure of LeNet 5.

4.3. Results Analysis

Figures 10–13 exhibit AF-RS, CS-MASK, STFT, and MC-feature of two signals belong to different
class in each dataset. It should be noted that the bright red and dark blue pixels in the proposed
method represent high magnitude of gradient, meaning a great impact on classification of network,
whereas the light green pixels mean nominal contribution to classification. In this way, we can obtain
the information that network really “looks” in the process of recognition. In comparison to AF-RS
and CS-MASK, which usually modify the area where the energy is concentrated in the transformed
domain, the proposed features are visibly more representative, shown in Figures 10–13. It is clear that
the divergence of other three features of two different class signals is not very apparent, while the
divergence of the proposed method can even be distinguished by eyes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. (a–d) are the AF-RS, CS-MASK, STFT, and machine cognition (MC)-feature feature of a
signal of class 1 in dataset I; (e–h) are respectively features of a signal of class 2 in dataset I.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. (a–d) are the AF-RS, CS-MASK, STFT, and MC-feature feature of a signal of class 8 in dataset
II; (e–h) are respectively features of a signal of class 9 in dataset II.

In order to verify the superiority of the proposed algorithm, AF-RS, CS-MASK, STFT, and Machine
Cognition Based feature are sent into LeNet 5 to recognize. We set µ = 0.01, K = 400, and training rate
from 5% to 60%. Tables 1–4 show the recognition rate of each dataset. Figure 14 exhibits the recognition
rate and training rate curves of different features in each data set. In general, the proposed feature
obtains a very high recognition rate when compared with other features in each dataset, even the
training rate is low. For dataset I, AF-RS cannot provide the network with enough useful information,
leading to a result that 10 types of signals are divided into only 2 class; hence, the recognition
rate retains approximately 20% no matter how training rate changes. For dataset II and dataset III,
AF-RS and CS-MASK contain some information that is conducive to the recognition task of network;
however, the recognition rate declines obviously when the training rate is below 20%. In addition,
even the training rate is over 40%, the network cannot learn more information from AF-RS and
CS-MASK. It is probably because these two features may lose some detailed texture information at cost
of dimensionality compression. Similar phenomenon also appears in dataset IV that the recognition
rate is only 10% of AF-RS and CS-MASK when the training rate is 5%, which means that the network
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learns nothing from these two features. In four datasets, the performance of STFT is relatively stable,
but still much lower than that of the proposed feature, especially when the training rate is less than 30%.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. (a–d) are the AF-RS, CS-MASK, STFT, and MC-feature feature of a signal of class 1 in dataset
III; (e–h) are respectively features of a signal of class 7 in dataset III.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. (a–d) are the AF-RS, CS-MASK, STFT, and MC-feature feature of a signal of class 7 in dataset
IV; (e–h) are respectively features of a signal of class 8 in dataset IV.

Table 1. The recognition rate of each feature for DatasetI.

Training
Rate(%)

Feature
AF-RS CS-MASK STFT MC-Feature

5 22% 39% 66% 95%
10 24% 42% 76% 98%
20 21% 41% 83% 99%
30 22% 61% 75% 97%
40 27% 63% 80% 99%
50 22% 62% 79% 98%
60 23% 72% 81% 99%
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Table 2. The recognition rate of each feature for DatasetII.

Training
Rate(%)

Feature
AF-RS CS-MASK STFT MC-Feature

5 44% 45% 46% 91%
10 61% 63% 67% 98%
20 64% 67% 68% 99%
30 69% 69% 69% 98%
40 67% 67% 78% 97%
50 78% 74% 80% 97%
60 77% 69% 92% 97%

Table 3. The recognition rate of each feature for DatasetIII.

Training
Rate(%)

Feature
AF-RS CS-MASK STFT MC-Feature

5 46% 30% 52% 89%
10 57% 36% 74% 89%
20 70% 47% 84% 96%
30 75% 61% 85% 97%
40 76% 64% 84% 100%
50 73% 61% 95% 98%
60 85% 71% 96% 100%

Table 4. The recognition rate of each feature for DatasetIV.

Training
Rate(%)

Feature
AF-RS CS-MASK STFT MC-Feature

5 10% 9% 66% 89%
10 58% 58% 82% 94%
20 60% 60% 85% 99%
30 56% 66% 88% 97%
40 57% 63% 88% 98%
50 58% 66% 92% 100%
60 56% 65% 93% 100%

The experimental results demonstrate the superiority of the proposed method. Furthermore, they also
indicate that some information based on human cognition, like the area concentrated energy, may be
not the key to a classification network, and some more informative parts behind the primitive 2D
features are not mined. From the perspective of machine learning, deep informative information can
be extracted in the proposed algorithm.
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(a) (b)

(c) (d)

Figure 14. Comparison of recognition rate of four features in DatasetI, II, III, IV. (a) DatasetI.
(b) DatasetII. (c) DatasetIII. (d) DatasetIV.

5. Conclusions

In this paper, we propose a novel SEI feature from perspective of machine cognition instead of
human cognition. The MC-feature can obtain considerably higher recognition accuracy in comparison
to other handcrafted features, particularly under scant data samples, which can greatly alleviate the
model immaturity that is caused by insufficient training radar signals. In addition, even though
MC-feature still remains to be deeply interpreted, it demonstrates that the information network
relies on for identification is much different from various handcrafted features based on human
cognition. It illuminates that it is quite necessary and potential to understand the inner mechanism of
recognition network. In the future, the clear and profound interpretation of the exact physical meaning
of MC-feature will be the focus of our study. Once the specific physical meaning of MC-feature can
be explained, the recognition network will no longer be a "black box", but an analytical mathematics
tool, which will widely broaden the application of machine learning in many scenarios. In the future,
the research on clear physical meaning of MC-feature of complex radar signals, like UWB and frequency
hopping signals, will be the focus of our research team.
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