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Abstract: Adversarial examples are theorized to exist for every type of neural network application.
Adversarial examples have been proven to exist in neural networks for visual-spectrum applications
and that they are highly transferable between such neural network applications. In this paper,
we study the existence of adversarial examples for Infrared neural networks that are applicable to
military and surveillance applications. This paper specifically studies the effectiveness of adversarial
attacks against neural networks trained on simulated Infrared imagery and the effectiveness of
adversarial training. Our research demonstrates the effectiveness of adversarial attacks on neural
networks trained on Infrared imagery, something that hasn’t been shown in prior works. Our research
shows that an increase in accuracy was shown in both adversarial and unperturbed Infrared images
after adversarial training. Adversarial training optimized for the L. norm leads to an increase in
performance against both adversarial and non-adversarial targets.
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1. Introduction

Surveillance is a common application of Infrared cameras and the detection/recognition tasks in the
electromagnetic band are common in military and surveillance applications. Low-wave Infrared (LWIR)
and Mid-wave Infrared (MWIR) are used in military applications such as Night Vision, missile targeting,
and computer vision applications including tracking. Real-time operations such as tracking work
through running an object recognition algorithm on frames of a video. This is resource-intensive, there
are multiple applications that are not running live but instead on a few seconds of delay because of
intensive CPU/GPU memory usage. Computer vision algorithms rely on numerous attributes of an
image that a human processing the image may take for granted. Images in Infrared and the Visual
spectrum differ in many of these attributes. Information that is shown in the Visual such as reflectively,
luminescence, color, and texture, is lost either partially or entirely when looking at the same object in
the Infrared spectrum. This is the motivation of this paper showing that exploiting the gradients of an
image can be an effective attack against computer vision models for surveillance trained on Infrared
imagery and that the same defenses being deployed for models trained for the visual spectrum can be
deployed models trained for the Infrared spectrum.

Adpversarial training is a simple training method to diminish the success of adversarial attacks. This
technique augments training data with adversarial examples created from the model. The ensemble
adversarial training method used by Tramer et al. in 2018 was used to diminish the success of transferred
adversarial examples [1]. This technique augments training data with adversarial examples created
from other models and or adversarial examples created to attack this specific network, to harden
algorithms against transferred adversarial examples. Adversarial training is optimized against one
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of the three image attack distances, L, Lo, L. For this investigation, we explore adversarial training
optimized for the Lo, distance.

This paper studies the existence of adversarial examples for Infrared neural networks that are
applicable to military and surveillance applications which are based on Infrared images and use neural
networks for detecting anomalies. Our study shows that adversarial training alleviates the problem and
creates robustness in models against similar adversarial examples. Adversarial training optimized for
the Lo norm leads to an increase in performance against both adversarial and non-adversarial targets.

Our investigation is novel because of its finding in regard to neural networks trained on Infrared
imagery. Prior to our work, no published research has shown the effectiveness of adversarial attacks
on neural networks trained on 1 channel unique imagery. Our work also shows the effectiveness of
adversarial training for neural networks retrained and trained from scratch on Infrared imagery which
addresses vulnerabilities in neural networks in current use for military applications. Standard RGB
images are composed of three channels of pixel information. Each of these channels correspondingly
represents red, green, and blue, respectively. The overlapping of the channels imitates visual light.
Infrared images in low wave and mid-wave are longer in wavelength and are one-channel images.

As discussed in Section 2, while there has been research into both adversarial examples
transferability, adversarial examples using the fast gradient sign method, and also Infrared models
viability and performance, no research has been done to establish that adversarial attacks work for
Infrared models and also that robustness of Infrared models can be improved using adversarial
training. This work aims at proving both the viability of adversarial attacks on Infrared models and
also the value of adversarial training on Infrared models.

2. Related Work

Research in [2] has introduced the idea of adversarial examples and named them perturbations,
as well as the idea of tranferability. Authors have concluded that neural networks that learn
through back-propagation share non-intuitive characteristics and blind spots. Consequently, the same
adversarial example can be very effective on multiple models trained on different sets of data. This work
was done using the MNIST Digit dataset with different subsets of 30,000 training images [3]. Adversarial
examples for one neural network are still statistically hard for another neural network trained on a
different subset of data or with different hyperparameters.

An ensemble method of adversarial training that augments training data with adversarial examples
transferred from other models has been introduced in [1]. Similarly, the work in [4] has extended
the application of adversarial examples to edge detection and boundary detection for images [4].
The research work in [5] has explained the underlying reasons behind the high transferability we see
from model to model in regard to adversarial examples [5].

Zhao et al. in their research tested transferability to other black box models such as Faster
RCNN, YOLO v3, SSD RCNN, and Mask RCNN [1,6,7]. These nested adversarial examples used
image transformation techniques to simulate varying factors, and their introduction of batch-variation
momentum training increased the transferability of their adversarial examples [6]. The work in [8] has
studied why obfuscating the gradients of an image does not stop attackers from successfully attacking
a model. The research work in [9] introduced methods to interpret adversarial training such as Total
Variation regularization and Lipschitz regularization. The work in [10] has introduced several attacks
that perform better than Fast Gradient Sign method (FGSM) according to the L, Lo, Ly metrics.

3. Proposed Approach

Our approach to understanding the effectiveness of adversarial training for Infrared images
was tri-fold. In order to ensure that our model complexity didn’t cause the change in accuracy after
adversarial training two separate neural architectures, one a simple 8-layered neural network that
would be trained from the ground up with empty weights. The other network would be pretrained on
a benchmarked ResNet50 algorithm to ensure that a comparison could be made with benchmarked
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RGB datasets, and that a complex model or deep neural network would be shown to have similar
results. Our second experimental axis was using both RGB and Infrared data to train separate models.
Each architecture was used to train two separate models one trained using RGB data and the other
Infrared data. The RGB ResNet50 model being the only model that didn’t need to be trained before
testing effectiveness on unperturbed test images. The dataset used was the CIFAR-10 dataset a
dataset comprised of 10 separate classes of images with 6000 per class. A grayscale and contrast
intensity along with Gaussian filtering, and lastly a concatenation into one channel was done to
create simulated Infrared version of the CIFAR-10 dataset. An upsampled example of this is shown in
Figure 1. Both architectures were then tested on imagery from the test sets, benchmarked, then tested
on adversarial images created using the PGD attack and benchmarked again. The models were then
retrained using Adversarial training, and benchmarked once again on unperturbed and perturbed
imagery. Both models were then tested on perturbed and non perturbed Infrared images from the
VAIS dataset which contains images of ships in Infrared [11]. An example of an image from the VAIS
dataset is shown in Figure 2.

Figure 1. CIFAR-10 simulated LWIR ship

Figure 2. VAIS LWIR ship.

4. Brief Overview of Neural Network

Neural networks are modeled to behave similarly to human or intelligent animal brains. Models
are able to learn tasks without being hard-coded and generally improve performance the longer
they ‘train’. A neural network is a layered network of neurons that are connected, and each of them
weighted. Hyperparameters that are defined before the network starts to train can have an effect
on the performance of the network. Weights are updated in the network through backpropagation.
The output of the network is some statistical distribution of classes, although this can be expressed in
multiple ways. Deep neural networks (DNN) are characterized as having many layers of neurons and
must use propagation to update weights of the network due to their size; all state-of-the-art DNN's
use backpropogation [7,12,13].
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4.1. System Flow Model

A typical system model is shown in Figure 3, where data and some perturbation are input into
the learning/predicting model that gives the (mis-)classification.

Perturbation

False
Classification

Highly Tranaferable
Data Adverserial
Example/data

Figure 3. System/flow model.

For some target model i € H, (X, yirue) and inputs, the adversary’s goal is to find an adversarial
example x,4, such that x,;, and x are “close”, yet the model misclassifies x,4,. Given some budget €,
output examples x4, where |x,4, — x| < €.This is exemplified in both the targeted and non targeted
equations in Sections 4.1.4 and 4.1.5.

The L-norms are calculated as below [10].

o Ly metric The Ly distance metric measures the number of coordinates in an image and its
adversarial perturbed counterpart that is not equal:

Lo = |x; # Xad0,i] 1)

o L, metric: The Ly distance metric measures the Euclidean distance between an image and its
adversarial perturbed counterpart:

(s

Il
—_

L, = (X — Xad0,i)? )

o Lo metric The Lo, measures the maximum change between any of the pixels between an image
and its adversarial perturbed counterpart:

Lo = max(|xi — Xadv,i

) ®)

4.1.1. White Box Scenarios

A white box attack is defined as an attack in which an attacker has complete access to the
model being attacked [14]. The FGSM is a proven, but, most importantly, fast attack for this scenario.
This optimizes for the Lo, metric. The attacker can use the gradients to surf towards an optimal
perturbation for this model. Since the attacker has access to the loss landscape, they can use this
information to attack the input gradients and maximize loss on the adversarial example with the
original class and minimize loss with the intended target class if the attack is targeted [5,8,14]:

Xado = Xe X (V] (0,x,1)) 4)
4.1.2. Black Box Scenarios

A black box attack is defined as an attack in which the attacker does not have access to the
model itself but only endpoints such as an API that accepts inputs and returns: outputs to the model.
The attacker may not have access to a probabilistic output from the model either. The model may output
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the highest likelihood class only; in this case, the attacker doesn’t get feedback. Momentum training
can be used in cases where the model gives a probabilistic output.

In situations where the attacker is deprived of multi-class output or gradient masking is being
used, the attacker can use an adversarial example created to work on a simpler model trained by the
attacker themselves that aligns with the target model. Zhao et al. in their research tested transferability
to other black box models such as Faster RCNN, YOLO v3, SSD RCNN, and Mask RCNN [1,9,15].
These nested adversarial examples used image transformation techniques to simulate varying factors,
and their introduction of batch-variation momentum training increased the transferability of their
adversarial examples [6].

4.1.3. Targeted vs. Non-Targeted Examples

An adversarial example is simply an input that forces a misclassification. The attacker reaches
its goal by merely forcing the source input to misclassify [1,14,16]. This can be achieved through the
attacker, abusing the input gradients.

Adversarial inputs can be invisible to the human eye but are visible to the neural networks
or computers, which use pixel value and gradients between pixels to perform recognition tasks.
Changing the value of one pixel in an image may result in a higher probability of another class
prediction. In this way, attackers can use gradients to attack the network. The same techniques that
work to attack neural networks that use RGB data can be used to attack neural networks that use
Infrared data. The Infrared image can be interpreted as a one channel image containing pixels with
values between black and white, with white meaning high radiation and black, meaning no radiation.

Adversarial attacks work regardless of the data set that the model is trained to recognize.
Object recognition models are not prophetic oracles that have infinite knowledge on a particular
subject but instead should be thought of as machines meticulously trained on recognizing features
of a particular set of classes. Each class can be thought of as a combination of weighted scores of
particular features within the feature space. Slight deviations of scored features on inputs can lead
to a different output mapping. Attackers attack the gradients of a network in order to gain their
desired misclassification.

4.1.4. Non-Targeted

ad’()x =x4+€X Sln(v_x](el x/]/truE)) (5)

- x:Inputimage

- Xu4p ¢ Adversarial Image
—  J:Loss Function

- Yirue - Model Output for x
—  ¢€: Tuneable parameter

An example in which an adversarial image meets the requirements of misclassifying the source
image, but in any vector. Any class ¥ is a optimal for the attacker. The adversarial image being
represented by adv,. The attacker does not care what the output class is as long as it is different then
the original class. The attacker maximizes the loss of the true label to gain any label other than it.

4.1.5. Targeted

adv, = max(J(x 4 €)y,, — 2 J(x+€)y) (©)
Y #Ytar

- x:Inputimage
Xadp : Adversarial Image
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] : Loss Function

- Yy ‘Targeted output

— ' : Any class that isn’t targeted
—  ¢€: Tunable parameter

A targeted example is one in which a specific class is targeted as output [1,14,17]. In the targeted
scenario, the attacker chooses a target class, and maximizes the loss of the true label while minimizing
the loss of the target label. This can be achieved by maximizing the loss of all classes not equal to the
target label while minimizing loss of the target label.

4.2. Attacks on Images

Ian Goodfellow first introduced the FGSM attack in 2015 [14]. The FGSM attack uses the optimized
gradients of a model to determine a direction towards a maximum. In an enclosed system where the
input in is an image and the output is the probability of this image belonging to each of five classes.
Using this information as feedback, an attacker is able to exploit the gradients of the Neural network
to travel in the direction of their desired classification [14]. An example of MNIST is shown in Figure 4.

An example of adversarial attack and Gradient masking is shown in Figure 4.

Gradient Masking was proposed as a method that could make it difficult for an attacker to
implement the optimized gradients attack. Any small perturbation is treated as the same example;
this does not provide useful gradients for the attacker to derive a direction to update pixels [18].
The attacker can still discover these directions by other means, such as using adversarial examples
that affect a smooth model. This defense, which was shown to be ineffective by Nicolas Papernot in
2016 [18], fails to improve the robustness of the model itself.

Clean Example Perturbation Adversarial Example

Prediction: 4 Prediction: 1
Probability: [0.1284] Probability: [0.1229]

Figure 4. An MNIST (Modified National Institute of Standards and Technology) example.

4.3. Transferability

The term transferability in terms of adversarial examples means the ability for valid adversarial
examples created from one model to work on other models. A common approach of creating a network
is to use transfer learning to reduce the costs of data collection, shorten the often lengthy training
process, and also to have a starting point that is bench-marked [10]. Data is precious in machine
learning; it is expensive in terms of resources to collect and label; therefore, it is common for different
algorithms to be trained on variations of the same data. The rise of transfer learning, which speeds
up the process of training a network and lessens the amount of computation needed to get a highly
efficient neural network, leaves many neural networks with similar complexities [5,19].

The size of input gradients, the variance between the surrogate and target models, and also the
variance of the loss landscape were found to be critical factors in the success of transfer attacks [5].
Numerous open-source algorithms have been tested with adversarial examples. Faster-RCNN has
been cracked using ShapeShifter digital perturbations again created with a gradient optimization [14].
These attacks were transferable to Inception V2, ResNet v2, and SSD-MobileNet v2 models.
Further research is yet to be done on universal transferability, as shown in Figure 5 (e.g., [20]).
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4.3.1. Possible Defenses

Potential defenses of adversarial attacks include adversarial training—in which adversarial
examples are included in the training of the algorithm. Although this is still vulnerable to adaptive
attack, this may be solved by using a GAN or similar continuous training approach to incorporate
more and more examples into the network [15]. Obfuscation of gradients in a model’s output, by only
showing top-1 class, can slow down an attacker, but doesn’t dissuade a savvy attacker and is therefore
not recommended as a defense from adversarial attacks [8].

It is assumed that the attacker has knowledge of what classes the network is trained on or at least
general knowledge about the data that the classifier was trained on, and also access to the trained
algorithm itself for performing the attack. For the attack performed in this research experiment,
access to the training data, in this case, images, is vital in order to exploit gradient changes in the
images. However, an attacker only needs to know of the classes that the model is trained on and can
then grab any image of said target class to create an adversarial image by cross-referencing the new
image with the output of the model fed said image as an input.

Adversarial Attacks Transferred From Other Models

Xception 100

VGG16 100
ResNet2 100
InceptionV3

VGG19 99.84

0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 11...
Model

Transfer Attack Succes

Figure 5. Transferability of adversarial attacks in machine learning from other models.

4.3.2. Description of the Solution

While FGSM makes the assumption that linear approximations for x can be used to make an
approximation of a region that is fast, the flaw with approach is that neural networks aren’t linear in
even small regions [21]. The PGD or Projected Gradient Descent instead maximizes the loss function
rather then performing gradient steps [21]. The intuition being that adding perturbed images to the
training dataset that the model is trained on adds robustness to the model. The robustness of the
model after training depends on the strength of the adversarial examples used in training [10,14,22].
The defense optimizes the total amount pixels that were changed in the image.

The PGD attack is implemented for each image with a label pair in the batch. For each clean
image in that minibatch, an adversarial image is created and added to the minibatch. After the creation
of the adversarial data set, the model is retrained and the loss of the model is improved on using
backpropagation [10,21,22]. The Adversarial training algorithm used is shown Algorithm 1. This is
expanding the range of pixel values that the model is accepting as the v, label. The model is thus
hardened against attacks against the Lo norm.
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Algorithm 1: Adversarial Training with PGD attack
Ensure: len(data) > batchgi,,
while minibatch € data do

advimages = H
while X, 4, € minibatch do
advy,y = PGD(model, X, Ytrye, epsilon)
advimagesﬂppend((advxf }/))
end while
minibatch.append(adviygges)
end while

model.train(epochs, data)

x : Input image

- Xg4p : Adversarial Image

— ] :Loss Function

- Ytrue :True Label

- ' : Any class that isn’t targeted
- epsilon : Tunable parameter

4.3.3. Comparison to Other Related Works

The results of this simulated Infrared dataset were compared to the CIFAR-10 dataset and also
the MNIST dataset. The MNIST dataset is comprised of the 10 Arabic digits drawn from a multitude
of angles. The CIFAR-100 dataset is composed of 100 classes of everyday objects, animals, and vehicles.
As a proxy for an Infrared dataset, this work augmented the CIFAR-10 dataset, which is a subset
of the CIFAR-100 dataset and a grayscale of all of the images. Results of the adversarial training
have been shown to vary in experiments of Madry [10] and also Shafahi [22]. Researchers in the
past have benchmarked the ResNet22 architecture at 200 epochs for the CIFAR-10 dataset at a 92.16%
accuracy [23]. Using this benchmark, our research shows the accuracy of an adversarial attack against
this model using the PGD attack. The ResNet22 architecture was then trained for the simulated
Infrared CIFAR-10 dataset. Our models have also been tested against Infrared images of Ships from the
VAIS dataset. This dataset contains hundreds of images of ships from differing distances, and angles
taken in LWIR [11].

5. Performance Evaluation: Results and Discussion

To be able to compare the results of adversarial training ofsimulated Infrared images, a control
CNN was also run using the CIFAR-10 dataset without grayscale augmentation. Adjusting Infrared
images via prepossessing is a common practice, due to the low pixel values and small gradients
between pixels, contrast adjustment and histogram, and the highlights bring out information in the
images that would be hidden without adjustment.

The simulated Infrared CNN shown in Figure 6 before adversarial training was 49% accurate
on the test set and 11% accurate when testing against adversarial images. After adversarial training,
the IR CNN improved by 13% to 60% accurate on the test set while being 46% accurate when testing on
adversarial images, a full 35% increase in accuracy against adversarial images. The control CNN shown
in Figure 7 achieved 55% test accuracy and 10% accuracy against adversarial images before adversarial
training. After adversarial training, the control achieved 75% test accuracy and 50% accuracy against
adversarial images.
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Figure 6. Accuracy with a simulated Infrared Model for CNN.

80 %

60 %

40 %

Accuracy

20 %

0 %

Simple RGB CNN
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10
Test Acc Adv Acc Post Train T... Post Train A...

Figure 7. Accuracy with an RGB Model for CNN.

The Infrared CNN shown in Figure 6, and the RGB CNN shown in Figure 7, performed poorly
against adversarial examples created via the PGD attack prior to adversarial training. Both models
improved dramatically from adversarial training, a 35% increase for the simulated Infrared model
with a final adversarial test accuracy of 46%; the control model increased from 10% accuracy to 50%
accuracy against adversarial images. Surprisingly, both models also increased overall accuracy against
the test set after adversarial training. The Infrared CNN model trained on simulated images also
showed an increase in performance on our Infrared dataset of ships from VAIS, an increase of 11% on
unperturbed images, and an increase of 40% on Adversarial images, as referenced in Figure 8.

% 80

% 60

% 40

Accuracy

% 20

% 0

IR CNN on VAIS
60
49 48
8
Test Acc Adv Acc Post Train T... Post Train A...

Figure 8. CNN Infrared Model accuracy on the VAIS Infrared dataset.
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Additionally adding more epochs to the training can cause over-fitting of the model, an inflection
point where performance degrades.

The simulated Infrared ResNet model shown in Figure 9 was pretrained on the CIFAR-10 dataset
and then retrained on the simulated Infrared CIFAR-10 dataset. Two hundred epochs were used as
a hyperparameter for models based on ResNet architecture. This allowed a fair comparison to the
published benchmarked ResNet model trained on the CIFAR-10 dataset. The model achieved a 75.82%
test accuracy after initial training. Adversarial examples were correctly labeled with a 12.19% accuracy
before adversarial training. After adversarial training, the model was able score a test accuracy of
83.13% training on the non-adversarial test set, and 69.13% accuracy on the adversarial test set.

IR ResNet22 on Simulated Infrared

% 100
83

% 80 75 69
& %60
o
]
3
< %40

% 20 12

o L]
Test Acc Adv Acc  Post Train T... Post Train A...

Figure 9. Accuracy with an Infrared model for ResNet.

The pre-trained ResNet model is shown in Figure 10. On the RGB test set, the benchmark level
of accuracy in literature was 92%. As expected, the model accuracy drastically decreased when
adversarial images were introduced. ResNet accuracy for the adversarial examples produced by the
PGD attack was 14.6%. After adversarial training, the test accuracy of the ResNet model increased
roughly 2% for a total accuracy of 94.56% and an adversarial accuracy of 85.7%.

RGB ResNet22

100 %
94.56 85.7
75 %
>
[&]
o
3 50 %
o
<
259
% 14.6
. ]
Test Acc Adv Acc Post Train T... Post Train A...

Figure 10. Accuracy for the RGB Model for ResNet.

Both the simulated Infrared and the RGB ResNet models showed improvement after adversarial
training. This result is in accordance with the smaller simple CNN's that were trained from scratch.
One major difference that can be noted between both model architectures is the number of layers and
the initial test accuracy. The RGB CNN performed quite poorly on a dataset that has been benchmarked
by sophisticated DNN'’s such as the ResNet at extremely high accuracy. Even small performance gains
for a DNN such as ResNet are valuable. If one can afford to do the computation, it is worth doing.
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Both the simulated Infrared and RGB ResNet models also showed drastic improvement on the
adversarial test set after adversarial training. This shows that they are in accordance once again with
the results from the simple CNN that were created for the experiment. The Infrared ResNet model
trained on simulated images also showed an increase in performance on our Infrared dataset of ships
from VAIS, an increase of 6% on unperturbed images, and an increase of 58% on Adversarial images,
as referenced in Figure 11.

IR ResNet22 on VAIS

% 125

% 100 90 6
3 %75 72
[
5
3
< %50

% 25 14
"o [
Test Acc Adv Acc Post Train T... Post Train A...

Figure 11. ResNet Infrared Model accuracy on the VAIS Infrared dataset.

The difference in computation time necessary for the two model architectures to be trained was
drastic. This is mostly due to the size of both networks and also the number of epochs used by both
models. A simple CNN was run for 20 epochs while the ResNet model was trained for 200 epochs
as dictated by its paper. The Resnet archictecture performed better with increased epochs, while the
simple CNN architecture overfit after 20 epochs. All other hyperparameters for the experiments were
kept the same with respect to each model architecture. The results also show that, while in the RGB
spectrum ResNet outperformed the CNN, in the IR part of the spectrum, there was a large difference
in performance after adversarial training. The difference in performance is exemplified in Figure 6,
and the IR ResNet model shown in Figure 9 is within 11% points.

6. Conclusions and Future Work

This research tested the validity of adversarial examples in neural networks trained on Infrared
images. Adversarial training resulted in a significant increase in performance in terms of accuracy
against adversarial test sets and unperturbed test sets. Adversarial training resulted in an 11% increase
in accuracy for the Infrared CNN tested on unperturbed images and a 35% increase in accuracy on
adversarial test images. We observed that the adversarial training for the RGB CNN led to a 20%
increase in accuracy against unperturbed images and a 40% increase in accuracy against adversarial
images. As for the ResNet model trained for the experiment, adversarial training led to a 2% increase
on the unperturbed images and a 70% increase in accuracy against adversarial test images. The ResNet
model showed similar results to the simple CNN that was trained in accordance with the IR model.
While starting off at a higher initial accuracy of 75%, a near 10% increase was achieved after adversarial
training on unperturbed images. On adversarial images, the ResNet model showed a 12% accuracy on
the adversarial test set while a 69% accuracy on the adversarial test set after adversarial training. Our
models trained on simulated Infrared imagery also generalized well on Infrared images from the VAIS
dataset. Models adversarially trained also showed improved performance on actual LWIR images.

As stated in the objectives, this experiment shows the drop-off in performance on neural networks
trained on RGB data and simulated Infrared data. For both simple and complex models trained on
simulated Infrared data, a substantive increase in accuracy was achieved. The simulated Infrared CNN
model achieved a final accuracy of 60%. The same CNN architecture trained on RGB data achieved a
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final accuracy of 75%. Furthermore, the experiment results showed a drop in performance on neural
networks trained on RGB data and simulated Infrared data. For both simple and complex models
trained on simulated Infrared data, a substantive increase in accuracy was achieved. The simulated
Infrared CNN model achieved a final accuracy of 60%. The same CNN architecture trained on RGB
data achieved a final accuracy of 75%.

The adversarial images created with the PGD attack worked just as theorized in the case of both
the RGB and FGSM models. Adversarial training optimized for the L. metric proved to increase
accuracy in both unperturbed and perturbed images; this study proves that adversarial training
increases model robustness for both deep and simple model architectures for simulated Infrared and
RGB data.
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