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Abstract: 5G has brought a huge increase in data, and the number of nodes and types of messages
are becoming more and more complex. The Internet of things has become a large and complex
network. More and more devices can be used as nodes in opportunistic social networks. The attitude
of nodes to messages is different and changeable. However, in the previous opportunistic network
algorithm and mass data transmission environment, due to the lack of effective information selection
and management means, it was easy to lead to transmission delay and high consumption. Therefore,
we propose Effective Data Selection and Management (EDSM). EDSM uses the current state of the
node as the basis for forwarding messages. When the cache space is insufficient, EDSM will perform
cache replacement based on the message cache value and delete the information with the lowest
cache value. Simulation results show that the algorithm has good performance in terms of delivery
rate and latency.

Keywords: opportunistic social network; competitive relationship; effective data; state of the node;
cache value

1. Introduction

The 5G era is coming, and network users and various electronic devices are increasing day by
day [1,2]. People’s daily work and life have become increasingly inseparable from networks (Microblog,
Facebook, various Communities, etc.), which leads to the continuous growth of data volume in the
network [3]. News and advertising information will be spread on the Internet, so understanding
the communication mechanism behind the information can help people to better understand the
information on the Internet [4–6].

The information dissemination on opportunistic social networks has changed under the influence of
many factors [7–9], including the choice of nodes and the change in information transmission. There are
many factors that affect information transmission and these factors play an important role [10–12].
Basically, they are related to nodes or messages [13]. In addition, information dissemination on social
media is sometimes affected by the information push function provided by social media services,
such as Facebook’s News Feed, and Sina Microblog’s instant tweet. These aspects are the key factors
of network information dissemination [14,15], which together determine the mechanism of network
information dissemination.

However, most nodes in opportunistic social networks use mobile devices, and the chance of
encountering between-nodes creates characteristics of intermittent connection [16–18]. Therefore,
during a node encounter, the amount of message interaction is limited. This means that accurate
and effective information needs to be transmitted, especially now that the devices are mobile [19–21].
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In such a complex network, not only the basis of forwarding messages, but also the state of nodes
should be considered, because the state of nodes has different attitudes to messages.

Opportunistic social networks have a lot of information, and there are complex relationships
between nodes [22–24]. We propose an information propagation model for node state transition.
The in-depth analysis of the competition propagation process of different types of information on
the opportunistic social networks proves that the network node state is Markov, and the node state
transition probability matrix and its calculation formula are derived. This divides messages into
different types, and the node state is affected by the node’s propagation speed, replacement rate,
and discard rate, and opportunistic social network topology. In the case of insufficient cache space,
messages can be selectively deleted according to the cache value and node state.

Specifically, the main contribution of this paper can be summarized as the following three aspects:

1. Combining Markov chain theory, a competitive information dissemination model based on
opportunity social network is proposed, which describes the transition between different states
of nodes;

2. Determine the state of the node at the current time by deriving the transition probability between
different states. The node forwards different types of messages with priority according to the
state of the node;

3. A message caching mechanism is proposed. When the node cache space is insufficient, the message
with the least cache value in the cache space is selected and replaced according to the node state.

The rest of the paper is arranged as follows. The second section discusses the related work.
The third section introduces system model design, includes the state transition matrix and transition
probability. The fourth part presents the performance evaluation of the proposed method and the
analysis with other algorithms. The last part includes the summary of the whole work.

2. Related Work

In Reference [25], the authors propose a basic interest-based dissemination algorithm, to show
that nodes tend to group together based on interests. The algorithm uses the information of nodes’
social connections, interests and contact history as an important basis for dissemination because they
think that nodes based on the same interest have a higher chance of meeting, that is, the same interest
represents the same benefits [26]. However, this kind of interest is diverse, and it will change as the
nodes change. When the interests are very broad, or the interest is too single, it may cause certain
problems. Finally, they propose five heuristics for sorting the messages in a node’s memory, and solve
the energy consumption caused by the exchange of large amounts of unrelated data in Epidemics.

Ying et al. [27] propose a fair and socially aware message-forwarding mechanism for opportunistic
social networks. The number of nodes forwarding messages depends on the current social relationship
and the remaining life of the message. By limiting the number of messages forwarded by users with
strong social relationships, the problem of fairness in message-forwarding is solved to a certain extent.
At the same time, a social relationship credit is set for the nodes, and the Markov chain model is used
to study and update the social connections of the nodes. This means that the messages generated by
different nodes have different priorities when transmitting messages, which further improves the issue
of fairness.

Socievole et al. [28] proposed a method of constructing multiple social network layers using
temporal detected social network(DSN) graph and other static social network graphs, and a routing
protocol ML-SOR that uses multiple layers of social networks to select nodes as message relays.
It changes the choice of finding the right message relay node in the past and studies the relationships
between social network layers in terms of node centrality, community structure, connection strength,
and link prediction [29]. Obviously, it can be seen that the similarity between communities at different
levels is very low [30], and the DSN graphs are closely related. The analysis of the behavior of nodes
on different social network layers provides novel insights into the comparability of social networks.
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Experimental results show that by combining different types of social information, messages can be
delivered with high probability while keeping the overhead ratio very small.

In Reference [31], the authors proposed Interest spaces for opportunistic networks, an interest-based
dissemination framework that spreads data by taking advantage of nodes’ context information.
There are four layers in the Interest Spaces framework: the application layer, data layer. trust and
security layer and opportunistic layer. There are two types of tags that a message can have: general and
specific. Each specific tag is a subset of a general tag, and the reunion of all specific tags pertaining to a
general tag would contain all data marked with the general tag. The data aggregation method is based
on the idea that strongly connected nodes can work together to deliver data to interested destinations.
Experimental results show that the overall hit rate and delivery latency of the opportunistic network
are improved.

Ciobanu et al. [32] proposed a novel opportunistic network-routing algorithm entitled SPRINT.
Expanding the social relationship between nodes was statically determined based on historical
information in the past. An additional prediction component was added to the routing algorithm, and
the future behavior of the node is predicted based on the Poisson distribution. Since the behavior
of nodes has a certain regularity, based on past contacts, the probability of encountering a node is
calculated based on the ratio between the number of times each node has an encounter and the total
number of encounters. Experiments proved that in some cases, the distribution of contacts per person
is highly predictable, and can be approximated as Poisson distribution.

Sati et al. [33] studied the impact of parameters such as the arrival time, replication count, number
of relayed nodes, time to live (TTL), and message size on routing performance in opportunistic
networks. They evaluated the impact of different buffer management policies and message generators.
Experimental results show that the buffer strategy should be selected according to factors such as
network characteristics. Pandey et al. [34] optimize link energy consumption by using small world
characteristics. They reduce the number of hops in the transmission process. By adding the new link
to balance the energy consumption of nodes, the data transmission with low delay and energy balance
is realized.

3. System Model Design

The data propagate on the nodes of the network, and the relationship between the nodes is
complex. Most of the data transmission environments are represented by graphic structure. A complex
network that contains linked information and attribute information can be represented as G = (V,E),
where V usually represents the node set, and E usually represents the edge of the node.

In opportunistic social networks, there are two opposite types of information for transmission.
We express the competition of messages in the network by describing the competition of messages
A and B. We divide the status of nodes into four categories: the nodes that have not propagated
any information (S-state), the nodes that have received information A and propagated (IA-state), the
nodes that have received information B and propagated (IB-state), the nodes that have lost interest
in information dissemination and have a resistance attitude to all information (R-state). When the
message type in the network changes to N, the attitude of nodes to different types of messages is as
follows: a positive attitude to current messages (Itype-state), negative attitude to current messages
and equal attitude to all messages (S-state). The expansion of message types does not affect the total
attitude of nodes to messages, only the number of attitudes. That is to say, other types of message
than type A can be regarded as type B. The competition and cooperation between n types of messages
can be simplified into the competition and cooperation between two types of messages. The state
transition diagram between nodes is shown in Figure 1.

In Figure 1, different colors represent different states of nodes, which indicate the transition
between different states of nodes. λ1 and λ2 represent the propagation rate of information A and B,
which are used to describe the preference degree of S-state nodes for different information. Message
propagation is proportional to its value. δ1 and δ2 represent the abandonment rate of information A



Electronics 2020, 9, 1271 4 of 16

and B, and indicate the abandonment degree of this type of message. Over time, nodes change state
with the influence of these values. θ1 and θ2 represent the replacement rate of information A and B,
indicating the probability that the state of a node will be affected by multiple other types of message.
The larger θ1, the greater the attractiveness of information B, which can convert the node state of
the disseminated information A to the node state of the disseminated information IA. Conversely,
the larger θ2, the greater the attractiveness of information A, which can convert the node state of the
disseminated information B to the node state of the disseminated information A. In the process of
communication, there is both competition and cooperation between information A and information B,
that is to say, on some nodes, it may inhibit the propagation of the other party, while on other nodes,
it may promote the propagation of the other party. In fact, it reflects the relationship between them.
Therefore, the position of competition and cooperation can be changed.Electronics 2020, 9, x FOR PEER REVIEW 4 of 18 
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According to the probability diagram, the state space of opportunistic social network nodes is
C = {S, IA, IB, R}, and the state transition of each node is related to the message type and other factors.
This process is affected by the information that is in a competitive relationship among the current
nodes. The next state of a node is not related to the historical state of the node, but only to the current
state. That is to say, the “future” of the node does not depend on the “past” and is only determined by
the “present”. The whole propagation process can be regarded as a Markov random process. Therefore,
the distribution function can be used to describe the Markov property of node state transitions. X is
used to represent the random variable of node state transition. The state space of process {X(t), t ∈ T}
is C, and T is a set of time series. Under the condition X(ti) = xi, xi ∈ C, the conditional distribution
function of X(tn) is exactly equal to the conditional distribution function of X(tn) under the condition
X(tn−1) = xn−1. Therefore, without considering the external interference, the competitive information
dissemination process in the system is essentially a Markov chain in which each opportunistic social
network node continuously carries out state transformation in state space C. The transfer probability
matrix P can be obtained

X(tn)

X(tn − 1)

S IA IB R
S
IA
IB

R


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


= P

(1)

In the process of competitive information transmission, a node starts from S-state X(tS) = S,
transforms into IA-state X(ti) = IA or IB-state X(ti) = IB at time ti, and then, after several time steps of
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competition, finally transforms into R state X(tn) = R at time tn. From then on, the node state will not
change until the end of the transmission process. For the two types of message, the state transition
probability matrix is a 4 × 4 matrix. When the message types become n in the network, the size of
the matrix is (n + 2) × (n + 2), including the transition probability between various types of message
states, S-state and R-state.

The transition probability of the node state in the opportunistic social network is not only related
to the node’s propagation speed, replacement rate and abandonment rate, but also closely related to
the opportunistic social network structure. The adjacency matrix of node represents the adjacency
relationship between network nodes. In this model, the opportunistic social network is abstracted as an
undirected graph, so the adjacency matrix D is an N-order matrix. The number of neighboring edges
of a node in the opportunistic social network is called the degree of the node, and it is represented by k.
The adjacency matrix representation method of the node and the node degree representation method
of the network structure are essentially equivalent.

In an opportunistic social network, each node represents a state variable, and the edge between
nodes represents the dependency between two variables. The transformation of node state is determined
by the joint probability distribution of all neighboring node states, that is, the product of propagation
rate and replacement rate. Thus, the system is essentially a Markov random airport [35]. Next,
consider the transition probability of the node in the IA → IB and IB → IA states, that is, the node state,
is transmitted between IA-state and IB-state.

In the process of information dissemination, the IA-state node and the IB-state node will compete
when they are adjacent. At the next moment, they all want each other to transform into the same state
as their own at this time. The degree of competition depends on their replacement rate. There are
multiple IA and IB nodes in the opportunistic social network at the same time. IA(t) and IB(t) are used
to represent the number of them. Therefore, the transition probabilities p22, p23, p32 and p33 can be
deduced as follows

p22 = 1
IA(t)

IA(t)∑
i=1

(1− θ1)
∑

di jp
IB
i (t) + (1− δ1) − 1

= 1
IA(t)

IA(t)∑
i=1

(1− θ1)
∑

di jp
IB
i (t)
− δ1

(2)

p23 = 1− (1− θ1)
∑

di jp
IB
i (t) (3)

p32 = 1− (1− θ2)
∑

di jp
IA
i (t) (4)

p33 = 1
IB(t)

IB(t)∑
i=1

(1− θ2)
∑

di jp
IA
i (t) + (1− δ2) − 1

= 1
IB(t)

IB(t)∑
i=1

(1− θ2)
∑

di jp
IA
i (t)
− δ2

(5)

In Formulas (2)–(5), IA(t) and IB(t), respectively, represent the number of nodes in the IA-state
and IB-state. In Formula (2), the node in IA-state will be affected by the node in IB-state, and will be
affected by the abandonment rate δ1 of type A information. In Formula (5), the node in IB-state will be
affected by the node in IA-state, and will be affected by the abandonment rate δ2 of type B information.
In Formulas (3)–(4), the transition between two states of the node is affected by the other state.

P =



1
S(t)

S(t)∑
i=1

(1− λ1)

N∑
j=1

dijp
IA
f (t)

+ (1− λ2)

N∑
j=1

dijp
IB
j (t)

− 1

 1− (1− λ1)

N∑
j=1

dijp
IA
j (t)

1− (1− λ2)

N∑
j=1

dijp
IB
j (t)

0

0 1
IA(t)

LA(t)∑
i=1

(1− θ1)
∑

dijp
IB
i (t)
− δ1 1− (1− θ1)

∑
dijp

IB
i (t)

δ1

0 1− (1− θ2)
∑

dijp
IA
i (t) 1

IB(t)

IB(t)∑
i=1

(1− θ2)
∑

dijp
IA
i (t)
− δ2 δ2

0 0 0 0


(6)
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Similarly, the transition probabilities of other states can also be obtained, as shown in Equation (6).

We use
(
SS

i , SIA
i , SIB

i , SR
i

)T
to represent the possible states of node i, then the states of nodes S, IA, IB

and R are, respectively, (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, (0, 0, 0, 1)T. The state of a node is a discrete
random variable and its weight is the same in some cases. Therefore, the probability that a node
belongs to a certain state at a certain time can be expressed as the mathematical expectation of the
state. In other words, we can think that the two are equal. Among them, pS

i (t), pIA
i (t), pIB

i (t) and pR
i (t),

respectively, represent the probability that node i at time t belongs to state S, IA, IB and R as shown in
Equation (7). 

pS
i (t) = E(sS

i (t)) =
1
N

N∑
i=1

sS
i (t)

pIA
i (t) = E(sIA

i (t)) = 1
N

N∑
i=1

sIA
i (t)

pIB
i (t) = E(sIB

i (t)) = 1
N

N∑
i=1

sIB
i (t)

pR
i (t) = E(sR

i (t)) =
1
N

N∑
i=1

sR
i (t)

(7)

In Formula (7), a node must belong to one of the four states at a certain time. Therefore, it must
satisfy the normalization and countably additive property of probability, that is, pS

i (t) + pIA
i (t) + pIB

i (t) +
pR

i (t) = 1.
According to the probability matrix P and Equation (7), the probability model of information

transmission can be obtained, as shown in Equation (8).
In Formula (8), di j is the value of row i and column j in the adjacency matrix D of opportunistic

social network nodes.
The opportunistic social network is composed of multiple communities. There are many nodes

formed by different devices in the network. It has the characteristics of a social network. The nodes
include mobile devices carried by people, and communication between nodes is intermittent. Therefore,
it also shows the characteristics of the opportunistic network. During the period, the total number of
nodes in the opportunistic social network is N, which is stable, and what changes at each moment
is the proportion of the points in the network at different state. The number of S, IA, IB and R state
counters in the network at time t is S(t), IA(t), IB(t) and R(t), respectively. The evolution process of the
information transmission model in the online social network can be expressed as a set of differential
Equations, as shown in Equation (9).

pS
i (t + 1) = pS

i (t)

(1− λ1)

N∑
i=1

di jp
IA
j (t)

+ (1− λ2)

N∑
j=1

di jp
IB
j (t)
− 1


pIA

i (t + 1) =

1− (1− λ1)

N∑
j=1

dyp
IA
j (t)

pS
i (t) +

[
1− (1− θ2)

∑
dyp

I1
i (t)

]
pIB

i (t)

−

[
1− (1− θ1)

∑
di jp

IB
i (t)

]
pIA

i (t) − δ1pIA
i (t)

pIB
i (t + 1) =

1− (1− λ2)

N∑
j=1

di jp
IB
j (t)

pS
i (t) +

[
1− (1− θ1)

∑
di jp

IB
i (t)

]
pIA

i (t)

−

[
1− (1− θ2)

∑
di jp

IA
i (t)

]
pIB

i (t) − δ2pIB
i (t)

pR
i (t + 1) = δ1pIA

i (t) + δ2pIB
i (t)

(8)
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dS(t)
dt = −λ1

IA(t)
S(t)+IA(t)

S(t) − λ2
IB(t)

S(t)+IB(t)
S(t)

dIA(t)
dt = λ1

IA(t)
S(t)+IA(t)

S(t) + θ2
IA(t)

IA(t)+IB(t)
IB(t)

−θ1
IB(t)

IA(t)+IB(t)
IA(t) − δ1IA(t)

dIB(t)
dt = λ2

IB(t)
S(t)+IB(t)

S(t) + θ1
IB(t)

IA(t)+IB(t)
IA(t)

−θ2
IA(t)

IA(t)+IB(t)
IB(t) − δ2IB(t)

dR(t)
dt = δ1IA(t) + δ2IB(t)

(9)

It is known from Equation (9) that the competitive permutation relationship of information A and

B is mainly reflected in items θ1
IB(t)

IA(t)+IB(t)
IA(t) and θ2

IA(t)
IA(t)+IB(t)

IB(t) at the right end of Equation dIA(t)
dt

and dIB(t)
dt . Let

f (t) = θ1
IB(t)

IA(t)+IB(t)
IA(t) − θ2

IA(t)
IA(t)+IB(t)

IB(t)

= (θ1 − θ2)
IA(t)IB(t)

IA(t)+IB(t)

(10)

Because IA(t)IB(t)
IA(t)+IB(t)

> 0, there are three kinds of competition relations, as follows:
(1). When θ1 > θ2, f (t) > 0, the speed of IB replacing IA state node is faster than that of IA

replacing IB state node, information B is in competitive advantage, and the system suppresses the
propagation of information A. Nodes will forward messages of type A first;

(2). When θ1 < θ2, f (t) < 0, similarly, information A is in the competitive advantage, and the
system suppresses the spread of information B. Nodes will forward messages of type B first;

(3). When θ1 = θ2, f (t) = 0, the competitiveness of information A and B is the same, which is in
a temporary equilibrium state. At this time, the node treats messages A and B with the same attitude.

For the above-mentioned situation of different types of information competition, while considering
different types of information, we set message importance values for different messages within the
same information. Information moves forward according to its different importance.

The importance of a message is determined by two aspects: on the one hand, the importance of
the message content is determined by the sender of the message, and, on the other hand, the time to
live (TTL) value, hops and size of the message. It is necessary to determine the important message
index of the node sender, limit the number of important messages within a certain period of time, and
automatically degrade when the limit is reached. Therefore, the importance measure value used to
define message m is

∂m =
ωm

TTLm · hm · sm
(11)

In Formula (11), ωm represents a value set by the message sender according to the degree of
importance of the content of m, ωm ∈ (0, 1), and a larger ωm indicates that the content of m is more
important. The remaining survival time of m is TTLm. It should be noted that the TTL in the
opportunistic social network indicates the remaining survival time of the message.

A smaller TTL value, indicates that the message is nearer to being deleted, making it more of a
priority to be forwarded. The hop number of m is hm, and the smaller hm, indicating that the less this
message is forwarded, the more it needs to be forwarded as soon as possible. The size of m is sm, and
the smaller sm is, the more important the message per bit in m is.

In opportunistic social networks, the cache space of nodes is limited. When the receiver’s buffer is
insufficient during transmission, some messages in the buffer need to be deleted to ensure that the
nodes have enough buffer space to receive data. Messages deleted from the cache should have the
lowest cache value.

Define the caching value of the message as

ρm = TTLm ·ωm ·X(ti) (12)
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In Equation (12), the smaller the TTLm, The greater the probability that message m has been
forwarded. Conversely, the larger the TTLm, the smaller the probability that the message m is forwarded,
and the message m needs to be retained. In particular, when the TTLm is reduced to 0, the message has
exceeded its expiration date and the cache value is zero. The larger ωm, the more important the content
of the message m, and the greater the value of caching the message. X(ti) is the current state of the
node. It determines the order of message replacement in the cache.

Stability is a performance of the system. The system will be affected by some factors. If the
system is unstable, the physical quantities in the system will deviate from its equilibrium working
point. Model stability means that the system can accurately return to the equilibrium state. Routh
stability criterion [36] is the most commonly used method to determine the stability of the model. It is
a necessary and sufficient condition to determine the stability of the system.

For Equation (9) of the differential equations of the information transmission model, the two ends
of the four equations are added to obtain

d(S(t) + IA(t) + IB(t) + R(t))
dt

= 0 (13)

The model satisfies S(t) + IA(t) + IB(t) + R(t) = N (N is constant).
If the network reaches the equilibrium point at time t, then the network will be in equilibrium, so

there is 
dS(t)

dt = 0
dIA(t)

dt = 0
dIB(t)

dt = 0

(14)

From Formula (14), the equilibrium point is related to S-state, IA-state and IB-state. Therefore, we
can set the equilibrium point as E = (S, IA, IB)

T, and we can get three solutions, E0, En, Et of the system
of equations. These three solutions are the equilibrium points of the information propagation model.
The specific expressions of E0, En, Et are as follows:

(1). E0 = (1, 0, 0)T, initial state, there are no messages in the network for transmission;

(2). En =
(
0, δ2

P(k)(θ1−θ2)
, δ1

P(k)(θ2−θ1)

)T
, ending state, the balance point after the information has

been transmitted to the whole opportunistic social network;

(3). When δ2
δ1

= λ2
λ1

, Et = c


θ1−θ2
λ1

−
λ2
λ1

1

+


δ1
P(k)λ1

0
0


This indicates that the system reaches the balance point of temporary stable state in the process of

competitive communication. P(k) is the degree distribution function of the network, which represents
the probability of selecting a node whose degree value is k, that is, the probability that the node has k
edge connections.

When R0 < 1, the equilibrium point E0 = (1, 0, 0)T is a stable state.
At equilibrium point E0 = (1, 0, 0)T, J(E0) is

J(E0) =


0 −µ1 −µ2

0 µ1 − δ1 0
0 0 µ2 − δ2

 (15)

The characteristic polynomial of a matrix can be set as

m3r3 + m2r2 + m1r + m0 = 0 (16)

Solve the characteristic polynomial of J(E0) in Equation (16). We can solve
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m3 = 1
m2 = δ1 + δ2 − µ1 − µ2

m1 = (δ1 − µ1)(δ2 − µ2)

m0 = 0

(17)

The Routh array table at point E0 is shown in Table 1.

Table 1. The Routh array table at point E0.

Order First Column Coefficient Second Column Coefficient

r3 1 (δ1 − µ1)(δ2 − µ2)

r2 δ1 + δ2 − µ1 − µ2 0

r1 (δ1 − µ1)(δ2 − µ2) 0

r0 (δ1 − µ1)(δ2 − µ2) 0

According to the Routh–Hurwitz stability criterion, the system is stable only when the coefficients
in the first column of the array table are all positive real numbers.{

δ1 − µ1 = δ1 − λ1P(k) > 0
δ2 − µ2 = δ2 − λ2P(k) > 0

(18)

can be obtained 
λ1P(k)
δ1

< 1
λ2P(k)
δ2

< 1
(19)

Therefore, the equilibrium point E0 is stable only when R0 =
λ1P(k)
δ1

< 1, R0 =
λ2P(k)
δ2

< 1 or
λ1
δ1
> 1

P(k) , λ2
δ2
> 1

P(k) . That is, the model is in the problem state where information cannot be transmitted,
and the number of nodes covered by information A and information B is zero. If the above conditions
are not met, the system may present a single type of message propagation, which is not what we want
to see. After the A, B type of message dissemination, the system will reach a non-zero equilibrium
point, so that the network can be stable again. The method can be designed via Algorithm 1 as follow:

Algorithm 1. Effective Data Selection and Management algorithm

EDSM (M,S,F) {
SendDest(F,V,SV);
//Send M’s destination address set F and message summary vector SV to all nodes in neighbor V
Receive SV and state information;
//All neighbor nodes return
ComputeState(SV,Node);
//Compute node state
SortDecend(M);
//Determine the priority of message forwarding
for each m in M do { //Forwarding messages by value and state
Get V; //Determining Neighbor Nodes for Forwarding Messages
for each b in V do {
call MsgForward (m,b);

UpdateState();
//Update node status

}
}
UpdateNeighbor(V,T)

//Maintaining Neighbor Node Set V and state for each cycle T
}



Electronics 2020, 9, 1271 10 of 16

MsgForward(m,b) { //Cache Replacement Strategy
A = C∪ {m}

D = ∅;
while (SA > S {//Insufficient cache space

find mmin in A;//Find the message with the smallest cache value according to the state
A = A\{mmin}

D = D∪ {mmin}

}
if m < D

if D , ∅
delete D from cache and compact cache; }

send m to b;
}

}

4. Simulation and Analysis

In this paper, we use Opportunistic Network Environment (ONE) to simulate EDSM, and
compare the performance of EDSM with typical routing algorithms: Epidemic, PROPHET and
PROPICMAN. The ONE is an opportunistic network environment simulator. It provides a powerful
tool for generating trajectories. It uses different routing protocols to simulate message forwarding
experiments. It can observe real-time simulation interactions and experimental results. This article
chooses a map of Helsinki and uses Working Day Movement model to simulate how people move in
real life. After running the simulation ten times using the platform, the average value was taken as the
final result. Set the value of θ at the time of message generation to be uniformly distributed on (0, 1).
Among them, type A and type B messages are randomly assigned. The proportion of different types is
different in each simulation. The node degree of the article obeys an approximate normal distribution.
The average node degree of the experimental network is 40, and the change range of the node degree is
small. The specific simulation parameters are set as shown in Table 2.

Table 2. simulation parameters’ setting.

Parameter Value

Simulation time 24 h
Simulation area 4500 × 3400 m2

Message size 50~200 KB
TTL 5 h

Message transmission rate 250 KBps
Interval time between message generation 30 s

Maximum transmission radius 10 m
Bus speed 20~40 km/h

Pedestrian speed 3~5 km/h
Node initial energy 500 J

This paper defines the standard deviation of node residual energy as follows.
Standard deviation of node residual energy. The standard deviation of node residual energy

reflects the difference in residual energy between nodes. The smaller the standard deviation of node
residual energy, the better the performance of energy balance. The standard deviation of node residual
energy is

σ =

√
1
N

∑
i∈K

(
Er,i − Er

)2
(20)

Er is the mean of residual energy of all nodes in the network, K is the set of all nodes in the
network, and the number of nodes is N.
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The number of nodes in the network is set to 260, the buffer size is 30 MB, and the ratio of dead
nodes in the network increases from 0.1 to 0.5. The running time of the network is 1 h~7 h, and the
standard deviation of residual energy of nodes in different algorithms is calculated every 1 h.

It can be seen from Figure 2 that, as the network running time increases, the residual energy
standard deviation of the nodes of different algorithms increases. The residual energy standard
deviation in the nodes of the EDSM is the smallest, indicating that the remaining energy distribution of
the nodes of the EDSM is more uniform. This is because EDSM combines the status of the current node
in routing, so that the delivered message conforms to the current trend. It can select different messages
in a timely manner for forwarding according to the node status and the importance measure value.
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Figure 2. Standard deviation of node residual energy under different network running time.

Figure 3 shows the average message delay of EDSM under a different number of nodes and
different θ intervals. It can be seen from the graph that the average message delay of different θ
intervals decreases with the increase in the number of nodes. The larger the value of θ, the lower the
average message delay. This is because the greater the θ value, the greater the message importance
measure, and the higher the priority in message forwarding and cache replacement. The average
message delay of θ ∈ (0.75, 1) is 5%, 9.5% and 15% lower than that of θ ∈ (0.5, 0.75], θ ∈ (0.25, 0.5] and
θ ∈ (0, 0.25], respectively.
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Figure 3. Average Message Delay in Different θ Intervals.

Figure 4 shows the success rate of message delivery for different numbers of nodes. It can be seen
from the figure that EDSM has the highest message delivery success rate to a certain extent, while
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Epidemic is the highest at the beginning, but the growth is not obvious after the number of nodes
reaches a certain level. This is because epidemics have the largest number of message copies and
can achieve the best success rate when the number of nodes is small. When the number of nodes
and copies in the network is too large, it will lead to cache space and excessive energy consumption,
especially in the case of insufficient energy of some nodes. This will result in a reduction in the number
of surviving nodes. When more nodes die in the network, the transmission success rate will be greatly
reduced. This is determined by the characteristics of Epidemic. EDSM ‘s message delivery success rate
increased by 13%, 18% and 12%, respectively, over PROPICMAN, PROPHET and Epidemic.
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Figure 4. Message delivery rate under different number of nodes.

Figure 5 shows the average message delay for different number of nodes. As can be seen from the
graph, the average message latency of EDSM, PROPICMAN and PROPHET decreases rapidly with the
increase in the number of nodes. Epidemic has the highest average message latency, which decreases
first and then increases. This is because with the increase in the number of nodes, there are a large
number of replica messages in the network, which affects the receiving and forwarding of messages.
According to the state information and cache replacement strategy of the node, EDSM has the lowest
average message latency and is close to PROPICMAN. The average message latency of EDSM is 2%,
5% and 14% lower than that of PROPICMAN, PROPHET and Epidemic, respectively.
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Figure 5. Average message delay under a different number of nodes.

Figure 6 shows the network overhead ratio for different number of nodes. As can be seen from the
graph, the network overhead ratio increases with the number of nodes. Epidemic has the high network
overhead ratio and the most obvious upward trend. This is because Epidemic does not control the
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number of replicas of messages, which leads to high overhead. EDSM and PROPICMAN have little
difference in network overhead ratio and both are relatively low. This is because these two algorithms
effectively control the network overhead. EDSM’s network overhead ratio is 63% and 37% lower than
that of Epidemic and PROPHET, respectively.
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Figure 6. Network overhead ratio under different number of nodes.

Figure 7 depicts the success rate of message delivery in different cache spaces. From the graph,
we can see that the success rate of the message delivery of the four algorithms increases with the
increase in buffer space, and the growth rate gets lower and lower. EDSM has the highest message
delivery success rate.Electronics 2020, 9, x FOR PEER REVIEW 15 of 18 
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Figure 7. Message delivery success rate in different cache.

Figure 8 depicts the average message delay of different algorithms in different cache spaces.
As can be seen from the graph, the average message delay decreases with the increase in buffer space.
The Epidemic has the high average message delay, and the downward trend is most obvious. EDSM
and PROPICMAN has the lowest average message delay and the change is gentle.

Figure 9 depicts the network overhead ratio in different cache spaces. With the increase in cache
space, the network overhead ratio of the four algorithms decreases. Epidemic’s network overhead
ratio has the most obvious downward trend. The network overhead ratio of EDSM and PROPICMAN
is basically the same, and the downward trend is relatively stable.
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It can be seen from the above results that the node cache size affects the performance of the
algorithm. In the opportunistic social networks, the larger the buffer space, the more messages the
node can carry. When they encounter other nodes, they forward more messages. Therefore, the higher
the success rate of message delivery, the lower the average message delay. In the process of data
forwarding, PROPICMAN, PROPHET and Epidemic use the first-in first-out cache strategy. Therefore,
the performance of Epidemic algorithms will be affected by cache space factors. The performance
of EDSM, PROPHET and PROPICMAN algorithms is not greatly affected by the cache space factor.
When EDSM replaces the cache, different node states are considered. Therefore, the impact of cache
space on EDSM is limited.

5. Conclusions

This paper mainly provides a new research idea and method for the study of information in an
opportunistic social network, and proposes that there is a competitive relationship between messages
in the network. Nodes interact with each other and attract changes in the direction of their own state.
The network node state is proved to be Markov, and the state transition of nodes is deduced. According
to the importance of the message and the status of the node to determine the message forwarding
sequence, when the cache space is insufficient, the message with the lowest cache value will be deleted
to increase the cache capacity of the node space. The experimental results show that this reduces the
transmission delay of messages, improves the success rate of message delivery, and ensures a small
network overhead.
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In future work, we may focus on forming a resource schedule and cache optimization methods
where the node can select the next transmit neighbors to keep and deliver messages.
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