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Abstract: This paper presents an improved control strategy to cancel the double grid frequency
oscillations in the active power, reactive power, and DC-link voltage of a three-phase grid-connected
photovoltaic (PV) system under unbalanced grid condition. To achieve these goals, an enhanced
positive–negative-sequence control (PNSC) to remove oscillations of active power and an
instantaneous active–reactive control (IARC) to mitigate the fluctuations of active and reactive
power, simultaneously, are suggested. These methods are also effective to reduce the oscillations
of the DC-link voltage. To track the desired unbalanced or harmonic reference currents, improved
proportional resonant (PR) current controllers have been designed using the Bode frequency analysis.
Simulation studies are carried out via Matlab/Simulink® software to verify the effectiveness of the
suggested control strategies.

Keywords: current control; frequency locked-loop; power control; power oscillation; unbalanced
grid voltage

1. Introduction

Despite numerous benefits provided by large power plants, economic, technical, and
environmental advantages have led to the gradual development of small-scale renewable energy
resources (RERs) into the power system [1–5]. Among different types of RERs, solar photovoltaic
(PV) is a suitable choice owing to the possibility of direct conversion of sunlight into electricity using
power electronic devices [6,7]. This system can operate in two main operation modes, including
grid-connected and stand-alone [8]. However, to achieve a reliable operation during normal and grid
fault conditions, some regulatory and technical problems such as constraints set by power generation
systems have to be resolved before PV systems can become commonplace.

In recent years, there has been increasing interest in power quality in grid-connected PV inverters
under grid faults, as the non-sinusoidal current is injected into the power system under such
conditions, and the active/reactive power includes double frequency contents [9]. These oscillations
in the active/reactive power can lead to undesired variation in the DC-link voltage. Fundamentally,
oscillations occur due to the poor performance of both current control strategies of the PV system and
the grid synchronization system.

Based on the recently revised grid codes, PV inverters are preferred to stay connected to the
power system during grid voltage faults and contribute to the grid stability and power quality by
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providing ancillary services. This capability is low-voltage ride-through. Basically, the low-voltage
ride-through control technique for three-phase grid-connected PV inverters during unbalanced grid
faults is responsible for detecting voltage faults rapidly, calculating active/reactive current references in
the positive and negative sequences, preventing overcurrent failure and controlling the DC-link voltage.

Different control approaches for low-voltage ride-through improvement in PV systems during
grid fault conditions have been presented in the literature. The low-voltage ride-through capability of a
single-phase grid-connected PV system is investigated in [10]. A review of the existing current reference
calculation methods is provided in [11]. To inject power into the utility grid, a proportional-integral (PI)
controller in the synchronous frame is used in [12]. This method has computational complexity, as it
requires specific filters and separate sequences. The proportional resonant (PR) current controller in the
stationary reference frame is proposed for a three-phase PV system in [13], which its implementation is
simpler than the PI controller. In [14,15], the performance of the PR and PI current controllers and
their transient response are compared. However, this study has not been resolved the problem of the
distorted response of the phase-locked loop (PLL) under grid fault conditions. In [16], an active filter
with the PR controller for controlling the current of a voltage source converter (VSC) in a balanced
harmonic voltage condition is recommended and the PLL performance is improved.

In [17], a mathematical control model for the VSC in the synchronous reference frame with the
PR compensator has been proposed under abnormal conditions. Nevertheless, the performance of
the three-phase PV system connected to the grid and the requirement of the accurate synchronization
system are not investigated. Moreover, the generation of proper reference current controller during grid
fault conditions is not surveyed. In [18], power control methods are studied, but their implementation
and performance in the PV system are not represented. New control approaches for a three-level
PV inverter to further balance the voltage fluctuations on the neutral point under unbalanced faults
are proposed in [19]. The low-voltage ride-through capability of current source PV inverters are also
investigated in [20]. A flexible control approach for the operation of three-phase PV inverters under
unbalanced faults is suggested in [21]. Nonetheless, in this paper the control of the renewable energy
source is not discussed.

This paper introduces a flexible reference current generator to overcome the power oscillations
under unbalanced grid faults. The suggested control technique can eliminate double grid frequency
oscillations injected from the active/reactive power and the DC link voltage under unbalanced grid
voltage conditions. Moreover, a non-ideal PR controller with harmonic compensators is proposed to
track the generated reference current. An effective approach is also used to extract suitable controller
parameters with an analytical method.

The rest of the paper is organized as follows: The foundation of the PV system modeling
for unbalanced grid conditions is given in Section 2, including the three main subsections: the
synchronization system, the maximum power-point tracking (MPPT) algorithm, and the PR current
controller. The proposed power control method to improve the PV inverter performance is presented
in Section 3. The verification of the model is presented in Section 4 and, finally, Section 5 concludes
the paper.

2. PV System Modeling

The single-line block diagram of a three-phase grid-connected PV system is shown in Figure 1.
As seen, the system consists of a VSC and a DC–DC converter, which brings the advantage of
independent operation of power controller and the MPPT control, respectively [22]. The state-space
equations of the system are given in [23,24]. Moreover, the small-signal analysis is investigated in the
dq frame [18]. The design of the LCL filter and capacitor C are based on [18].
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Figure 1. Block diagram of the grid-connected photovoltaic (PV) system.

All required properties for the PV system are presented in the following: (1) maximum utilization of
PV panels in working hours; this is mainly attributed under any environmental conditions; (2) regulating
the DC-link voltage to guarantee the proper performance of the inverter, applying via changes in duty
cycle; (3) injecting smooth power by the inverter to ensure the power quality requirement of the utility
grid; and (4) providing precise phase information of the grid positive-sequence voltage for the control
unit by a fast and precise synchronization system.

In the DC–DC converter, the required control signal (duty cycle) is determined by the MPPT
algorithm. In addition, there are two control loops in the power control of a VSC: (1) an outer control
loop is responsible for generating the reference current to regulate the DC-link voltage and injecting
the desired power to the network and (2) an inner control loop with the task of tracking the reference
current generated by the outer control loop. In this system, a frequency-locked loop (FLL) control
block synchronizes the PV inverter with the power grid and provides a specific phase angle.

2.1. FLL Synchronization System

Under normal conditions, the synchronous reference frame PLL (SRF-PLL) is an effective
synchronization method. However, under unbalanced voltage conditions, the system provides
distorted phase information due to operating based on a fixed phase difference. To solve this problem,
an FLL synchronization system is suggested in [18,25,26]. FLLs operate based on the grid frequency,
which its change is much slower than the grid voltage phase-angle. It estimates the grid angle from
positive- and negative-sequence components of the voltage signal at the fundamental frequency. FLL is
able to achieve frequency adaptability by a simple control loop, without using either phase-angles or
trigonometric functions. Hence, it acts as an adaptive filter to frequency changes that may occur in the
grid system [25,27,28]. In this paper, a double second-order generalized integrator FLL (DSOGI-FLL)
is used for phase detection, and it is adapted to the DC–DC/VSC control structure. The structure of the
DSOGI-FLL is shown in Figure 2, which is composed of two active filters second-order generalized
integrator-quadrature signal generator (SOGI-QSG) blocks, positive–negative-sequence calculation
(PNSC) block and the FLL [27,29,30]. The SOGI-QSG blocks are active filters and can convert input
sinusoidal signal to square output signal. These blocks are also effective in eliminating high-order
harmonics. The calculator block of the PNSC operates with the method of sequence components in the
αβ reference frame.
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Figure 2. Block diagram of the double second-order generalized integrator frequency-locked loop
(DSOGI-FLL) divided into its building blocks: second-order generalized integrator-quadrature signal
generator (SOGI-QSG) (β), SOGI-QSG (α), FLL and positive–negative-sequence calculation (PNSC).

2.2. MPPT Method

The energy conversion efficiency in PV systems is mainly related to the output current of the
converter and atmospheric conditions. To take into account all the effective factors to improve
the efficiency, MPPT algorithms are proposed in [31]. In [32,33], several methods with different
implementations, from primary to advanced procedures are introduced. Incremental conductance
(INC) method with the PI controller is one of the best solutions. Figure 3 indicates the INC-MPPT block
diagram with the PI feedback, which is used as the MPPT method in this paper. The INC method is
based on the fact that the power slope of the PV is null at the MPP (dP/dV = 0), positive in the left
and negative on the right side of the PV power characteristic. Thus, the MPP can be found in terms of
the increment in the array conductance. This method also features a modified version and does not
suffer from fast transients in environmental conditions. The PI controller improves the IC method by
minimizing the error between the actual conductance and the incremental conductance because the
compensator can be adjusted and updated according to the system necessity.

Figure 3. Incremental conductance (INC) method with the proportional-integral (PI) controlling feedback.

2.3. Current Controller

To generate appropriate pulse-width modulation (PWM) signals that are applied to inverter
switches, conventional PI controllers use the difference between dq components of VSC currents
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and the reference currents. In normal situations, the reference current is constant (in both the d
and q axis). However, it is no longer a fixed value under unbalanced grid voltage conditions.
In other words, the reference currents have a sinusoidal form by twice of fundamental grid frequency
due to cross-coupling between the dq axis signals and contain positive and negative sequences, which
cannot generally be tracked by a PI controller [29]. In control systems theory, to track sinusoidal
signals, PR controllers are usually utilized [34]. The PR controller solves this problem by using the grid
frequency, which is the same for either of the two sequences’ components. A single PR control with the
ability to track the sinusoidal signal is enough to compensate the positive and negative sequences,
simultaneously. Three main types of PR controllers are introduced in the following section: (I) ideal PR
controller, (II) non-ideal PR controller, and (III) non-ideal PR controller with harmonic compensators.

2.3.1. Type I: Ideal PR Controller

The transfer function of the ideal PR controller is [35]:

GPR = kp +
kis

s2 +ω2 (1)

where, ω is grid frequency in (rad/sec) and kp and ki are the proportional and integral gains.
This controller has an infinite gain at the grid frequency with a slight bandwidth to obtain a zero

steady-state error in the tracking of the sinusoidal signal at the grid frequency based on Equation (1)
and Bode diagram of Figure 4 [16]. The block diagram of the ideal PR current controller is also shown
in Figure 5. The narrow bandwidth can cause the performance of the controller so sensitive to the
central frequency value; hence, the non-ideal PR controller is preferred in practice.
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Figure 4. Bode diagram of the ideal proportional resonant (PR) controller.

Figure 5. Standard ideal PR controller in the stationary reference frame.
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2.3.2. Type II: Non-Ideal PR Controller

The transfer function of the non-ideal PR controller is:

GPR = kp +
kiBWs

s2 + BWs +ω2 (2)

BW = 2ξω (3)

In Equation (2), the bandwidth of the controller can be adjusted by BW, which is determined by
damping factor ξ. This means that by increasing ξ, the bandwidth would be wider. The Bode diagram
of the non-ideal PR is shown in Figure 6. As can be seen, the bandwidth is wider when compared with
the ideal PR controller. The block diagram of the non-ideal PR controller is displayed in Figure 7.
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Henceforth, under normal grid conditions, the non-ideal PR current control will be able to track
sinusoidal signals. However, it is not responsible to track the reference three-phase sinusoidal signals,
which present harmonics in their waveform. Tracking these signals is essential for controlling active
and reactive power, simultaneously [18]. Hence, the PR controller with a harmonic compensator will
be applied in this paper.

2.3.3. Type III: Non-Ideal PR Controller with a Harmonic Compensators

The standard PR controller is made by using the PR controller for each phase. In the last
implementation, several resonant compensators tuned at the fundamental and other harmonic
frequencies are connected in parallel. In this case, the reference sinusoidal signal, which contains
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harmonics can be correctly tracked. The transfer function of the non-ideal PR controller with harmonic
compensators is written as follows:

GPR−H = kp +
kiBWs

s2 + BWs +ω2 +
ki3BW3s

s2 + BW3s + (3ω)2 +
ki5BW5s

s2 + BW5s + (5ω)2 +
ki7BW7s

s2 + BW7s + (7ω)2 (4)

The open-loop gain Bode diagram of the non-ideal PR controller, with and without the third, fifth,
and seventh harmonic compensators, is presented in Figure 8. The open-loop crossover frequency of
the controller must be higher than the highest harmonic frequency to ensure the tracking performance
of the closed-loop system. The crossover frequency is adjusted by kp and will be limited by the stability
of the gain margin [36]. Added harmonic compensators have no significant impact on the desired
property of the primary PR controller; enabling the tracking of the main frequency [18]. Furthermore,
this controller is capable of compensating both positive and negative sequences. The block diagram of
this controller is shown in Figure 9.
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In designing the PR current controller, the elements of two sequences of grid voltage in the
frequency domain can be expressed as follows:

v(s)αβ = v(s)αβ+ + v(s)αβ− (5)

[
v(s)α
v(s)β

]
=

 kp +
kiBWs

s2+BWs+ω2 0

0 kp +
kiBWs

s2+BWs+ω2

[ ∆iα
∆iβ

]
(6)

Based on Equation (5) v(s)αβ contains both sequence components of grid voltage. Additionally,
Equation (6) shows the relationship between voltage and current elements. The diagonal matrix form
in Equation (6) indicates no cross-coupling between phases. Thus, based on Equations (5) and (6), a PR
controller with the ability of tracking the sinusoidal signal on the stationary reference frame is able to
cancel out the error on the positive and negative sequence components in an unbalanced situation.

3. Proposed Power Control Method

Under abnormal conditions, the instantaneous control of active and reactive power exchanged
with the utility grid is highly important. Due to the interaction between voltages and currents with
different sequences at the point of common coupling (PCC), the exchanged power will be oscillating.
In this regard, the first step is the calculation of instantaneous active and reactive powers.

Basically, the orthogonal voltage (v⊥) in Equation (7) is 90◦ leaded of the original grid voltage
vector (v). Considering Equation (7), the instantaneous active and reactive power would be calculated
in the time domain as Equations (7) and (8), respectively. More details about transformation into the
stationary frame and dq reference frame are given in [18].

v⊥αβ =

[
0 −1
1 0

]
vαβ (7)

p = V·I = v+·i+ + v−·i− + v+·i− + v−·i+ = p + p̃ (8)

q = |V·I| = v⊥+·i+ + v⊥−·i− + v⊥+·i− + v⊥−·i+ = q + q̃ (9)

where, p, q are constant terms of exchanged power and p̃, q̃ are the oscillating terms.
Under abnormal conditions, two issues are important for PV systems; power oscillation terms

and current harmonics [25]. In the following, the PNSC and the instantaneous active–reactive control
(IARC) are proposed. The PNSC method has the capability to cancel out the active power oscillations
without injecting the current harmonics. This method can be implemented on active load systems
that no need to inject reactive power. For instance, if the injection of active power into the network
is considered, while the reactive power set-point is equal to zero, the active power oscillations are
mitigated. Thus it can be more beneficial economically than the IARC method. On the other hand,
the IARC method has the ability to remove both active and reactive power oscillations simultaneously
along with the current harmonics.

3.1. PNSC

As the proposed controller is for a three-leg inverter operating in a three-phase three-wire system,
the control of the quantities of the zero-sequence is not included in the design of the control system.
To determine the expressions for the reference currents generated by the PNSC strategy, it is initially
assumed that only active power is delivered to the grid. In order to calculate the considered reference
currents, injected currents and power terms are as follows:

i∗ = i∗+ + i∗− (10)

p = v+·i∗+p + v−·i∗−p (11)
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p̃ = v+·i∗−p + v−·i∗+p = 0 (12)

In regards to Equation (12):

i∗−p = −
v+·i∗+p

|v+|2
v− (13)

By substituting Equation (13) in Equation (11):

i∗+p =
p

|v+|2 − |v−|2
v+ (14)

Hence, by mixing Equations (10), (13), and (14):

i∗p =
p

|v+|2 − |v−|2
(v+ − v−) (15)

Now with previous assumptions on the reactive power, i∗q can be written as:

i∗q =
Q

|v+|2 − |v−|2
(v⊥+ − v⊥−)|v|2 = v2

a + v2
b + v2

c = v2
α + v2

β = v2
d + v2

q (16)

where |v|2 is the norm of the grid voltage vector signal that is proposed for different reference frames
as follows:

|v|2 = v2
a + v2

b + v2
c = v2

α + v2
β = v2

d + v2
q (17)

Equation (17) represents that the proposed method can be implemented in different reference
frames with different controllers. Thus, reference current can be given as:

i∗ = i∗p + i∗q (18)

Therefore, the active and reactive powers can be given as:

p = v+·i+p + v−·i−p + v+·i+q + v−·i−q + v+·i−p + v−·i+p + v+·i−q + v−·i+q (19)

q = v+
⊥
·i+q + v−⊥·i

−
q + v+

⊥
·i+p + v−⊥·i

−
p + v+

⊥
·i−q + v−⊥·i

+
q + v+

⊥
·i−p + v−⊥·i

+
p (20)

The third and fourth terms are mitigated in both the above equations, as the dot product between
two components with the same sequence and 90◦ shifted is equal to zero. On the other hand, the fifth
and the sixth terms are zero due to the conditions stated in Equation (12), and the first assumption,
where both oscillating terms forced to be zero when calculating the reference for the active and
reactive currents.

In the PSNC method, fluctuations in the active power can be mitigated completely, and the injected
current would be sinusoidal without any harmonics. Therefore, the non-ideal PR compensator is
proper to track the reference currents in the PSNC technique. The inner and outer loop of the current
controller using the PNSC method, along with the DSOGI-FLL is shown in Figure 10.
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Figure 10. The inverter current control loop by implementing the PNSC method.

3.2. IARC

Under unbalanced grid voltage conditions, the voltage vector oscillates at twice the fundamental
grid frequency, as Equation (21) [18].

|vi|
2 =

∣∣∣vi
+
∣∣∣2 + ∣∣∣vi

−
∣∣∣2 + 2

∣∣∣vi
+
∣∣∣∣∣∣vi
−
∣∣∣ cos(2ωt + ϕ+

−ϕ−)i = a, b, c (21)

To provide smooth active and reactive powers, simultaneously, reference currents are calculated
as follows:

g =
P∗∑

i = a,b,c|vi|
2 (22)

b =
Q∗∑

i = a,b,c|vi|
2 (23)

In Equations (22) and (23) the active and reactive reference power can be calculated as Equations (8)
and (9), which oscillating terms have been set to zero, and constant terms are obtained based on the
output power. Where g and b represent instantaneous conductance and susceptance, from the inverter
output, respectively. i∗p and i∗q are proper reference currents as follows:

i∗p = g(
∑

i = a,b,c

(v+i + v−i )) (24)

i∗q = b(
∑

i = a,b,c

(v+i⊥ + v−i⊥)) (25)

Thus, the reference currents are determined as:

i∗ = i∗p + i∗q (26)

These currents are the most efficient reference currents that determine the exact reference currents
to exchange constant power with the main grid, under generic voltage conditions. Hence, these currents
have the highest degree of control. Although the generated reference currents lead to smooth output
active and reactive power, they include harmonic terms. This is because when the expression of
Equation (21) is processed in the denominator, the resulting reference currents are not sinusoidal,
but contain harmonics. Therefore, a non-ideal PR controller with harmonic compensation property has
to be utilized here to achieve the proper tracking performance. In addition, the instantaneous control
of the active and reactive power means the instantaneous tracking of the sinusoidal waveform of an
unbalanced harmonic current in the controller. The current control loop to implement this method is
shown in Figure 11.
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Figure 11. The inverter current control loop by implementing the instantaneous active–reactive control
(IARC) method.

3.3. Controller Design Using Bode Frequency Analysis

The PR controller contains the term of proportional kp and integral ki gains. In order to fulfill a
damping factor of 0.7 and overshoot less than 5%, the modulus criterions can be calculated as [25,37]:

kpcrt =
L

2T∑
1

= 0.34 (27)

kicrt =
Rkpcrt

L
= 3.44 (28)

where L is the summation of series inductance and R is the summation of series resistance of interfaced
LCL filter and T∑

1 = 1.5Ts + 0.5Tsw and Ts = 1
fs

and Tsw = 1
fsw

. The closed-loop control system
must be considered to attain the proper value of parameters. The block diagram of the PR current
control loop is shown in Figure 12. This loop would be the same for each of α and β components.

Figure 12. Block diagram of the current control loop.

In this loop, each block is estimated with a transfer function as follows:

GControl delay =
1

1 + sTs
(29)

Ginverter =
1

1 + 0.5sTsw
(30)

G f ilter =
1

Ls + R
(31)

GSampling =
1

1 + 0.5sTs
(32)

In order to obtain the optimum PR gain values, a discrete pole placement analysis has been utilized
by using criteria values in the current control loop (kpcrt = 0.34, kicrt = 3.44). Two requirements have
been imposed on the control loop (1) the current loop should be stable, with a phase margin larger than
45◦ and a gain margin larger than 6 dB and (2) the bandwidth of the system should be a minimum of
500 Hz [37].
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Considering the transfer function of the PR controller, the kp term is used to adjust the stability
of the overall control system. In order to select the kp, the root locus method was performed in the
discrete-time domain with the Matlab toolbox, Sisotool. As can be seen in Figure 13, the dominant
poles had a damping factor of 0.7. Furthermore, it is illustrated that the current control loop with
a kp value of 0.3 had a phase margin of 62.8◦ and a gain margin of 19.1 dB and the damping of the
resonant poles reached the value of 0.7. Furthermore, it is shown that a stable loop was obtained.
An integral gain ki1 of 20 was chosen as a tradeoff between a good noise rejection and good dynamics.
In the same way, for cascading PR compensators the integral gains ki3, ki5, and ki7 of 10, 7, and 5 were
chosen, respectively.

Figure 13. Zero-pole map and the open-loop Bode plot of the PR current control.

Considering the DC voltage loop in Figure 14, the PI controller values are tuned using the optimum
symmetrical criterion [38].

Figure 14. Block diagram of the DC voltage loop.

The block of the current control loop is represented as closed loop transfer function, which can be
written as:

Gi =
0.5sTs + 1
2sT∑

1 + 1
(33)

By utilizing the optimum symmetrical method and imposing the phase margin of 45◦, the PI
parameters can be calculated as:

Kp = 0.19
Cdc

SdTs
= 7 (34)

Ki =
Kp

3a2Ts
= 800 (35)
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where Sd is the d-component of continuous switching vector via park transformation. Similar to the
previous procedure, the kp and ki terms were tuned via the root locus method in the discrete time
domain with the Matlab toolbox, Sisotool. Hence, as it is shown in Figure 15 with kp = 7 and ki = 800 a
stable loop a phase margin of 55◦ and a gain margin of 25.5 dB was achieved. Finally, all the controller
parameters are displayed in Table 1.

Figure 15. Zero-pole map and the open-loop Bode plot of the voltage control loop.

Table 1. PV system parameters.

Symbol Quantity Nominal Value

k QSG gain 2× 0.707
kp,V proportional gain of DC-link controller 7 (A/V)
ki,V integral gain of DC-link controller 800 (A/Vs)

kp,PR proportional gain of current control 0.3 (Ω)

ki1,PR integral gain of current control 20
(
Ωs2

)
ki3,PR

integral gain of current control 3th harmonic compensator 10
(
Ωs2

)
ki5,PR integral gain of current control 5th harmonic compensator 7

(
Ωs2

)
ki7,PR integral gain of current control 7th harmonic compensator 5

(
Ωs2

)
ξ Damping factor of PR controller 0.002

4. Simulation Results

The simulation results include a comparison between three tests under two types of voltage sag:
(1) the conventional current control strategy, (2) the PNSC method performance using the type II
PR controller, and (3) the IARC method performance using the type III PR controller. The system
is a 100 kW PV inverter connected to the utility grid by a three-phase three-leg VSC. In addition,
the Y∆ transformer with a three-phase local load after the PV system is interfaced to the grid by a
14-km three-wire transmission line. The PV system parameters are shown in Table 2. The reference
for the active and reactive power was assumed to be 100 (kW) and zero (kVAr), in all simulations,
respectively. Additionally, the LCL filter with a passive damper was designed based on [39]. To ensure
the stable operation of the PV system, the minimum value of the DC capacitors was calculated based
on [22]. Figures 16 and 17 show the waveform of the grid voltage at PCC. As seen, in t = 0.6 s,
a single-phase-to-ground fault (‘type B’ voltage sag) and a phase-to-phase fault (‘type C’ voltage sag)
occurred [25].
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Table 2. PV system values.

Quantity Nominal Value

Maximum output power 100 kW
Switching frequency 3 kHz

Maximum power PV output voltage 500 V
DC-link capacitor 9 µF

Inverter side inductance 250 µH
Inverter side parasitic resistance 2 mΩ

Filter capacitor 45 µF
Filter damping resistance 0.6 Ω

Grid side inductance 220 µH
Grid side parasitic resistance 2.7 mΩ

Grid interfaced transformer voltage 260 V/25 kV
Grid frequency 60 Hz

Sampling frequency 10 kHz
Q reference 0 VAr

Figure 16. ‘type B’ voltage sag.

Figure 17. ‘type C’ voltage sag.

In the following sections, two grid cycles are given to the FLL synchronize with the grid voltage.
After a transient period of t = 0.1 s, the first dynamic response of the proposed method in comparison
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with the conventional method is shown. In t = 0.25 s, the MPPT algorithm is triggered that makes the
active power to be increased to 5 kW, without any impact on the reactive power.

4.1. Conventional Current Control Method

To clarify the quality of reference currents, three generating methods were used in this paper. First,
the conventional method was simulated [23]. Figure 18 shows the performance of the conventional
method, which produced intensive oscillations in the active and reactive power. The DC-link voltage
with the conventional current control method is also presented in Figure 19. As can be observed,
the DC-link voltage was not constant and oscillations with considerable amplitude appeared during
the voltage sag.

Figure 18. Injected instantaneous power into the grid via the conventional method.

Figure 19. DC-link capacitor voltage via the conventional method.
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4.2. PNSC Method Performance Using the Type II PR Controller

The output power under ‘type B’ and ‘type C’ voltage sag by using the PNSC method is depicted
in Figures 20 and 21, which shows the effective performance of the proposed method in canceling out
active power oscillations completely. Moreover, the comparison of the performance between the PNSC
method and the conventional method indicates the higher quality of the PNSC power adjustment.
The DC-link capacitors’ voltage under ‘type B’ and ‘type C’ faults are shown in Figures 22 and 23.
It shows the response of implementing the PNSC, which indicates 55.5% and 45% reduction in the
amplitude of voltage oscillations when compared with the conventional method, respectively.

Figure 20. Injected instantaneous power into the grid under ‘type B’ voltage sag.

Figure 21. Injected instantaneous power into the grid under ‘type C’ voltage sag.
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Figure 22. DC-link capacitor voltage under ‘type B’ voltage sag.

Figure 23. DC-link capacitor voltage under ‘type C’ voltage sag.

The proper three-phase unbalanced reference currents generated by the PNSC method before and
after fault occurrence is shown in Figure 24, which indicate the appropriate performance of the PNSC
method and accurate current tracking by the controller.
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Figure 24. Current reference generated with the PNSC and grid current measured.

4.3. IARC Method Performance Using the Type III PR Controller

The performance of the IARC, along with the non-ideal current control loop with harmonic
compensators was simulated and the results are illustrated in Figures 25 and 26. The current control
loop responses until t = 0.2 s clearly demonstrated the fast transient dynamic response. After t = 0.6 s
with occurring faults, it indicates a significant decrease in the active and reactive power oscillations,
instantaneously. This fact verified the proper response of the control loop using the IARC method
under two types of common faults, in comparison to the conventional and PNSC method.

Figure 25. Injected instantaneous power into the grid under ‘type B’ voltage sag.
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Figure 26. Injected instantaneous power into the grid under ‘type C’ voltage sag.

Figures 27 and 28 show the DC-link voltage of the capacitor when the IARC method was
implemented. The IARC method shows around a 50% reduction in the amplitude of voltage
oscillations. The three-phase reference currents generated by the IARC method and injected currents
via the non-ideal PR controller with harmonic compensators are shown in Figure 29. It indicates that,
after the fault period, the harmonic reference currents generated were tracked properly.

Figure 27. DC-link capacitor voltage under ‘type B’ voltage sag.
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Figure 28. DC-link capacitor voltage under ‘type C’ voltage sag.

Figure 29. Current reference generated with IARC and grid current measured.

Moreover, the Fast Fourier Transform (FFT) analysis for one phase of injected currents via the
IARC method is shown in Figure 30. It is contained with high total harmonic distortion (THD) as 21.11%
of the fundamental frequency. The harmonic orders as a percentage of the fundamental frequency are
shown in Table 3.
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Figure 30. FFT analysis diagram for injected current via the IARC method.

Table 3. Current signals harmonics.

Harmonic Orders Values Based on a Percentage of the Fundamental Frequency

3th 21%
5th 5.5%
7th 1%
9th 0.25%

5. Conclusions

This paper suggested an improved control scheme for a three-phase two-stage PV converter by
the combination of the FLL and PR current reference generator to improve the power quality under
abnormal conditions. The proposed method has the ability to mitigate the double grid frequency
oscillations in the DC-link voltage and the active and reactive powers under unbalanced faults.
Ananalytical method was used to obtain the optimum value of controllers’ parameters. To generate
the appropriate reference current, two methods, including PNSC with type II of the PR controller and
IARC with type III of the PR controller were applied. The simulation results illustrated that the IARC
method along with type III of PR controller effectively mitigates the double grid frequency oscillations
in the DC-link voltage, active power, and active power under unbalanced grid faults.

Author Contributions: All authors participated equally in conceptualization, methodology, implementation, and
writing—review and editing the paper. Additionally, all authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

GPR transfer function of ideal PR controller
kp proportional gain
ki integral gain
ω grid frequency
GPR−BW transfer function of non-ideal PR controller
BW bandwidth of controller
ξ damping factor
GPR−H transfer function of non-ideal PR controller with harmonic compensators
v⊥ orthogonal voltage
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p, q constant components of active and reactive power
p̃, q̃ oscillatory components of active and reactive power
i∗ reference current
|v|2 norm of the grid voltage vector signal
g instantaneous conductance
b instantaneous susceptance
Cdc DC-link capacitance
kpcrt criteria value of proportional gain
kicrt criteria value of integral gain
Sd d component of continuous switching vector
fs sampling frequency
fsw switching frequency
Gi transfer function of current control loop
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