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Abstract: An iterative optimization for decoupling capacitor placement on a power delivery network
(PDN) is presented based on Genetic Algorithm (GA) and Artificial Neural Network (ANN). The ANN
is first trained by an appropriate set of results obtained by a commercial simulator. Once the ANN is
ready, it is used within an iterative GA process to place a minimum number of decoupling capacitors
for minimizing the differences between the input impedance at one or more location, and the required
target impedance. The combined GA–ANN process is shown to effectively provide results consistent
with those obtained by a longer optimization based on commercial simulators. With the new approach
the accuracy of the results remains at the same level, but the computational time is reduced by at least
30 times. Two test cases have been considered for validating the proposed approach, with the second
one also being compared by experimental measurements.

Keywords: machine learning; artificial neural network; decoupling capacitors; power delivery
network; genetic algorithm; twin removal; binary coding; power integrity; signal integrity

1. Introduction

The Artificial Intelligence (AI) paradigm is pervading the entire technical word, from humanities,
social sciences, to medicine (as the recent COVID-19 scenario has shown) to, of course, engineering.

In this field, one of the last (most recent) areas to be approached by this paradigm is the design of
electronic hardware. The reason is the complexity of the problem, the huge variety of the domain of
application, the interlaced design rules and/or design strategies [1–4]. In particular, AI comes to help
the design and optimization of printed circuit boards (PCB) in terms of layout, component placement,
interconnect routing, channel and equalization optimization [5,6]. A key aspect in the PCB design
of modern electronic systems dealing with high speed digital signals and lower DC voltages is the
huge demand of current required by the ICs. Such a current generates a high frequency voltage ripple
overlapped to the DC level that, in turn, may degrade the digital signaling [7–9]. Proper decoupling
strategies should be adopted at the chip, package and PCB level to ensure that the induced voltage
noise is maintained within a specified range [10–15]. To this aim, optimization algorithms have been
shown to effectively solve this problem [16–19] by achieving the input impedance seen at the power
input terminals of the chip (or package) to be lower than the target impedance set by the voltage noise
constrains in time domain.

There are several types of equivalent circuit models depending on their complexity and
corresponding accuracy that can be used for quickly evaluating the input impedance of the power
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delivery network (PDN) [20–24]. However, nowadays most of designers have, together with the
commercial layout tools for PCB design, side software able to run power integrity simulations, and thus
to obtain the input impedance based on the design PDN. Although this commercial software is often
available, their setup and calculation time can be often a drawback. The Genetic Algorithm (GA)
optimization described in [19] has been shown to be effective for predicting the PDN input impedance
for an effective pre-layout placement optimization of decoupling capacitors. The GA in [19] relies,
for the PDN impedance calculation, on the commercial solver [25] with some limitation such as the
possibility to run at each generation the input impedance calculation once the layout is already set,
thus using defined types (packages) of decaps and its inherent long computation time.

The target of this paper is to use a Machine Learning (ML) approach based on Artificial Neural
Networks (ANN) to substitute the use of the commercial solver in [19]. The ANN, once appropriately
trained, can quickly predict with a good accuracy the input impedance for a given design.

The presently proposed ANN approach overcomes several limitations of the commercial
solver-based optimization proposed in [19] where the GA optimization was effective as long as
all decaps had the same package. However, this greatly limits the possibility to span a usually larger
decap database consisting of different types of decap packages. Once the parasitic inductance and
resistance of each package associated to their corresponding placement (pads size, vias diameter, etc.)
are evaluated, they can be embedded in the decap ESL and ESR and be taken into account by the ANN
simulation. Therefore, once the ANN training is accomplished based on a simplified layout (only one
package type considered), the ANN is much more effective and quick to provide the best solution at a
pre-layout PDN design stage.

The obtained impedance profiles from the ANN while running the iterative optimization algorithm
are compared to the corresponding impedances evaluated by a commercial tool and to experimental
data. Good agreement is found among these curve sets, validating the effectiveness and accuracy of
the proposed ML-based decap placement.

The present work is structured as follows: Section 2 introduces the architecture of the ANN
implemented into the optimization process, and its features. In Section 3, the basic structure of the
GA is recalled, and the changes for its used in combination with the ANN are highlighted. Section 4
is devoted to illustrating the physical structure and the electrical properties of the PDN. In the
same section, the results of the optimization processes are also presented and validated through the
corresponding experimental data and simulation response by a commercial simulator. Section 5 draws
the final conclusions.

2. The Machine Learning Approach

The artificial feedforward neural networks (FF-ANN, in the following ANN) are algorithms
suitable for the approximation of continuous functions on compact domains. Such a function can be
approximated, within a desired accuracy, by an ANN with a given number of inner layers and neurons.
In the present work, the regression capability of an ANN is exploited inside a genetic optimization
algorithm (GA) as computational engine for the cost function. In [26], an approach for the optimization
of the input impedance (Zin(f )) of a power delivery network (PDN) has been described, simultaneously
evaluated at multiple ports (i.e., 4) on the PDN itself.

By means of an iterative GA [19], an optimal configuration (position and value) of decoupling
capacitors (or decaps) has been found, that simultaneously minimize, in a given frequency range,
the Zin(f ) at the ports Pi i = 1,4 associated to four fixed locations on the PDN. As a computational
engine for the cost function of the GA, the commercial power integrity (PI) simulator Design Force (DF)
has been used [25]. The GA approach starts from a randomly selected population of chromosomes.
Each chromosome contains genes; each gene represents the relevant information of a decap—its
position and value. To each chromosome, a cost (evaluated by the user defined cost function [19])
is assigned, that is a function of the frequency spectrum of the magnitude of the input impedance
(also named the impedance profile). A procedure selects the chromosomes that have the best fitness
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(in our case it corresponds to the lowest cost) and uses these chromosomes to create the next generation
of the population by the known selection, breeding and mutation steps [27]. After a suitable number
of generations, the GA converges to the global minimum value of the cost function and at its
associated chromosome.

At the base of this contribution, there is the idea to substitute a trained ANN in the GA flow to the
commercial PI simulator, that when given a chromosome (position and values of decaps) as input,
is able to compute Zin(f ). The approach described in [19] implies long computational times due to
the repetitive use of the PI simulator for the computation of Zin(f ) at each iteration. A trained ANN
gives the same results in an infinitely shorter time. Of course, the computational time gain during the
evaluation of Zin(f ) by the ANN are compensated by the more computationally intense training phase.
This phase is performed once off-line, and it is not included in the iterative process of the GA. On the
same computing platform, the time saved by using the ANN is a few minutes, versus several hours
when using the classic PI simulator.

2.1. The Artificial Neural Network Structure

The standard fitting problem of a function can be simplified and stated as follows: given a set
of pairs <In(i),Out(i)> with i = 1,N, such that Out(i) = g(In(i)), to find the function h(.) that better
approximates g(.). In the frame of the ANN, the set <In(i),Out(i)> is the training set (TS) from which
the ANN “learns” and builds h(.). Then, h(.) is used to compute new output Out(j) = h(In(j)) due
to input values In(j) not belonging to the training set. This property of the trained ANN is called
“generalization”.

The problem at hand calls for the fitting of a family of functions (the input impedances of the
PDN) depending on the frequency f. For a specific input (a chromosome) the ANN should compute
the entire Zin(f ) in a specified frequency range.

The TS has the number, location on the PDN and value of the decoupling capacitors as input,
and the frequency spectrum of the magnitude of Zin(f ) at each of the four ports for that specific input
as target (or label). The TS is computed using the PI simulator. It is worth pointing out that during
the iterative process of the GA, the Zin(f ) at the ports will be computed (for each of the chromosomes
generated by the GA) by means of the trained ANN.

It is not trivial to decide the architecture of an ANN a priori based on its application. The key point
is to set the number of inner layers and the number of neurons per layer [28]. If the complexity of the
ANN is small (the number of layers and neurons is reduced), the fitting performance is also reduced.
If the complexity is too high with respect to the order of the function to be fitted, then the ANN will
overfit the data [29]. In our case, we have used the cross validation technique using independent
training and test sets as reported in [28]. Starting from an architecture with three inner layers, chosen
among the benchmarks in [29], several training procedures have been run, varying the number of
neurons of each layer in turn and recording the performance of mean squared error (MSE) of the
trained ANN in term. In the end, the architecture associated to the minimum MSE will have been
considered and retained. In order to save time, this activity only aimed to set the most suitable ANN
architecture, and the PI simulator has not been used but rather a hybrid equivalent circuit model of
the PDN, in which either the lumped electrical behavior of the decaps and the distributed electrical
behavior of the planes [20] are considered. Figure 1 shows the comparison between the frequency
spectrum of the magnitude of the input impedance computed by the hybrid equivalent circuit (hybrid
eq. ckt) and the same impedance computed by the PI simulator (PI sim.).

After this cross validation phase, the final structure of the ANN (shown in Figure 2) consists
of 3 inner hidden layers (plus the input and output one) with 2 neurons each in the first and third,
and 30 neurons in the second. The ANN has 20 inputs and 361 outputs (the values of Zin(f ) at the 361
frequency points of the spectrum).
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The target of the GA is the minimization (below a user defined mask) of the Zin(f ) of the board
evaluated in four distinct locations. The evaluation of the four input impedances is obtained by four
ANNs with the same architecture (as discussed above and in Figure 2), but trained with different
training sets.

2.2. The Training Set

The ANN training starts with the definition of the TS. In order to optimize the computing resources,
simple coding is used to represent the relevant information of the decaps. Three types of decaps are
used and coded with numerals 1, 2 and 3, as reported in Table 1.

Table 1. Decoupling capacitors and their code.

Type Code C, ESL, ESR

1 1 100 nF, 222 pH, 8.9 mΩ
2 2 47 nF, 154 pH, 21.4 mΩ
3 3 22 nF, 142 pH, 25.2 mΩ

These decoupling capacitors are commercial components [30] specifically designed for decoupling
due to their very low equivalent stray inductance (ESL). The placement of the decaps on the board is
constrained to a grid of fixed positions, as shown in Figure 3. The number of allowable positions is 52.
The positions are coded by a position designator (PD) ranging from 1 to 52.

In order to speed up the generation of the TS, a configuration matrix is built. It will be used
as input to the PI simulator to compute the frequency spectrum of the Zin(f ) at the four ports in
Figure 3 in a specified frequency range for any given decap configuration (number, position and value).
The structure of the input matrix (the dimensions of which are 20 × 2466) is reported in Figure 4.
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means of the coded 1 to 3 decap typology: in each column the decap with PD in line 1 has the type in
line 11, the decap with PD in line 2 has the typology in line 12 and so on.

The TS should be not only representative of the most significant configurations of the actual
working space, but should also be matched with the iterative nature of the GA. As reported in [19] the
developed GA uses an iterative scheme: it considers one decap at a time. There are configurations
with 1 to 10 decaps. Thus, the ANN should be trained with all these configurations. In the input
matrix of Figure 4, there are columns considering configurations with only 1 decap on the board,
and columns considering only 2 decaps on the board up to the case of 10 decaps. These sets of columns
are shaded with different colors in Figure 4. The values of the PD and of the type of capacitor are
randomly generated.

Given the number of possible decap locations on the virtual grid of the PDN board, the configurations
(location and value) of decaps dramatically increases with the increasing number of decaps effectively
considered on the board. Because of this, the number of configurations considered in the input matrix
of the TS it is dependent upon the number of decaps, ranging from 60 for the case of only one decap on
board, to 600 for the case of ten decaps.

As the number of decaps increases, the corresponding number of their possible combinations
increases, and, consequently, the number of configurations used to train the ANN should also increase.

A limit of the ANN is its reduced capability to generalize the outputs for inputs that are outside
the boundaries of the input configurations used in the training set. To overcome this limit, the TS also
includes some “limit” input configurations as described in the following list:

• Bare board (no decoupling capacitors at all), column 1 of matrix in Figure 4.
• All decaps of type 1, column 2 of matrix in Figure 4.
• All decaps of type 2, column 3 of matrix in Figure 4.
• All decaps of type 3, column 4 of matrix in Figure 4.

Furthermore, in order to improve the prediction performances of the ANN and extend its training
domain, 22 configurations previously obtained by the application of the GA in [19] have been added to
the input matrix of the TS as the last 22 columns.

As already mentioned, the output matrix of the TS has been generated by using the PI simulator.
For each input configuration contained in the input matrix, the PI simulator computes the frequency
spectrum of the magnitude of the input impedance at the specified Port. The spectrum of Zin(f ) consists
of 361 values corresponding to the same number of frequency points logarithmically separated in the
frequency range from 100 MHz to 1 GHz. As an example, Figure 5 shows one of the full training sets
(2466 spectra of Zin(f ) at one port).
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After some tests, the algorithm chosen for the training is the Bayesian Regularization algorithm [31]
for its properties of generalization. This property is very important because during the GA procedure
the chromosomes that are generated are not included in the input training set (although inside its
boundaries) and the ANN should compute the associated output with maximum accuracy. In each of
the four TSs used to train the 4 ANNs for the 4 ports, 70% of the output has been used for the training,
15% for the validation, and the remaining 15%—not included in the training set of data—for the test
check [32]. Figure 6 shows how, during the training, the proposed ANN converges very rapidly (in less
than 100 epochs) and steadily to low values of MSE for both the training (blue line in Figure 6) and the
test (red line in Figure 6) sets. The MSE of the test set reaches a minimum at an epoch number similar
to that at which the MSE of the training (and associated validation) set reaches the minimum; thus also
confirming a correct subdivision (70%, 15%, 15%) of the TS. From Figure 6, it is evident as the MSE of
the test set drops from about 5000 to 1.7 in less than 100 epochs, and then remains still (although not
shown) up to 1000 epochs.
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2.3. ANN Validation

The developed ANN is validated based on several test cases belonging to the TS. One of these cases
is reported in Figure 7 and compared to the target impedance profile obtained using the accurate PI
simulator. Good accuracy is found between the two impedance curves. At low frequencies, below the
first resonance (at around 9 MHz), the ANN output matches the capacitive behavior of the board very
well. Above this resonance the inductive trend of the impedance is also well predicted, showing an
increase in the impedance magnitude of about 20 dB/dec. The sharp anti-resonance between 10 and
20 MHz is missed, probably due to the numerically low-pass filtering effects due to the Bayesian
Regularization algorithm [31] that introduces a higher damping (a lower quality factor or Q-factor) in
the results. This is also noted above 100 MHz, when the electromagnetic distributed behavior of the
considered board begins: beyond this frequency, the ANN output matches the frequency values of the
resonances but shows lower values of amplitude. These accuracy considerations in conjunction with
the very small computing time used to get the results make the proposed ANN a good candidate to
replace the commercial PI simulator in the GA-based decap optimization process. In Figure 7, the MSE
between the target curve and the ANN output is 1.212.
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Where the function floor rounds to the smaller integer number. The position coding leads to a Dq = 
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position (and decap type) into a binary number appropriate for the GA process is performed by 
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Figure 7. Comparison between the ANN output and the PI simulation results of the impedance at
Port 1 for one decap configuration belonging to the TS.

3. The Genetic Algorithm

The architecture of the GA is similar to the one proposed in [19]. The GA iteratively places
one decap at each optimization run, such that when the exit condition from the algorithm is met,
a minimum number of decap is obtained. The GA is based on a binary encoding of the chromosome
composed by two variables, as shown in Figure 8. The first variable corresponds to the position
designator (PD), that represents the number of the locations on the PCB surface where the decaps
can be placed; this number, with the corresponding x-y coordinates, is set by the user, according to
the layout constraints (in our case can range from 1 to 52). The second consists of the specific decap
typology to be used, with such decaps belonging to the group of in-the-shelf available decaps (in our
case range from 1 to 3 according to Table 1). As shown in Figure 8, each element of the chromosome is
converted into a binary number with a Nb = 7 bits encoding, thus having Nc = 2Nb = 128 configurations
available. The total possible positions are Npos = 52; thus, the total Npos locations are divided into Nc

groups of size Dq according to Equation (1). The binary number obtained by the GA is first converted
into its decimal counterpart Posdec using the typical ADC algorithm [33], and then the corresponding
position is computed using Equation (2).

Dq =
Npos − 1

2Nb − 1
(1)

Pos = f loor
(
1 + Dq · Posdec

)
(2)

where the function floor rounds to the smaller integer number. The position coding leads to a Dq = 0.4016
using Equation (1); thus, the binary number ‘1101110’ in the example in Figure 8 is first converted into
Posdec = 110, and then to Pos = 45 using (R1.2.b) that is used to identify the decap position into the PCB.
The same process can be applied to the coding of decap topology; by using Ndec = 3 in Equation (1)
leading to Dq = 0.0157. The binary number ‘1111111’ in the example in Figure 8 is first converted into
Capdec = 127, and then into Cap = 3 using Equation (2). The conversion from the position (and decap
type) into a binary number appropriate for the GA process is performed by inverting Equation (2) as
done in Equation (3), where the function ceil rounds to the next integer. The specific case reported in
Figure 8 for the conversion of the position Pos = 45 into its binary counterpart applies Equation (3) to
get Posdec = 110. The corresponding binary number coded by 7 bits is ‘1101110’. The same procedure
can be readily applied to the decap type coding.

Posdec = ceil
(

Pos− 1
Dq

)
(3)
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the user according to the design specs: the first occurs when the cost function reaches zero, thus when 
the optimized impedance is below the target impedance on the whole frequency range considered. 
The second forces the optimization to stop when a user-defined target value of the cost function is 
reached. The third is based on a maximum number of decaps, corresponding to the number of 
iterations, to be placed on the board. 

Figure 8. Structure of the chromosome and 7-bit binary encoding.

Each allowable decap is characterized by its package, its capacitance value and the corresponding
parasitic inductive and resistive parameters ESL and ESR, respectively. The ESL and ESR should also
embed the contribution of the mounting inductance and resistance for each different package type,
if different from the single package type considered during the ANN training.

The flowchart of the iterative optimization based on the ANN calculation is reported in Figure 9.
The main features of the algorithm are the following:

• The population size Np;
• The number of generations Ngen;
• The binary coding that is able to better randomize the generation of new chromosomes, since it is

based on a limited number of integer values associated to both locations and decap type;
• The twin removal aimed at avoiding any redundancy in the creation of new chromosomes within

a given population;
• The evaluation of the cost function fcost, that, in general, can be associated to multiple input

impedances as the sum of the cost functions fcost_i of the Nports for which the PDN impedance
should be optimized, with i = 1 Nports.
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The overall cost function and the one associated to each port are computed according to
Equations (4) and (5).

fcost =

Nports∑
i=1

fcost_i (4)
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fcost_i =

N f req∑
j=1

∆Zin_i( f j)

N1
(5)

where the frequency range is made by Nfreq frequency points. Each cost function fcost_i increases by
Zin_i whenever the computed Zin_i(fj) is larger than the target Zmask(fj), as described in Equation (6).

∆Zin_i( f j) =

{ ∣∣∣Zin_i( f j) −Zmask( f j)
∣∣∣ when

∣∣∣Zin_i( f j)
∣∣∣ ≥ ∣∣∣Zmask( f j)

∣∣∣
0 when

∣∣∣Zin_i( f j)
∣∣∣ < ∣∣∣Zmask( f j)

∣∣∣ (6)

The optimization is considered accomplished based on three sub-conditions that can be set by the
user according to the design specs: the first occurs when the cost function reaches zero, thus when
the optimized impedance is below the target impedance on the whole frequency range considered.
The second forces the optimization to stop when a user-defined target value of the cost function
is reached. The third is based on a maximum number of decaps, corresponding to the number of
iterations, to be placed on the board.

The GA implements its main steps (selection, crossover and mutation) on binary-coded chromosomes;
also, the cross-over is randomly selected when generating each new chromosome. Such features greatly
improve the randomness of the explored variable domain.

4. Numerical and Experimental Results

4.1. GA Optimization Based on ANN

The developed ANN is employed in this section, together with the GA optimization process
described in Section 3, to find out the best decap configuration that makes the input impedances at Ports
1–4 lower than the target profile (the mask indicated in Figure 10). The ANN described in Section 2 was
trained to optimize the placement of 10 decaps. The optimization results of the impedances at the four
ports are shown in Figure 10a; such curves correspond to the decap placement in Figure 10b, where the
red circles and the numbers therein identify the ports. The blue squares identify the decap locations,
whereas the numbers from 1 to 10 correspond to the order with which each decap has been placed
during the 10 optimization cycles. The notation Ci, for i = 1, 3 stands for the typology of capacitors that
were found as the optimum type at the given iteration. The cost function that is evaluated at each of
the 10 iterations is shown in Figure 10c; it is characterized by the expected decreasing trend. Once the
low frequency capacitive portion of the impedances reaches and goes below the target impedance
given by the mask, the cost function decreases more slowly since further optimization can only slightly
bring down the inductive portion of the impedances. Although not reported as curves, for sake of
clarity, in Figure 10a a monotonic trend of the ANN output (the frequency spectrum of the port input
impedance) has been noted toward the lower values of its magnitude as the iteration count increases
(see Figure 10c). Because of this, the frequency spectrum of the magnitude of the port impedance
associated to the last iteration has been considered as the final result. It should be pointed out that the
random nature of the GA calls for multiple executions of the optimization process in order to perform
a statistical analysis of the outputs in order to identify the best result. Because the target of this work
was enough to obtain the first and quick fulfillment of the input impedance mask limit in the range of
effectiveness of the decaps (around 107 Hz), only one execution of the proposed algorithm (of course
with multiple internal iterations) was run.
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Figure 10. Optimization results after running the combined ANN-GA process for the placement of
10 decaps. (a) input impedances at the four ports, (b) decap placement with the identification of the
capacitor type listed in Table 1, (c) Decreasing trend of the cost function.
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4.2. GA–ANN Optimization and Experimental Validation

A further GA–ANN based optimization is run in this section aimed at supporting and confirming
the usefulness of the proposed combined procedure and at validating experimentally the obtained
decap configuration.

The PCB briefly introduced in Figure 3 is manufactured and tested. The board dimensions and
stack-up are reported in Figure 11. A second optimization run is performed based on the GA algorithm
described in Section 3 that places one decap iteratively by searching for the best value and location
among all the available positions identified in Figure 11a. At each iteration, the GA calls Np·Ngen times
the ANN developed in Section 2, with Np = 10 and Ngen = 10. The optimization process is much quicker
when using the ANN rather than the direct DF simulator, taking 0.7 s and 30 s for each impedance
calculation, respectively.
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Figure 11. (a) The test PDN boards and (b) its stack-up.

This second GA–ANN based optimization outputs the decap configuration in Figure 12a. The first
four decaps are of type 1 (C1); this can be explained by the need to lower first the low frequency
capacitive portion of the impedance; such decap placement will provide a steeper reduction in the
cost function shown in Figure 12b. Subsequently, the C3 decaps are inserted from the 5th to the 8th
iteration. Finally, one C2 and one more C3 decaps are provided. The placement results in Figure 12a
are similar to the layout results in Figure 10b, thus confirming the validity and consistency of the
developed GA–ANN process. However, since the input impedance calculations by the ANN are
based on configurations that are randomly selected by the GA within the same population and at each
generation, the best solution at each iteration (for the placement of each new decap) may not be unique.

The decaps are mainly placed by the GA close to the ports, thus confirming that the placement
inductance plays a role in the optimization process. Such inductance is accurately taken into account
by the DF simulator; however, it is well predicted by the ANN, since the decap placement computed
by the ANN proposed in this paper and shown in Figure 12a is consistent with the results obtained
directly by the DF simulator in [19,34].
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Figure 12. Application of the ANN within the GA optimization process. (a) Optimized decap
configuration and placement. (b) Decreasing trend of the cost function.

The decap placement in Figure 12a is used for assembling a test board according to the geometry
in Figure 11. The PCB with the identification of the decaps is shown in Figure 13. The measurement
results are reported in Figure 14 for two of the four measured input impedances at Port 1 and 3.
The measured impedances are compared to the impedances predicted by the ANN output at the
final tenth iteration and to the accurate calculation provided by the DF simulator. The mask and
the impedance of the bare board are also included. The measured impedance agrees well with one
obtained from the DF simulation. In accordance with that already mentioned in Section 2.3, in this
experimental case, the impedance predicted by the ANN shows a general agreement with the simulated
and measured data. In the capacitive region (frequencies below the first resonance) the agreement is
good. Moreover, in this case, the sharp anti-resonance following the first resonance at 9 MHz is not
captured by the ANN. From 10 MHz to the beginning of the electromagnetic distributed behavior
(around 200 MHz), the impedance values from the ANN output also match the measured one very well.
Above 200 MHz (such frequency value is usually much beyond the frequency limit for which the PDN
and decap placement needs to be optimized), the probably induced numerical damping is evident.
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Figure 13. Assembled PCB and identification of the 10 decap locations.
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5. Conclusions

An alternative way to evaluate the input impedance of a PDN is developed in this paper based
on an ANN. The obtained ANN, once accurately trained, can be efficiently used into an optimization
algorithm for finding the best decap placement from a given target impedance. The ANN, although its
accuracy is lower than a full-wave simulator, is a much quicker tool that PDN commercial software.
The output provided by the GA–ANN based process is consistent with the main principles for a
PDN design, and with the results obtained by using the GA in combination with a commercial
tool. The impedance predicted by the ANN agrees with those obtained by the DF simulator and by
hardware measurements.

The target of this work was to quickly obtain the first solution that fulfils the mask limit (considered
the optimal) without the need to look to better solutions. The statement is supported by the fact
that multiple optimizations based on the GA lead to similar results in terms of cost functions, thus
confirming that the optimum solution is not unique. This can be surely tolerated as long as other
constraints are not applied in the calculation of the cost function; i.e., the weight associated to the
cost of a decaps, or the weight associated to specific (preferred) locations. The examples in Figures 10
and 12 confirm the validity of the above assumption, with the impedance evaluated by the developed
ANN; in such cases, the cost function in Figure 10b and in Figure 12b are very similar based on the
same input, even though the obtained decap configuration in Figures 10a and 12a are slightly different.
A similar comparison can be seen in Figure 6 in [19], where the cost functions up to the sixth iteration
are almost overlapped.

The obtained results open at least two research focuses that will be considered next: the investigation
of unwanted numerical effects on the frequency spectrum of the impedance around some specific
resonance or anti-resonance frequencies, and the implementation of multiple executions of the GA in
order to improve the identification of the optimal solution by means of a robust statistical analysis.
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22. Kadlec, P.; Marek, M.; Štumpf, M.; Šeděnka, V. PCB Decoupling Optimization With Variable Number of
Capacitors. IEEE Trans. Electromagn. Compat. 2019, 61, 1841–1848. [CrossRef]

23. Su, H.; Sapatnekar, S.S.; Nassif, S.R. Optimal decoupling capacitor sizing and placement for standard-cell
layout designs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2003, 22, 428–436. [CrossRef]

24. Wang, X.; Cai, Y.; Zhou, Q.; Tan, S.X.; Eguia, T. Decoupling capacitance efficient placement for reducing
transient power supply noise. In Proceedings of the 2009 International Conference on Computer-Aided
Design, San Jose, CA, USA, 2–5 November 2009; pp. 745–751.

25. Zuken. Design Force User Manual. Available online: https://www.zuken.com/it/products/pcb-design/cr-
8000/products/design-force (accessed on 2 September 2019).

26. Piersanti, S.; Cecchetti, R.; Olivieri, C.; de Paulis, F.; Orlandi, A.; Buecker, M. Decoupling Capacitors Placement
at Board Level Adopting a Nature-Inspired Algorithm. Electronics 2019, 8, 737. [CrossRef]

27. Haupt, R.L.; Werner, D.H. Genetic Algorithms in Electromagnetics; John Wiley & Sons: New York, NY, USA, 2007.
28. Bishop, C.M.; Roach, C.M. Fast curve fitting using neural networks. Rev. Sci. Instrum. 1992, 63, 4450–4456.

[CrossRef]

http://dx.doi.org/10.1109/TEMC.2017.2770089
http://dx.doi.org/10.1109/TEMC.2018.2803047
http://dx.doi.org/10.1109/TCPMT.2019.2930565
http://dx.doi.org/10.1109/TCPMT.2013.2257928
http://dx.doi.org/10.3390/electronics8111219
http://dx.doi.org/10.1109/LMWC.2006.875590
http://dx.doi.org/10.1109/TEMC.2018.2876244
http://dx.doi.org/10.1109/TCAD.2003.809658
https://www.zuken.com/it/products/pcb-design/cr-8000/products/design-force
https://www.zuken.com/it/products/pcb-design/cr-8000/products/design-force
http://dx.doi.org/10.3390/electronics8070737
http://dx.doi.org/10.1063/1.1143696


Electronics 2020, 9, 1243 17 of 17

29. Matlab Manual: Improve Shallow Neural Network Generalization and Avoid Overfitting MATLAB
& Simulink. Available online: https://it.mathworks.com/help/deeplearning/ug/improve-neural-network-
generalization-and-avoid-overfitting.html (accessed on 31 July 2020).

30. TDK. Available online: https://product.tdk.com/en/search/capacitor/ceramic/mlcc/characteristic/ (accessed
on 4 February 2019).

31. MacKay, D.J.C. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [CrossRef]
32. Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Beale: Neural Network Design; Martin Hagan: Stillwater,

OK, USA, 2014.
33. Ortega, J.G.; Janer, C.L.; Quero, J.M.; Franquelo, L.G.; Pinilla, J.; Serrano, J. Analog to digital and digital to

analog conversion based on stochastic logic. In Proceedings of the IECON ’95-21st Annual Conference on
IEEE Industrial Electronics, Orlando, FL, USA, 6–10 November 1995; Volume 2, pp. 995–999.

34. de Paulis, F.; Cecchetti, R.; Olivieri, C.; Buecker, M. Genetic Algorithm PDN Optimization based on Minimum
Number of Decoupling Capacitors Applied to Arbitrary Target Impedance. In Proceedings of the IEEE
International Symposium on Electromagnetic Compatibility and Signal & Power Integrity, 3–28 August 2020.
www.ieee.com.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://it.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://it.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://product.tdk.com/en/search/capacitor/ceramic/mlcc/characteristic/
http://dx.doi.org/10.1162/neco.1992.4.3.415
www.ieee.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Machine Learning Approach 
	The Artificial Neural Network Structure 
	The Training Set 
	ANN Validation 

	The Genetic Algorithm 
	Numerical and Experimental Results 
	GA Optimization Based on ANN 
	GA–ANN Optimization and Experimental Validation 

	Conclusions 
	References

