
electronics

Article

Effective PCB Decoupling Optimization by
Combining an Iterative Genetic Algorithm and
Machine Learning

Riccardo Cecchetti 1, Francesco de Paulis 1 , Carlo Olivieri 1 , Antonio Orlandi 1,* and
Markus Buecker 2

1 UAq EMC Laboratory, Dept. of Industrial and Information Engineering and Economics, University of
L’Aquila, 64100 L’Aquila, Italy; riccardo_cecchetti@fastwebnet.it (R.C.); francesco.depaulis@univaq.it (F.d.P.);
carlo.olivieri@univaq.it (C.O.)

2 Zuken GmbH, 33104 Paderborn, Germany; markus.buecker@zuken.com
* Correspondence: antonio.orlandi@univaq.it; Tel.: +39-0862-434432

Received: 20 June 2020; Accepted: 31 July 2020; Published: 2 August 2020
����������
�������

Abstract: An iterative optimization for decoupling capacitor placement on a power delivery network
(PDN) is presented based on Genetic Algorithm (GA) and Artificial Neural Network (ANN). The ANN
is first trained by an appropriate set of results obtained by a commercial simulator. Once the ANN is
ready, it is used within an iterative GA process to place a minimum number of decoupling capacitors
for minimizing the differences between the input impedance at one or more location, and the required
target impedance. The combined GA–ANN process is shown to effectively provide results consistent
with those obtained by a longer optimization based on commercial simulators. With the new approach
the accuracy of the results remains at the same level, but the computational time is reduced by at least
30 times. Two test cases have been considered for validating the proposed approach, with the second
one also being compared by experimental measurements.

Keywords: machine learning; artificial neural network; decoupling capacitors; power delivery
network; genetic algorithm; twin removal; binary coding; power integrity; signal integrity

1. Introduction

The Artificial Intelligence (AI) paradigm is pervading the entire technical word, from humanities,
social sciences, to medicine (as the recent COVID-19 scenario has shown) to, of course, engineering.

In this field, one of the last (most recent) areas to be approached by this paradigm is the design of
electronic hardware. The reason is the complexity of the problem, the huge variety of the domain of
application, the interlaced design rules and/or design strategies [1–4]. In particular, AI comes to help
the design and optimization of printed circuit boards (PCB) in terms of layout, component placement,
interconnect routing, channel and equalization optimization [5,6]. A key aspect in the PCB design
of modern electronic systems dealing with high speed digital signals and lower DC voltages is the
huge demand of current required by the ICs. Such a current generates a high frequency voltage ripple
overlapped to the DC level that, in turn, may degrade the digital signaling [7–9]. Proper decoupling
strategies should be adopted at the chip, package and PCB level to ensure that the induced voltage
noise is maintained within a specified range [10–15]. To this aim, optimization algorithms have been
shown to effectively solve this problem [16–19] by achieving the input impedance seen at the power
input terminals of the chip (or package) to be lower than the target impedance set by the voltage noise
constrains in time domain.

There are several types of equivalent circuit models depending on their complexity and
corresponding accuracy that can be used for quickly evaluating the input impedance of the power

Electronics 2020, 9, 1243; doi:10.3390/electronics9081243 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5613-2454
https://orcid.org/0000-0002-6707-4050
https://orcid.org/0000-0001-5301-2820
http://www.mdpi.com/2079-9292/9/8/1243?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9081243
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1243 2 of 17

delivery network (PDN) [20–24]. However, nowadays most of designers have, together with the
commercial layout tools for PCB design, side software able to run power integrity simulations, and thus
to obtain the input impedance based on the design PDN. Although this commercial software is often
available, their setup and calculation time can be often a drawback. The Genetic Algorithm (GA)
optimization described in [19] has been shown to be effective for predicting the PDN input impedance
for an effective pre-layout placement optimization of decoupling capacitors. The GA in [19] relies,
for the PDN impedance calculation, on the commercial solver [25] with some limitation such as the
possibility to run at each generation the input impedance calculation once the layout is already set,
thus using defined types (packages) of decaps and its inherent long computation time.

The target of this paper is to use a Machine Learning (ML) approach based on Artificial Neural
Networks (ANN) to substitute the use of the commercial solver in [19]. The ANN, once appropriately
trained, can quickly predict with a good accuracy the input impedance for a given design.

The presently proposed ANN approach overcomes several limitations of the commercial
solver-based optimization proposed in [19] where the GA optimization was effective as long as
all decaps had the same package. However, this greatly limits the possibility to span a usually larger
decap database consisting of different types of decap packages. Once the parasitic inductance and
resistance of each package associated to their corresponding placement (pads size, vias diameter, etc.)
are evaluated, they can be embedded in the decap ESL and ESR and be taken into account by the ANN
simulation. Therefore, once the ANN training is accomplished based on a simplified layout (only one
package type considered), the ANN is much more effective and quick to provide the best solution at a
pre-layout PDN design stage.

The obtained impedance profiles from the ANN while running the iterative optimization algorithm
are compared to the corresponding impedances evaluated by a commercial tool and to experimental
data. Good agreement is found among these curve sets, validating the effectiveness and accuracy of
the proposed ML-based decap placement.

The present work is structured as follows: Section 2 introduces the architecture of the ANN
implemented into the optimization process, and its features. In Section 3, the basic structure of the
GA is recalled, and the changes for its used in combination with the ANN are highlighted. Section 4
is devoted to illustrating the physical structure and the electrical properties of the PDN. In the
same section, the results of the optimization processes are also presented and validated through the
corresponding experimental data and simulation response by a commercial simulator. Section 5 draws
the final conclusions.

2. The Machine Learning Approach

The artificial feedforward neural networks (FF-ANN, in the following ANN) are algorithms
suitable for the approximation of continuous functions on compact domains. Such a function can be
approximated, within a desired accuracy, by an ANN with a given number of inner layers and neurons.
In the present work, the regression capability of an ANN is exploited inside a genetic optimization
algorithm (GA) as computational engine for the cost function. In [26], an approach for the optimization
of the input impedance (Zin(f)) of a power delivery network (PDN) has been described, simultaneously
evaluated at multiple ports (i.e., 4) on the PDN itself.

By means of an iterative GA [19], an optimal configuration (position and value) of decoupling
capacitors (or decaps) has been found, that simultaneously minimize, in a given frequency range,
the Zin(f) at the ports Pi i = 1,4 associated to four fixed locations on the PDN. As a computational
engine for the cost function of the GA, the commercial power integrity (PI) simulator Design Force (DF)
has been used [25]. The GA approach starts from a randomly selected population of chromosomes.
Each chromosome contains genes; each gene represents the relevant information of a decap—its
position and value. To each chromosome, a cost (evaluated by the user defined cost function [19])
is assigned, that is a function of the frequency spectrum of the magnitude of the input impedance
(also named the impedance profile). A procedure selects the chromosomes that have the best fitness

Electronics 2020, 9, 1243 3 of 17

(in our case it corresponds to the lowest cost) and uses these chromosomes to create the next generation
of the population by the known selection, breeding and mutation steps [27]. After a suitable number
of generations, the GA converges to the global minimum value of the cost function and at its
associated chromosome.

At the base of this contribution, there is the idea to substitute a trained ANN in the GA flow to the
commercial PI simulator, that when given a chromosome (position and values of decaps) as input,
is able to compute Zin(f). The approach described in [19] implies long computational times due to
the repetitive use of the PI simulator for the computation of Zin(f) at each iteration. A trained ANN
gives the same results in an infinitely shorter time. Of course, the computational time gain during the
evaluation of Zin(f) by the ANN are compensated by the more computationally intense training phase.
This phase is performed once off-line, and it is not included in the iterative process of the GA. On the
same computing platform, the time saved by using the ANN is a few minutes, versus several hours
when using the classic PI simulator.

2.1. The Artificial Neural Network Structure

The standard fitting problem of a function can be simplified and stated as follows: given a set
of pairs <In(i),Out(i)> with i = 1,N, such that Out(i) = g(In(i)), to find the function h(.) that better
approximates g(.). In the frame of the ANN, the set <In(i),Out(i)> is the training set (TS) from which
the ANN “learns” and builds h(.). Then, h(.) is used to compute new output Out(j) = h(In(j)) due
to input values In(j) not belonging to the training set. This property of the trained ANN is called
“generalization”.

The problem at hand calls for the fitting of a family of functions (the input impedances of the
PDN) depending on the frequency f. For a specific input (a chromosome) the ANN should compute
the entire Zin(f) in a specified frequency range.

The TS has the number, location on the PDN and value of the decoupling capacitors as input,
and the frequency spectrum of the magnitude of Zin(f) at each of the four ports for that specific input
as target (or label). The TS is computed using the PI simulator. It is worth pointing out that during
the iterative process of the GA, the Zin(f) at the ports will be computed (for each of the chromosomes
generated by the GA) by means of the trained ANN.

It is not trivial to decide the architecture of an ANN a priori based on its application. The key point
is to set the number of inner layers and the number of neurons per layer [28]. If the complexity of the
ANN is small (the number of layers and neurons is reduced), the fitting performance is also reduced.
If the complexity is too high with respect to the order of the function to be fitted, then the ANN will
overfit the data [29]. In our case, we have used the cross validation technique using independent
training and test sets as reported in [28]. Starting from an architecture with three inner layers, chosen
among the benchmarks in [29], several training procedures have been run, varying the number of
neurons of each layer in turn and recording the performance of mean squared error (MSE) of the
trained ANN in term. In the end, the architecture associated to the minimum MSE will have been
considered and retained. In order to save time, this activity only aimed to set the most suitable ANN
architecture, and the PI simulator has not been used but rather a hybrid equivalent circuit model of
the PDN, in which either the lumped electrical behavior of the decaps and the distributed electrical
behavior of the planes [20] are considered. Figure 1 shows the comparison between the frequency
spectrum of the magnitude of the input impedance computed by the hybrid equivalent circuit (hybrid
eq. ckt) and the same impedance computed by the PI simulator (PI sim.).

After this cross validation phase, the final structure of the ANN (shown in Figure 2) consists
of 3 inner hidden layers (plus the input and output one) with 2 neurons each in the first and third,
and 30 neurons in the second. The ANN has 20 inputs and 361 outputs (the values of Zin(f) at the 361
frequency points of the spectrum).

Electronics 2020, 9, 1243 4 of 17Electronics 2020, 9, x FOR PEER REVIEW 4 of 17

Figure 1. Frequency spectrum of the magnitude of Zin(f) computed by the hybrid equivalent circuit
and by the PI simulator (PI sim.).

After this cross validation phase, the final structure of the ANN (shown in Figure 2) consists of
3 inner hidden layers (plus the input and output one) with 2 neurons each in the first and third, and
30 neurons in the second. The ANN has 20 inputs and 361 outputs (the values of Zin(f) at the 361
frequency points of the spectrum).

Figure 2. Artificial neural network (ANN) architecture.

The target of the GA is the minimization (below a user defined mask) of the Zin(f) of the board
evaluated in four distinct locations. The evaluation of the four input impedances is obtained by four
ANNs with the same architecture (as discussed above and in Figure 2), but trained with different
training sets.

2.2. The Training Set

The ANN training starts with the definition of the TS. In order to optimize the computing
resources, simple coding is used to represent the relevant information of the decaps. Three types of
decaps are used and coded with numerals 1, 2 and 3, as reported in Table 1.

Table 1. Decoupling capacitors and their code.

Type Code C, ESL, ESR
1 1 100 nF, 222 pH, 8.9 mΩ
2 2 47 nF, 154 pH, 21.4 mΩ
3 3 22 nF, 142 pH, 25.2 mΩ

These decoupling capacitors are commercial components [30] specifically designed for
decoupling due to their very low equivalent stray inductance (ESL). The placement of the decaps on
the board is constrained to a grid of fixed positions, as shown in Figure 3. The number of allowable
positions is 52. The positions are coded by a position designator (PD) ranging from 1 to 52.

Figure 1. Frequency spectrum of the magnitude of Zin(f) computed by the hybrid equivalent circuit
and by the PI simulator (PI sim.).

Electronics 2020, 9, x FOR PEER REVIEW 4 of 17

Figure 1. Frequency spectrum of the magnitude of Zin(f) computed by the hybrid equivalent circuit
and by the PI simulator (PI sim.).

After this cross validation phase, the final structure of the ANN (shown in Figure 2) consists of
3 inner hidden layers (plus the input and output one) with 2 neurons each in the first and third, and
30 neurons in the second. The ANN has 20 inputs and 361 outputs (the values of Zin(f) at the 361
frequency points of the spectrum).

Figure 2. Artificial neural network (ANN) architecture.

The target of the GA is the minimization (below a user defined mask) of the Zin(f) of the board
evaluated in four distinct locations. The evaluation of the four input impedances is obtained by four
ANNs with the same architecture (as discussed above and in Figure 2), but trained with different
training sets.

2.2. The Training Set

The ANN training starts with the definition of the TS. In order to optimize the computing
resources, simple coding is used to represent the relevant information of the decaps. Three types of
decaps are used and coded with numerals 1, 2 and 3, as reported in Table 1.

Table 1. Decoupling capacitors and their code.

Type Code C, ESL, ESR
1 1 100 nF, 222 pH, 8.9 mΩ
2 2 47 nF, 154 pH, 21.4 mΩ
3 3 22 nF, 142 pH, 25.2 mΩ

These decoupling capacitors are commercial components [30] specifically designed for
decoupling due to their very low equivalent stray inductance (ESL). The placement of the decaps on
the board is constrained to a grid of fixed positions, as shown in Figure 3. The number of allowable
positions is 52. The positions are coded by a position designator (PD) ranging from 1 to 52.

Figure 2. Artificial neural network (ANN) architecture.

The target of the GA is the minimization (below a user defined mask) of the Zin(f) of the board
evaluated in four distinct locations. The evaluation of the four input impedances is obtained by four
ANNs with the same architecture (as discussed above and in Figure 2), but trained with different
training sets.

2.2. The Training Set

The ANN training starts with the definition of the TS. In order to optimize the computing resources,
simple coding is used to represent the relevant information of the decaps. Three types of decaps are
used and coded with numerals 1, 2 and 3, as reported in Table 1.

Table 1. Decoupling capacitors and their code.

Type Code C, ESL, ESR

1 1 100 nF, 222 pH, 8.9 mΩ
2 2 47 nF, 154 pH, 21.4 mΩ
3 3 22 nF, 142 pH, 25.2 mΩ

These decoupling capacitors are commercial components [30] specifically designed for decoupling
due to their very low equivalent stray inductance (ESL). The placement of the decaps on the board is
constrained to a grid of fixed positions, as shown in Figure 3. The number of allowable positions is 52.
The positions are coded by a position designator (PD) ranging from 1 to 52.

In order to speed up the generation of the TS, a configuration matrix is built. It will be used
as input to the PI simulator to compute the frequency spectrum of the Zin(f) at the four ports in
Figure 3 in a specified frequency range for any given decap configuration (number, position and value).
The structure of the input matrix (the dimensions of which are 20 × 2466) is reported in Figure 4.

Electronics 2020, 9, 1243 5 of 17

Electronics 2020, 9, x FOR PEER REVIEW 5 of 17

Figure 3. Schematic of the power delivery network (PDN) board: position of the 4 ports (P1 to P4) and
grid of the allowed positions of the decaps.

In order to speed up the generation of the TS, a configuration matrix is built. It will be used as
input to the PI simulator to compute the frequency spectrum of the Zin(f) at the four ports in Figure 3
in a specified frequency range for any given decap configuration (number, position and value). The
structure of the input matrix (the dimensions of which are 20 × 2466) is reported in Figure 4.

Each column represents one of the training configurations.
The first 10 rows (1 to 10) are dedicated to identifying the position of the decaps on the virtual

grid of the board by means of the PD. In the last 10 rows (11 to 20), the type of decap is reported by
means of the coded 1 to 3 decap typology: in each column the decap with PD in line 1 has the type in
line 11, the decap with PD in line 2 has the typology in line 12 and so on.

The TS should be not only representative of the most significant configurations of the actual
working space, but should also be matched with the iterative nature of the GA. As reported in [19]
the developed GA uses an iterative scheme: it considers one decap at a time. There are configurations
with 1 to 10 decaps. Thus, the ANN should be trained with all these configurations. In the input
matrix of Figure 4, there are columns considering configurations with only 1 decap on the board, and
columns considering only 2 decaps on the board up to the case of 10 decaps. These sets of columns
are shaded with different colors in Figure 4. The values of the PD and of the type of capacitor are
randomly generated.

Given the number of possible decap locations on the virtual grid of the PDN board, the
configurations (location and value) of decaps dramatically increases with the increasing number of
decaps effectively considered on the board. Because of this, the number of configurations considered
in the input matrix of the TS it is dependent upon the number of decaps, ranging from 60 for the case
of only one decap on board, to 600 for the case of ten decaps.

As the number of decaps increases, the corresponding number of their possible combinations
increases, and, consequently, the number of configurations used to train the ANN should also
increase.

A limit of the ANN is its reduced capability to generalize the outputs for inputs that are outside
the boundaries of the input configurations used in the training set. To overcome this limit, the TS also
includes some “limit” input configurations as described in the following list:

• Bare board (no decoupling capacitors at all), column 1 of matrix in Figure 4.

Figure 3. Schematic of the power delivery network (PDN) board: position of the 4 ports (P1 to P4) and
grid of the allowed positions of the decaps.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 17

• All decaps of type 1, column 2 of matrix in Figure 4.
• All decaps of type 2, column 3 of matrix in Figure 4.
• All decaps of type 3, column 4 of matrix in Figure 4.

Furthermore, in order to improve the prediction performances of the ANN and extend its
training domain, 22 configurations previously obtained by the application of the GA in [19] have been
added to the input matrix of the TS as the last 22 columns.

Figure 4. Structure of the input matrix for the generation of the training set (TS).

As already mentioned, the output matrix of the TS has been generated by using the PI simulator.
For each input configuration contained in the input matrix, the PI simulator computes the frequency
spectrum of the magnitude of the input impedance at the specified Port. The spectrum of Zin(f)
consists of 361 values corresponding to the same number of frequency points logarithmically
separated in the frequency range from 100 MHz to 1 GHz. As an example, Figure 5 shows one of the
full training sets (2466 spectra of Zin(f) at one port).

Figure 5. TS for one of the ports (Port 1).

… ……

Figure 4. Structure of the input matrix for the generation of the training set (TS).

Each column represents one of the training configurations.
The first 10 rows (1 to 10) are dedicated to identifying the position of the decaps on the virtual

grid of the board by means of the PD. In the last 10 rows (11 to 20), the type of decap is reported by

Electronics 2020, 9, 1243 6 of 17

means of the coded 1 to 3 decap typology: in each column the decap with PD in line 1 has the type in
line 11, the decap with PD in line 2 has the typology in line 12 and so on.

The TS should be not only representative of the most significant configurations of the actual
working space, but should also be matched with the iterative nature of the GA. As reported in [19] the
developed GA uses an iterative scheme: it considers one decap at a time. There are configurations
with 1 to 10 decaps. Thus, the ANN should be trained with all these configurations. In the input
matrix of Figure 4, there are columns considering configurations with only 1 decap on the board,
and columns considering only 2 decaps on the board up to the case of 10 decaps. These sets of columns
are shaded with different colors in Figure 4. The values of the PD and of the type of capacitor are
randomly generated.

Given the number of possible decap locations on the virtual grid of the PDN board, the configurations
(location and value) of decaps dramatically increases with the increasing number of decaps effectively
considered on the board. Because of this, the number of configurations considered in the input matrix
of the TS it is dependent upon the number of decaps, ranging from 60 for the case of only one decap on
board, to 600 for the case of ten decaps.

As the number of decaps increases, the corresponding number of their possible combinations
increases, and, consequently, the number of configurations used to train the ANN should also increase.

A limit of the ANN is its reduced capability to generalize the outputs for inputs that are outside
the boundaries of the input configurations used in the training set. To overcome this limit, the TS also
includes some “limit” input configurations as described in the following list:

• Bare board (no decoupling capacitors at all), column 1 of matrix in Figure 4.
• All decaps of type 1, column 2 of matrix in Figure 4.
• All decaps of type 2, column 3 of matrix in Figure 4.
• All decaps of type 3, column 4 of matrix in Figure 4.

Furthermore, in order to improve the prediction performances of the ANN and extend its training
domain, 22 configurations previously obtained by the application of the GA in [19] have been added to
the input matrix of the TS as the last 22 columns.

As already mentioned, the output matrix of the TS has been generated by using the PI simulator.
For each input configuration contained in the input matrix, the PI simulator computes the frequency
spectrum of the magnitude of the input impedance at the specified Port. The spectrum of Zin(f) consists
of 361 values corresponding to the same number of frequency points logarithmically separated in the
frequency range from 100 MHz to 1 GHz. As an example, Figure 5 shows one of the full training sets
(2466 spectra of Zin(f) at one port).

Electronics 2020, 9, x FOR PEER REVIEW 6 of 17

• All decaps of type 1, column 2 of matrix in Figure 4.
• All decaps of type 2, column 3 of matrix in Figure 4.
• All decaps of type 3, column 4 of matrix in Figure 4.

Furthermore, in order to improve the prediction performances of the ANN and extend its
training domain, 22 configurations previously obtained by the application of the GA in [19] have been
added to the input matrix of the TS as the last 22 columns.

Figure 4. Structure of the input matrix for the generation of the training set (TS).

As already mentioned, the output matrix of the TS has been generated by using the PI simulator.
For each input configuration contained in the input matrix, the PI simulator computes the frequency
spectrum of the magnitude of the input impedance at the specified Port. The spectrum of Zin(f)
consists of 361 values corresponding to the same number of frequency points logarithmically
separated in the frequency range from 100 MHz to 1 GHz. As an example, Figure 5 shows one of the
full training sets (2466 spectra of Zin(f) at one port).

Figure 5. TS for one of the ports (Port 1).

… ……

Figure 5. TS for one of the ports (Port 1).

Electronics 2020, 9, 1243 7 of 17

After some tests, the algorithm chosen for the training is the Bayesian Regularization algorithm [31]
for its properties of generalization. This property is very important because during the GA procedure
the chromosomes that are generated are not included in the input training set (although inside its
boundaries) and the ANN should compute the associated output with maximum accuracy. In each of
the four TSs used to train the 4 ANNs for the 4 ports, 70% of the output has been used for the training,
15% for the validation, and the remaining 15%—not included in the training set of data—for the test
check [32]. Figure 6 shows how, during the training, the proposed ANN converges very rapidly (in less
than 100 epochs) and steadily to low values of MSE for both the training (blue line in Figure 6) and the
test (red line in Figure 6) sets. The MSE of the test set reaches a minimum at an epoch number similar
to that at which the MSE of the training (and associated validation) set reaches the minimum; thus also
confirming a correct subdivision (70%, 15%, 15%) of the TS. From Figure 6, it is evident as the MSE of
the test set drops from about 5000 to 1.7 in less than 100 epochs, and then remains still (although not
shown) up to 1000 epochs.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 17

After some tests, the algorithm chosen for the training is the Bayesian Regularization algorithm
[31] for its properties of generalization. This property is very important because during the GA
procedure the chromosomes that are generated are not included in the input training set (although
inside its boundaries) and the ANN should compute the associated output with maximum accuracy.
In each of the four TSs used to train the 4 ANNs for the 4 ports, 70% of the output has been used for
the training, 15% for the validation, and the remaining 15%—not included in the training set of data—
for the test check [32]. Figure 6 shows how, during the training, the proposed ANN converges very
rapidly (in less than 100 epochs) and steadily to low values of MSE for both the training (blue line in
Figure 6) and the test (red line in Figure 6) sets. The MSE of the test set reaches a minimum at an
epoch number similar to that at which the MSE of the training (and associated validation) set reaches
the minimum; thus also confirming a correct subdivision (70%, 15%, 15%) of the TS. From Figure 6,
it is evident as the MSE of the test set drops from about 5000 to 1.7 in less than 100 epochs, and then
remains still (although not shown) up to 1000 epochs.

Figure 6. Training performance of the ANN.

2.3. ANN Validation

The developed ANN is validated based on several test cases belonging to the TS. One of these
cases is reported in Figure 7 and compared to the target impedance profile obtained using the
accurate PI simulator. Good accuracy is found between the two impedance curves. At low
frequencies, below the first resonance (at around 9 MHz), the ANN output matches the capacitive
behavior of the board very well. Above this resonance the inductive trend of the impedance is also
well predicted, showing an increase in the impedance magnitude of about 20 dB/dec. The sharp anti-
resonance between 10 and 20 MHz is missed, probably due to the numerically low-pass filtering
effects due to the Bayesian Regularization algorithm [31] that introduces a higher damping (a lower
quality factor or Q-factor) in the results. This is also noted above 100 MHz, when the electromagnetic
distributed behavior of the considered board begins: beyond this frequency, the ANN output
matches the frequency values of the resonances but shows lower values of amplitude. These accuracy
considerations in conjunction with the very small computing time used to get the results make the
proposed ANN a good candidate to replace the commercial PI simulator in the GA-based decap
optimization process. In Figure 7, the MSE between the target curve and the ANN output is 1.212.

Figure 6. Training performance of the ANN.

2.3. ANN Validation

The developed ANN is validated based on several test cases belonging to the TS. One of these cases
is reported in Figure 7 and compared to the target impedance profile obtained using the accurate PI
simulator. Good accuracy is found between the two impedance curves. At low frequencies, below the
first resonance (at around 9 MHz), the ANN output matches the capacitive behavior of the board very
well. Above this resonance the inductive trend of the impedance is also well predicted, showing an
increase in the impedance magnitude of about 20 dB/dec. The sharp anti-resonance between 10 and
20 MHz is missed, probably due to the numerically low-pass filtering effects due to the Bayesian
Regularization algorithm [31] that introduces a higher damping (a lower quality factor or Q-factor) in
the results. This is also noted above 100 MHz, when the electromagnetic distributed behavior of the
considered board begins: beyond this frequency, the ANN output matches the frequency values of the
resonances but shows lower values of amplitude. These accuracy considerations in conjunction with
the very small computing time used to get the results make the proposed ANN a good candidate to
replace the commercial PI simulator in the GA-based decap optimization process. In Figure 7, the MSE
between the target curve and the ANN output is 1.212.

Electronics 2020, 9, 1243 8 of 17Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

Figure 7. Comparison between the ANN output and the PI simulation results of the impedance at
Port 1 for one decap configuration belonging to the TS.

3. The Genetic Algorithm

The architecture of the GA is similar to the one proposed in [19]. The GA iteratively places one
decap at each optimization run, such that when the exit condition from the algorithm is met, a
minimum number of decap is obtained. The GA is based on a binary encoding of the chromosome
composed by two variables, as shown in Figure 8. The first variable corresponds to the position
designator (PD), that represents the number of the locations on the PCB surface where the decaps can
be placed; this number, with the corresponding x-y coordinates, is set by the user, according to the
layout constraints (in our case can range from 1 to 52). The second consists of the specific decap
typology to be used, with such decaps belonging to the group of in-the-shelf available decaps (in our
case range from 1 to 3 according to Table 1). As shown in Figure 8, each element of the chromosome
is converted into a binary number with a Nb = 7 bits encoding, thus having Nc = 2Nb = 128
configurations available. The total possible positions are Npos = 52; thus, the total Npos locations are
divided into Nc groups of size Dq according to Equation (1). The binary number obtained by the GA
is first converted into its decimal counterpart Posdec using the typical ADC algorithm [33], and then
the corresponding position is computed using Equation (2).

1
2 1
pos

q Nb

N
D

−
=

−
 (1)

()1 q decPos floor D Pos= + ⋅ (2)

Where the function floor rounds to the smaller integer number. The position coding leads to a Dq =
0.4016 using Equation (1); thus, the binary number ‘1101110’ in the example in Figure 8 is first
converted into Posdec = 110, and then to Pos = 45 using (R1.2.b) that is used to identify the decap
position into the PCB. The same process can be applied to the coding of decap topology; by using Ndec
= 3 in Equation (1) leading to Dq = 0.0157. The binary number ‘1111111’ in the example in Figure 8 is
first converted into Capdec = 127, and then into Cap = 3 using Equation (2). The conversion from the
position (and decap type) into a binary number appropriate for the GA process is performed by
inverting Equation (2) as done in Equation (3), where the function ceil rounds to the next integer. The
specific case reported in Figure 8 for the conversion of the position Pos = 45 into its binary counterpart
applies Equation (3) to get Posdec = 110. The corresponding binary number coded by 7 bits is ‘1101110’.
The same procedure can be readily applied to the decap type coding.

Figure 7. Comparison between the ANN output and the PI simulation results of the impedance at
Port 1 for one decap configuration belonging to the TS.

3. The Genetic Algorithm

The architecture of the GA is similar to the one proposed in [19]. The GA iteratively places
one decap at each optimization run, such that when the exit condition from the algorithm is met,
a minimum number of decap is obtained. The GA is based on a binary encoding of the chromosome
composed by two variables, as shown in Figure 8. The first variable corresponds to the position
designator (PD), that represents the number of the locations on the PCB surface where the decaps
can be placed; this number, with the corresponding x-y coordinates, is set by the user, according to
the layout constraints (in our case can range from 1 to 52). The second consists of the specific decap
typology to be used, with such decaps belonging to the group of in-the-shelf available decaps (in our
case range from 1 to 3 according to Table 1). As shown in Figure 8, each element of the chromosome is
converted into a binary number with a Nb = 7 bits encoding, thus having Nc = 2Nb = 128 configurations
available. The total possible positions are Npos = 52; thus, the total Npos locations are divided into Nc

groups of size Dq according to Equation (1). The binary number obtained by the GA is first converted
into its decimal counterpart Posdec using the typical ADC algorithm [33], and then the corresponding
position is computed using Equation (2).

Dq =
Npos − 1

2Nb − 1
(1)

Pos = f loor
(
1 + Dq · Posdec

)
(2)

where the function floor rounds to the smaller integer number. The position coding leads to a Dq = 0.4016
using Equation (1); thus, the binary number ‘1101110’ in the example in Figure 8 is first converted into
Posdec = 110, and then to Pos = 45 using (R1.2.b) that is used to identify the decap position into the PCB.
The same process can be applied to the coding of decap topology; by using Ndec = 3 in Equation (1)
leading to Dq = 0.0157. The binary number ‘1111111’ in the example in Figure 8 is first converted into
Capdec = 127, and then into Cap = 3 using Equation (2). The conversion from the position (and decap
type) into a binary number appropriate for the GA process is performed by inverting Equation (2) as
done in Equation (3), where the function ceil rounds to the next integer. The specific case reported in
Figure 8 for the conversion of the position Pos = 45 into its binary counterpart applies Equation (3) to
get Posdec = 110. The corresponding binary number coded by 7 bits is ‘1101110’. The same procedure
can be readily applied to the decap type coding.

Posdec = ceil
(

Pos− 1
Dq

)
(3)

Electronics 2020, 9, 1243 9 of 17

Electronics 2020, 9, x FOR PEER REVIEW 9 of 17

1
dec

q

PosPos ceil
D

 −=   
 

 (3)

Figure 8. Structure of the chromosome and 7-bit binary encoding.

Each allowable decap is characterized by its package, its capacitance value and the
corresponding parasitic inductive and resistive parameters ESL and ESR, respectively. The ESL and
ESR should also embed the contribution of the mounting inductance and resistance for each different
package type, if different from the single package type considered during the ANN training.

The flowchart of the iterative optimization based on the ANN calculation is reported in Figure
9. The main features of the algorithm are the following:

• The population size Np;
• The number of generations Ngen;
• The binary coding that is able to better randomize the generation of new chromosomes, since it

is based on a limited number of integer values associated to both locations and decap type;
• The twin removal aimed at avoiding any redundancy in the creation of new chromosomes

within a given population;
• The evaluation of the cost function fcost, that, in general, can be associated to multiple input

impedances as the sum of the cost functions fcost_i of the Nports for which the PDN impedance
should be optimized, with i = 1 Nports.

The overall cost function and the one associated to each port are computed according to
Equations (4) and (5).

cos cos _
1

portsN

t t i
i

f f
=

=  (4)

_
1

cos _
1

()
freqN

in i j
j

t i

Z f
f

N
=

Δ
=


 (5)

where the frequency range is made by Nfreq frequency points. Each cost function fcost_i increases by
Zin_i whenever the computed Zin_i(fj) is larger than the target Zmask(fj), as described in Equation (6).

_ _
_

_

() () when () ()
()

0 when () ()
in i j mask j in i j mask j

in i j
in i j mask j

Z f Z f Z f Z f
Z f

Z f Z f

 − ≥Δ = 
<

 (6)

The optimization is considered accomplished based on three sub-conditions that can be set by
the user according to the design specs: the first occurs when the cost function reaches zero, thus when
the optimized impedance is below the target impedance on the whole frequency range considered.
The second forces the optimization to stop when a user-defined target value of the cost function is
reached. The third is based on a maximum number of decaps, corresponding to the number of
iterations, to be placed on the board.

Figure 8. Structure of the chromosome and 7-bit binary encoding.

Each allowable decap is characterized by its package, its capacitance value and the corresponding
parasitic inductive and resistive parameters ESL and ESR, respectively. The ESL and ESR should also
embed the contribution of the mounting inductance and resistance for each different package type,
if different from the single package type considered during the ANN training.

The flowchart of the iterative optimization based on the ANN calculation is reported in Figure 9.
The main features of the algorithm are the following:

• The population size Np;
• The number of generations Ngen;
• The binary coding that is able to better randomize the generation of new chromosomes, since it is

based on a limited number of integer values associated to both locations and decap type;
• The twin removal aimed at avoiding any redundancy in the creation of new chromosomes within

a given population;
• The evaluation of the cost function fcost, that, in general, can be associated to multiple input

impedances as the sum of the cost functions fcost_i of the Nports for which the PDN impedance
should be optimized, with i = 1 Nports.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 17

Figure 9. Flow chart of the iterative genetic algorithm (GA) optimization based on the ANN
impedance calculation.

The GA implements its main steps (selection, crossover and mutation) on binary-coded
chromosomes; also, the cross-over is randomly selected when generating each new chromosome.
Such features greatly improve the randomness of the explored variable domain.

4. Numerical and Experimental Results

4.1. GA Optimization Based on ANN

The developed ANN is employed in this section, together with the GA optimization process
described in Section 3, to find out the best decap configuration that makes the input impedances at
Ports 1–4 lower than the target profile (the mask indicated in Figure 10). The ANN described in
Section 2 was trained to optimize the placement of 10 decaps. The optimization results of the
impedances at the four ports are shown in Figure 10a; such curves correspond to the decap placement
in Figure 10b, where the red circles and the numbers therein identify the ports. The blue squares
identify the decap locations, whereas the numbers from 1 to 10 correspond to the order with which
each decap has been placed during the 10 optimization cycles. The notation Ci, for i = 1, 3 stands for
the typology of capacitors that were found as the optimum type at the given iteration. The cost
function that is evaluated at each of the 10 iterations is shown in Figure 10c; it is characterized by the
expected decreasing trend. Once the low frequency capacitive portion of the impedances reaches and
goes below the target impedance given by the mask, the cost function decreases more slowly since
further optimization can only slightly bring down the inductive portion of the impedances. Although
not reported as curves, for sake of clarity, in Figure 10a a monotonic trend of the ANN output (the
frequency spectrum of the port input impedance) has been noted toward the lower values of its
magnitude as the iteration count increases (see Figure 10c). Because of this, the frequency spectrum
of the magnitude of the port impedance associated to the last iteration has been considered as the
final result. It should be pointed out that the random nature of the GA calls for multiple executions
of the optimization process in order to perform a statistical analysis of the outputs in order to identify
the best result. Because the target of this work was enough to obtain the first and quick fulfillment of

Figure 9. Flow chart of the iterative genetic algorithm (GA) optimization based on the ANN
impedance calculation.

The overall cost function and the one associated to each port are computed according to
Equations (4) and (5).

fcost =

Nports∑
i=1

fcost_i (4)

Electronics 2020, 9, 1243 10 of 17

fcost_i =

N f req∑
j=1

∆Zin_i(f j)

N1
(5)

where the frequency range is made by Nfreq frequency points. Each cost function fcost_i increases by
Zin_i whenever the computed Zin_i(fj) is larger than the target Zmask(fj), as described in Equation (6).

∆Zin_i(f j) =

{ ∣∣∣Zin_i(f j) −Zmask(f j)
∣∣∣ when

∣∣∣Zin_i(f j)
∣∣∣ ≥ ∣∣∣Zmask(f j)

∣∣∣
0 when

∣∣∣Zin_i(f j)
∣∣∣ < ∣∣∣Zmask(f j)

∣∣∣ (6)

The optimization is considered accomplished based on three sub-conditions that can be set by the
user according to the design specs: the first occurs when the cost function reaches zero, thus when
the optimized impedance is below the target impedance on the whole frequency range considered.
The second forces the optimization to stop when a user-defined target value of the cost function
is reached. The third is based on a maximum number of decaps, corresponding to the number of
iterations, to be placed on the board.

The GA implements its main steps (selection, crossover and mutation) on binary-coded chromosomes;
also, the cross-over is randomly selected when generating each new chromosome. Such features greatly
improve the randomness of the explored variable domain.

4. Numerical and Experimental Results

4.1. GA Optimization Based on ANN

The developed ANN is employed in this section, together with the GA optimization process
described in Section 3, to find out the best decap configuration that makes the input impedances at Ports
1–4 lower than the target profile (the mask indicated in Figure 10). The ANN described in Section 2 was
trained to optimize the placement of 10 decaps. The optimization results of the impedances at the four
ports are shown in Figure 10a; such curves correspond to the decap placement in Figure 10b, where the
red circles and the numbers therein identify the ports. The blue squares identify the decap locations,
whereas the numbers from 1 to 10 correspond to the order with which each decap has been placed
during the 10 optimization cycles. The notation Ci, for i = 1, 3 stands for the typology of capacitors that
were found as the optimum type at the given iteration. The cost function that is evaluated at each of
the 10 iterations is shown in Figure 10c; it is characterized by the expected decreasing trend. Once the
low frequency capacitive portion of the impedances reaches and goes below the target impedance
given by the mask, the cost function decreases more slowly since further optimization can only slightly
bring down the inductive portion of the impedances. Although not reported as curves, for sake of
clarity, in Figure 10a a monotonic trend of the ANN output (the frequency spectrum of the port input
impedance) has been noted toward the lower values of its magnitude as the iteration count increases
(see Figure 10c). Because of this, the frequency spectrum of the magnitude of the port impedance
associated to the last iteration has been considered as the final result. It should be pointed out that the
random nature of the GA calls for multiple executions of the optimization process in order to perform
a statistical analysis of the outputs in order to identify the best result. Because the target of this work
was enough to obtain the first and quick fulfillment of the input impedance mask limit in the range of
effectiveness of the decaps (around 107 Hz), only one execution of the proposed algorithm (of course
with multiple internal iterations) was run.

Electronics 2020, 9, 1243 11 of 17

Electronics 2020, 9, x FOR PEER REVIEW 11 of 17

the input impedance mask limit in the range of effectiveness of the decaps (around 107 Hz), only one
execution of the proposed algorithm (of course with multiple internal iterations) was run.

(a)

(b)

106 107 108 109

f (Hz)

-40

-20

0

20

40
mask
optimization
No Decap

106 107 108 109

f (Hz)

-40

-20

0

20

40

mask
optimization
No Decap

106 107 108 109

f (Hz)

-60

-40

-20

0

20

40

mask
optimization
No Decap

106 107 108 109

f (Hz)

-60

-40

-20

0

20

40

mask
optimization
No Decap

1

2

3

4

C11

C12

C13

C14

C35

C36

C37

C28

C19

C310
Electronics 2020, 9, x FOR PEER REVIEW 12 of 17

(c)

Figure 10. Optimization results after running the combined ANN-GA process for the placement of
10 decaps. (a) input impedances at the four ports, (b) decap placement with the identification of the
capacitor type listed in Table 1, (c) Decreasing trend of the cost function.

4.2. GA–ANN Optimization and Experimental Validation

A further GA–ANN based optimization is run in this section aimed at supporting and
confirming the usefulness of the proposed combined procedure and at validating experimentally the
obtained decap configuration.

The PCB briefly introduced in Figure 3 is manufactured and tested. The board dimensions and
stack-up are reported in Figure 11. A second optimization run is performed based on the GA
algorithm described in Section 3 that places one decap iteratively by searching for the best value and
location among all the available positions identified in Figure 11a. At each iteration, the GA calls
Np·Ngen times the ANN developed in Section 2, with Np = 10 and Ngen = 10. The optimization process is
much quicker when using the ANN rather than the direct DF simulator, taking 0.7 s and 30 s for each
impedance calculation, respectively.

(a) (b)

Figure 11. (a) The test PDN boards and (b) its stack-up.

This second GA–ANN based optimization outputs the decap configuration in Figure 12a. The
first four decaps are of type 1 (C1); this can be explained by the need to lower first the low frequency

0 2 4 6 8 10
15

20

25

30

35

40

45

50

iterations

C
os

t F
un

ct
io

n

Figure 10. Optimization results after running the combined ANN-GA process for the placement of
10 decaps. (a) input impedances at the four ports, (b) decap placement with the identification of the
capacitor type listed in Table 1, (c) Decreasing trend of the cost function.

Electronics 2020, 9, 1243 12 of 17

4.2. GA–ANN Optimization and Experimental Validation

A further GA–ANN based optimization is run in this section aimed at supporting and confirming
the usefulness of the proposed combined procedure and at validating experimentally the obtained
decap configuration.

The PCB briefly introduced in Figure 3 is manufactured and tested. The board dimensions and
stack-up are reported in Figure 11. A second optimization run is performed based on the GA algorithm
described in Section 3 that places one decap iteratively by searching for the best value and location
among all the available positions identified in Figure 11a. At each iteration, the GA calls Np·Ngen times
the ANN developed in Section 2, with Np = 10 and Ngen = 10. The optimization process is much quicker
when using the ANN rather than the direct DF simulator, taking 0.7 s and 30 s for each impedance
calculation, respectively.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 17

(c)

Figure 10. Optimization results after running the combined ANN-GA process for the placement of
10 decaps. (a) input impedances at the four ports, (b) decap placement with the identification of the
capacitor type listed in Table 1, (c) Decreasing trend of the cost function.

4.2. GA–ANN Optimization and Experimental Validation

A further GA–ANN based optimization is run in this section aimed at supporting and
confirming the usefulness of the proposed combined procedure and at validating experimentally the
obtained decap configuration.

The PCB briefly introduced in Figure 3 is manufactured and tested. The board dimensions and
stack-up are reported in Figure 11. A second optimization run is performed based on the GA
algorithm described in Section 3 that places one decap iteratively by searching for the best value and
location among all the available positions identified in Figure 11a. At each iteration, the GA calls
Np·Ngen times the ANN developed in Section 2, with Np = 10 and Ngen = 10. The optimization process is
much quicker when using the ANN rather than the direct DF simulator, taking 0.7 s and 30 s for each
impedance calculation, respectively.

(a) (b)

Figure 11. (a) The test PDN boards and (b) its stack-up.

This second GA–ANN based optimization outputs the decap configuration in Figure 12a. The
first four decaps are of type 1 (C1); this can be explained by the need to lower first the low frequency

0 2 4 6 8 10
15

20

25

30

35

40

45

50

iterations

C
os

t F
un

ct
io

n

Figure 11. (a) The test PDN boards and (b) its stack-up.

This second GA–ANN based optimization outputs the decap configuration in Figure 12a. The first
four decaps are of type 1 (C1); this can be explained by the need to lower first the low frequency
capacitive portion of the impedance; such decap placement will provide a steeper reduction in the
cost function shown in Figure 12b. Subsequently, the C3 decaps are inserted from the 5th to the 8th
iteration. Finally, one C2 and one more C3 decaps are provided. The placement results in Figure 12a
are similar to the layout results in Figure 10b, thus confirming the validity and consistency of the
developed GA–ANN process. However, since the input impedance calculations by the ANN are
based on configurations that are randomly selected by the GA within the same population and at each
generation, the best solution at each iteration (for the placement of each new decap) may not be unique.

The decaps are mainly placed by the GA close to the ports, thus confirming that the placement
inductance plays a role in the optimization process. Such inductance is accurately taken into account
by the DF simulator; however, it is well predicted by the ANN, since the decap placement computed
by the ANN proposed in this paper and shown in Figure 12a is consistent with the results obtained
directly by the DF simulator in [19,34].

Electronics 2020, 9, 1243 13 of 17

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17

capacitive portion of the impedance; such decap placement will provide a steeper reduction in the
cost function shown in Figure 12b. Subsequently, the C3 decaps are inserted from the 5th to the 8th
iteration. Finally, one C2 and one more C3 decaps are provided. The placement results in Figure 12a
are similar to the layout results in Figure 10b, thus confirming the validity and consistency of the
developed GA–ANN process. However, since the input impedance calculations by the ANN are
based on configurations that are randomly selected by the GA within the same population and at
each generation, the best solution at each iteration (for the placement of each new decap) may not be
unique.

The decaps are mainly placed by the GA close to the ports, thus confirming that the placement
inductance plays a role in the optimization process. Such inductance is accurately taken into account
by the DF simulator; however, it is well predicted by the ANN, since the decap placement computed
by the ANN proposed in this paper and shown in Figure 12a is consistent with the results obtained
directly by the DF simulator in [19,34].

(a)

(b)

Figure 12. Application of the ANN within the GA optimization process. (a) Optimized decap
configuration and placement. (b) Decreasing trend of the cost function.

The decap placement in Figure 12a is used for assembling a test board according to the geometry
in Figure 11. The PCB with the identification of the decaps is shown in Figure 13. The measurement
results are reported in Figure 14 for two of the four measured input impedances at Port 1 and 3. The
measured impedances are compared to the impedances predicted by the ANN output at the final
tenth iteration and to the accurate calculation provided by the DF simulator. The mask and the
impedance of the bare board are also included. The measured impedance agrees well with one
obtained from the DF simulation. In accordance with that already mentioned in Section 2.3, in this
experimental case, the impedance predicted by the ANN shows a general agreement with the
simulated and measured data. In the capacitive region (frequencies below the first resonance) the

1

2

3

4

C11

C12

C13

C14

C35

C36

C37

C38

C29

C310

0 2 4 6 8 10
15

20

25

30

35

40

45

50

iterations

C
os

t F
un

ct
io

n

Figure 12. Application of the ANN within the GA optimization process. (a) Optimized decap
configuration and placement. (b) Decreasing trend of the cost function.

The decap placement in Figure 12a is used for assembling a test board according to the geometry
in Figure 11. The PCB with the identification of the decaps is shown in Figure 13. The measurement
results are reported in Figure 14 for two of the four measured input impedances at Port 1 and 3.
The measured impedances are compared to the impedances predicted by the ANN output at the
final tenth iteration and to the accurate calculation provided by the DF simulator. The mask and
the impedance of the bare board are also included. The measured impedance agrees well with one
obtained from the DF simulation. In accordance with that already mentioned in Section 2.3, in this
experimental case, the impedance predicted by the ANN shows a general agreement with the simulated
and measured data. In the capacitive region (frequencies below the first resonance) the agreement is
good. Moreover, in this case, the sharp anti-resonance following the first resonance at 9 MHz is not
captured by the ANN. From 10 MHz to the beginning of the electromagnetic distributed behavior
(around 200 MHz), the impedance values from the ANN output also match the measured one very well.
Above 200 MHz (such frequency value is usually much beyond the frequency limit for which the PDN
and decap placement needs to be optimized), the probably induced numerical damping is evident.

Electronics 2020, 9, 1243 14 of 17

Electronics 2020, 9, x FOR PEER REVIEW 14 of 17

agreement is good. Moreover, in this case, the sharp anti-resonance following the first resonance at 9
MHz is not captured by the ANN. From 10 MHz to the beginning of the electromagnetic distributed
behavior (around 200 MHz), the impedance values from the ANN output also match the measured
one very well. Above 200 MHz (such frequency value is usually much beyond the frequency limit for
which the PDN and decap placement needs to be optimized), the probably induced numerical
damping is evident.

Figure 13. Assembled PCB and identification of the 10 decap locations.

(a)

106 107 108 109

f (Hz)

-60

-40

-20

0

20

40

Mask
No Decap
ANN Opt
Simul DF
Meas

Figure 13. Assembled PCB and identification of the 10 decap locations.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 17

agreement is good. Moreover, in this case, the sharp anti-resonance following the first resonance at 9

MHz is not captured by the ANN. From 10 MHz to the beginning of the electromagnetic distributed

behavior (around 200 MHz), the impedance values from the ANN output also match the measured

one very well. Above 200 MHz (such frequency value is usually much beyond the frequency limit for

which the PDN and decap placement needs to be optimized), the probably induced numerical

damping is evident.

Figure 13. Assembled PCB and identification of the 10 decap locations.

(a)

Electronics 2020, 9, x FOR PEER REVIEW 15 of 17

(b)

Figure 14. Input impedances at ports 1 (a) and 3 (b). Comparisons among the impedances measured,

simulated by DF, and predicted by the ANN.

5. Conclusions

An alternative way to evaluate the input impedance of a PDN is developed in this paper based

on an ANN. The obtained ANN, once accurately trained, can be efficiently used into an optimization

algorithm for finding the best decap placement from a given target impedance. The ANN, although

its accuracy is lower than a full-wave simulator, is a much quicker tool that PDN commercial

software. The output provided by the GA–ANN based process is consistent with the main principles

for a PDN design, and with the results obtained by using the GA in combination with a commercial

tool. The impedance predicted by the ANN agrees with those obtained by the DF simulator and by

hardware measurements.

The target of this work was to quickly obtain the first solution that fulfils the mask limit

(considered the optimal) without the need to look to better solutions. The statement is supported by

the fact that multiple optimizations based on the GA lead to similar results in terms of cost functions,

thus confirming that the optimum solution is not unique. This can be surely tolerated as long as other

constraints are not applied in the calculation of the cost function; i.e., the weight associated to the cost

of a decaps, or the weight associated to specific (preferred) locations. The examples in Figures 10 and

12 confirm the validity of the above assumption, with the impedance evaluated by the developed

ANN; in such cases, the cost function in Figure 10b and in Figure 12b are very similar based on the

same input, even though the obtained decap configuration in Figures 10a and 12a are slightly

different. A similar comparison can be seen in Figure 6 in [19], where the cost functions up to the

sixth iteration are almost overlapped.

The obtained results open at least two research focuses that will be considered next: the

investigation of unwanted numerical effects on the frequency spectrum of the impedance around

some specific resonance or anti-resonance frequencies, and the implementation of multiple

executions of the GA in order to improve the identification of the optimal solution by means of a

robust statistical analysis.

Author Contributions: Conceptualization, A.O. and M.B.; methodology, A.O.; software, C.O., R.C. and M.B.;

validation, F.d.P.; writing—original draft preparation, A.O., R.C., and F.d.P.; writing—review and editing, F.d.P.

and A.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Google, 2017 Google Faculty Research Award.

Acknowledgments: The authors would like to thank Zhiping Yang at Google for his valuable support, the useful

discussions and the insightful comments for the development of this work and ZUKEN GmbH for having

supported the project with its software.

Figure 14. Input impedances at ports 1 (a) and 3 (b). Comparisons among the impedances measured,
simulated by DF, and predicted by the ANN.

Electronics 2020, 9, 1243 15 of 17

5. Conclusions

An alternative way to evaluate the input impedance of a PDN is developed in this paper based
on an ANN. The obtained ANN, once accurately trained, can be efficiently used into an optimization
algorithm for finding the best decap placement from a given target impedance. The ANN, although its
accuracy is lower than a full-wave simulator, is a much quicker tool that PDN commercial software.
The output provided by the GA–ANN based process is consistent with the main principles for a
PDN design, and with the results obtained by using the GA in combination with a commercial
tool. The impedance predicted by the ANN agrees with those obtained by the DF simulator and by
hardware measurements.

The target of this work was to quickly obtain the first solution that fulfils the mask limit (considered
the optimal) without the need to look to better solutions. The statement is supported by the fact
that multiple optimizations based on the GA lead to similar results in terms of cost functions, thus
confirming that the optimum solution is not unique. This can be surely tolerated as long as other
constraints are not applied in the calculation of the cost function; i.e., the weight associated to the
cost of a decaps, or the weight associated to specific (preferred) locations. The examples in Figures 10
and 12 confirm the validity of the above assumption, with the impedance evaluated by the developed
ANN; in such cases, the cost function in Figure 10b and in Figure 12b are very similar based on the
same input, even though the obtained decap configuration in Figures 10a and 12a are slightly different.
A similar comparison can be seen in Figure 6 in [19], where the cost functions up to the sixth iteration
are almost overlapped.

The obtained results open at least two research focuses that will be considered next: the investigation
of unwanted numerical effects on the frequency spectrum of the impedance around some specific
resonance or anti-resonance frequencies, and the implementation of multiple executions of the GA in
order to improve the identification of the optimal solution by means of a robust statistical analysis.

Author Contributions: Conceptualization, A.O. and M.B.; methodology, A.O.; software, C.O., R.C. and M.B.;
validation, F.d.P.; writing—original draft preparation, A.O., R.C., and F.d.P.; writing—review and editing, F.d.P.
and A.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Google, 2017 Google Faculty Research Award.

Acknowledgments: The authors would like to thank Zhiping Yang at Google for his valuable support, the useful
discussions and the insightful comments for the development of this work and ZUKEN GmbH for having
supported the project with its software.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, G.; Chen, K.; Yu, Z.; Zhang, Y.; Zhou, F.; He, J. An Inversion Method for Evaluating Lightning Current
Waveform Based on Time Series Neural Network. IEEE Trans. Electromagn. Compat. 2017, 59, 887–893.
[CrossRef]

2. da Arantes, J.; da Arantes, M.; Missaglia, A.B.; Simoes, E.D.V.; Toledo, C.F.M. Evaluating Hardware Platforms
and Path Re-planning Strategies for the UAV Emergency Landing Problem. In Proceedings of the 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November
2017; pp. 937–944. [CrossRef]

3. Ku, C.K.; Goay, C.H.; Ahmad, N.S.; Goh, P. Jitter Decomposition of High-Speed Data Signals From Jitter
Histograms With a Pole–Residue Representation Using Multilayer Perceptron Neural Networks. IEEE Trans.
Electromagn. Compat. 2019, 1–11. [CrossRef]

4. Piersanti, S.; Orlandi, A.; de Paulis, F. Electromagnetic Absorbing Materials Design by Optimization Using a
Machine Learning Approach. IEEE Trans. Electromagn. Compat. 2018, 1–8. [CrossRef]

5. Lu, T.; Wu, K. Machine learning methods in high-speed channel modeling. In Proceedings of the DesignCon
2019, Santa Clara, CA, USA, 29–31 January 2019.

6. Lu, T.; Sun, J.; Wu, K.; Yang, Z. High-Speed Channel Modeling with Machine Learning Methods for Signal
Integrity Analysis. IEEE Trans. Electromagn. Compat. 2018, 60, 1957–1964. [CrossRef]

http://dx.doi.org/10.1109/TEMC.2016.2621139
http://dx.doi.org/10.1109/ICTAI.2017.00144
http://dx.doi.org/10.1109/TEMC.2019.2936000
http://dx.doi.org/10.1109/TEMC.2018.2871879
http://dx.doi.org/10.1109/TEMC.2017.2784833

Electronics 2020, 9, 1243 16 of 17

7. Xu, J.; Bai, S.; Nalla, K.; Sapozhnikov, M.; Drewniak, J.L.; Hwang, C.; Fan, J. Power Delivery Network
Optimization Approach using an Innovative Hybrid Target Impedance. In Proceedings of the 2019
IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI),
New Orleans, LA, USA, 22–26 July 2019; pp. 211–216.

8. Oh, D.; Razmadze, A.; Chandrasekar, K. Power integrity analysis for core logic blocks. In Proceedings of the
2013 IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems, San Jose, CA,
USA, 27–30 October 2013; pp. 79–82.

9. Kim, J.; Wu, S.; Wang, H.; Takita, Y.; Takeuchi, H.; Araki, K.; Feng, G.; Fan, J. Improved target impedance
and IC transient current measurement for power distribution network design. In Proceedings of the IEEE
International Symposium on Electromagnetic Compatibility, Fort Lauderdale, FL, USA, 25–30 July 2010;
pp. 445–450.

10. Armstrong, C. Debug and analysis considerations for optimizing signal integrity in your internet of things
design. In Proceedings of the 2017 IEEE International Symposium on Electromagnetic Compatibility &
Signal/Power Integrity (EMCSI), Washington, DC, USA, 7–11 August 2017; pp. 20–24.

11. De Paulis, F.; Zhao, B.; Piersanti, S.; Cho, J.; Cecchetti, R.; Achkir, B.; Orlandi AFan, J. Impact of chip and
interposer PDN to eye diagram in high speed channels. In Proceedings of the 2018 IEEE 22nd Workshop on
Signal and Power Integrity (SPI), Brest, France, 22–25 May 2018; pp. 1–4.

12. Piersanti, S.; de Paulis, F.; Olivieri, C.; Orlandi, A. Decoupling Capacitors Placement for a Multichip PDN by
a Nature-Inspired Algorithm. IEEE Trans. Electromagn. Compat. 2018, 60, 1678–1685. [CrossRef]

13. Swaminathan, M.; Han, K.J. Design and Modeling for 3D ICs and Interposers; World Scientific: Singapore, 2014.
14. Smith, L.D.; Bogatin, E. Principles of Power Integrity for PDN Design; Prentice-Hall: New York, NY, USA, 2016.
15. Zamek, I.; Boyle, P.; Li, Z.; Sun, S.; Chen, X.; Chandra, S.; Li, T. Modeling FPGA current waveform and

spectrum and PDN noise estimation. In Proceedings of the DesignCon 2008, Santa Clara, CA, USA,
22 February 2008.

16. Erdin, I.; Achar, R. Multi-pin optimization method for placement of decoupling capacitors using genetic
algorithm. IEEE Trans. Electromagn. Compat. 2018, 60, 1662–1669. [CrossRef]

17. Erdin, I.; Achar, R. Multi-Objective Optimization of Decoupling Capacitors for Placement and Component
Value. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1976–1983. [CrossRef]

18. Song, E.; Koo, J.; Pak, J.S.; Kim, J. Through-Silicon-Via-Based Decoupling Capacitor Stacked Chip in 3-D-ICs.
IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 9, 1467–1480. [CrossRef]

19. de Paulis, F.; Cecchetti, R.; Olivieri, C.; Piersanti, S.; Orlandi, A.; Buecker, M. Efficient Iterative Process Based
on an Improved Genetic Algorithm for Decoupling Capacitor Placement at Board Level. Electronics 2019, 8,
1219. [CrossRef]

20. Kahng, S. GA-optimized decoupling capacitors damping the rectangular power-bus’ cavity-mode resonances.
IEEE Microw. Wirel. Compon. Lett. 2006, 16, 375–377. [CrossRef]

21. Shringarpure, K.; Zhao, B.; Wei, L.; Archambeault, B.; Ruehli, A.; Cracraft, M.; Cocchini, M.; Wheeler, E.;
Fan, J.; Drewniak, J. On finding the optimal number of decoupling capacitors by minimizing the equivalent
inductance of the PCB PDN. In Proceedings of the 2014 IEEE International Symposium on Electromagnetic
Compatibility (EMC), Raleigh, NC, USA, 4–8 August 2014; pp. 218–223.

22. Kadlec, P.; Marek, M.; Štumpf, M.; Šeděnka, V. PCB Decoupling Optimization With Variable Number of
Capacitors. IEEE Trans. Electromagn. Compat. 2019, 61, 1841–1848. [CrossRef]

23. Su, H.; Sapatnekar, S.S.; Nassif, S.R. Optimal decoupling capacitor sizing and placement for standard-cell
layout designs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2003, 22, 428–436. [CrossRef]

24. Wang, X.; Cai, Y.; Zhou, Q.; Tan, S.X.; Eguia, T. Decoupling capacitance efficient placement for reducing
transient power supply noise. In Proceedings of the 2009 International Conference on Computer-Aided
Design, San Jose, CA, USA, 2–5 November 2009; pp. 745–751.

25. Zuken. Design Force User Manual. Available online: https://www.zuken.com/it/products/pcb-design/cr-
8000/products/design-force (accessed on 2 September 2019).

26. Piersanti, S.; Cecchetti, R.; Olivieri, C.; de Paulis, F.; Orlandi, A.; Buecker, M. Decoupling Capacitors Placement
at Board Level Adopting a Nature-Inspired Algorithm. Electronics 2019, 8, 737. [CrossRef]

27. Haupt, R.L.; Werner, D.H. Genetic Algorithms in Electromagnetics; John Wiley & Sons: New York, NY, USA, 2007.
28. Bishop, C.M.; Roach, C.M. Fast curve fitting using neural networks. Rev. Sci. Instrum. 1992, 63, 4450–4456.

[CrossRef]

http://dx.doi.org/10.1109/TEMC.2017.2770089
http://dx.doi.org/10.1109/TEMC.2018.2803047
http://dx.doi.org/10.1109/TCPMT.2019.2930565
http://dx.doi.org/10.1109/TCPMT.2013.2257928
http://dx.doi.org/10.3390/electronics8111219
http://dx.doi.org/10.1109/LMWC.2006.875590
http://dx.doi.org/10.1109/TEMC.2018.2876244
http://dx.doi.org/10.1109/TCAD.2003.809658
https://www.zuken.com/it/products/pcb-design/cr-8000/products/design-force
https://www.zuken.com/it/products/pcb-design/cr-8000/products/design-force
http://dx.doi.org/10.3390/electronics8070737
http://dx.doi.org/10.1063/1.1143696

Electronics 2020, 9, 1243 17 of 17

29. Matlab Manual: Improve Shallow Neural Network Generalization and Avoid Overfitting MATLAB
& Simulink. Available online: https://it.mathworks.com/help/deeplearning/ug/improve-neural-network-
generalization-and-avoid-overfitting.html (accessed on 31 July 2020).

30. TDK. Available online: https://product.tdk.com/en/search/capacitor/ceramic/mlcc/characteristic/ (accessed
on 4 February 2019).

31. MacKay, D.J.C. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [CrossRef]
32. Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Beale: Neural Network Design; Martin Hagan: Stillwater,

OK, USA, 2014.
33. Ortega, J.G.; Janer, C.L.; Quero, J.M.; Franquelo, L.G.; Pinilla, J.; Serrano, J. Analog to digital and digital to

analog conversion based on stochastic logic. In Proceedings of the IECON ’95-21st Annual Conference on
IEEE Industrial Electronics, Orlando, FL, USA, 6–10 November 1995; Volume 2, pp. 995–999.

34. de Paulis, F.; Cecchetti, R.; Olivieri, C.; Buecker, M. Genetic Algorithm PDN Optimization based on Minimum
Number of Decoupling Capacitors Applied to Arbitrary Target Impedance. In Proceedings of the IEEE
International Symposium on Electromagnetic Compatibility and Signal & Power Integrity, 3–28 August 2020.
www.ieee.com.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://it.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://it.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://product.tdk.com/en/search/capacitor/ceramic/mlcc/characteristic/
http://dx.doi.org/10.1162/neco.1992.4.3.415
www.ieee.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Machine Learning Approach
	The Artificial Neural Network Structure
	The Training Set
	ANN Validation

	The Genetic Algorithm
	Numerical and Experimental Results
	GA Optimization Based on ANN
	GA–ANN Optimization and Experimental Validation

	Conclusions
	References

