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Abstract: Facial landmark localization is a significant yet challenging computer vision task, whose
accuracy has been remarkably improved due to the successful application of deep Convolutional
Neural Networks (CNNs). However, CNNs require huge storage and computation overhead, thus
impeding their deployment on computationally limited platforms. In this paper, to the best of
our knowledge, it is the first time that an efficient facial landmark localization is implemented
via binarized CNNs. We introduce a new network architecture to calculate the binarized models,
referred to as Amplitude Convolutional Networks (ACNs), based on the proposed asynchronous back
propagation algorithm. We can efficiently recover the full-precision filters only using a single factor in
an end-to-end manner, and the efficiency of CNNs for facial landmark localization is further improved
by the extremely compressed 1-bit ACNs. Our ACNs reduce the storage space of convolutional
filters by a factor of 32 compared with the full-precision models on dataset LFW+Webface, CelebA,
BioID and 300W , while achieving a comparable performance to the full-precision facial landmark
localization algorithms.

Keywords: facial landmark localization; amplitude convolutional networks (ACNs); binarized neural
networks (BNNs)

1. Introduction

Facial localization is a fundamental computer vision task [1] which lays the foundation for
many higher level applications, including face verification [2], facial emotion recognition [3],
human–computer interaction [4], and facial motion capture [5]. Having demonstrated their superior
power in numerous vision tasks [6], deep Convolutional Neural Networks (CNNs) have also exhibited
major performance boost in solving facial landmark localization, which significantly outperform
the traditional hand-crafted predecessors. However, considering the complex and deep nature of
CNNs, their success in facial landmark localization comes with prohibitive computation and storage
overhead. Although they perform well on expensive GPU-based machines, they are often unsuitable
for resource-constrained devices like cell phones and embedded electronics [7]. Accordingly, how to
implement these successful CNN-based solutions for resource-limited platforms remains unsolved.
Considering the rapid developments of portable smart devices and the growing demand of facial
recognition, there is a pressing need to overcome the resource limitations and realize the state-of-the-art
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deep facial landmark localization solutions on portable devices. To this end, substantial research
efforts have been devoted to design light-weight CNNs by compressing redundant parameters of
convolutional kernels [8,9]. One typical network compression strategy is to approximate floating-point
kernel weights with binary values [10–12]. Following this line of research, local binary convolution
(LBC) layers are introduced in [13] to binarize the non-linearly activated responses of standard
convolutional layers. In [12], a BinaryConnect scheme using real-valued weights as a key reference
is exploited to improve the binarization process. In [10,11], XNOR-Net is presented where both the
weights and inputs of the convolution kernels are approximated with binary values, to improve the
efficiency of the convolutional operations. In [14,15], DoReFa-Net exploits 1-bit convolution kernels
with low bit-width gradients to accelerate both the training and inference phases. ABC-Net [15]
adopts multiple binary weights and activations to approximate full-precision weights. More recently,
a simple fixed-scaling method incorporated in 1-bit convolutional layers is proposed to binarize CNNs,
resulting in results that are comparable with full-precision networks [16]. Modulated convolutional
networks (MCNs) are introduced in [17] to binarize the kernels, which however are not real 1-bit
CNNs, achieving better performance compared with full-precision baselines.

In this paper, we introduce a simple yet efficient facial landmark localization algorithm
via binarized CNNs. A new Amplitude Convolutional Network (ACN) is proposed to achieve
computation efficiency for 1-bit CNNs. In our ACN, the full-precision kernels and amplitude matrices
are obtained during back propagation to minimize the information loss caused by kernel binarization
in the forward pass. The process is called asynchronous back propagation, which can efficiently
recover the full-precision filters using only one single factor in an end-to-end manner. Optimized with
the asynchronous back propagation algorithm, our ACN not only saves the storage by a factor of 32,
but also achieves comparable landmark localization performance, compared with its corresponding
full-precision model. The contributions of this paper are summarized as follows:

(1) We propose a new Amplitude Convolutional Network (ACN) for facial landmark
localization, to achieve computation efficiency for resource constrained mobile devices, using
binarized CNNs.

(2) We design a new asynchronous back propagation algorithm to optimize ACNs efficiently,
leading to an extremely compressed 1-bit CNNs model in an end-to-end manner.

(3) ACN achieves comparable facial landmark localization performance compared with its
corresponding full-precision CNN model on several benchmark datasets including CelebA,
BioID, LFW and Webface.

2. Related Work

Facial landmark localization. Facial landmark localization has a long history, from the early Active
Appearance Models [18,19] to Constrained Local Models [20,21], and has recently shifted to methods
based on Cascaded Shape Regression [22–28] and deep learning [29–33].

In particular, representative deep facial landmark localization methods usually adopt cascaded
CNNs. For instance, Sun et al. [34] constructed a cascaded multi-level regression network with a
deep CNN to detect facial points. Differently, Zhou et al. [29] proposed a facial landmark localization
algorithm following the coarse-to-fine strategy and achieved high-precision positioning of 68 face key
points. Thereafter, Zhang et al. [6] proposed a multi-task Cascaded Convolutional Network (MTCNN)
to simultaneously deal with face detection and facial landmark localization. Notably, these facial
landmark localization methods with cascaded CNNs all employ patch-wise operations, wherein the
original input images are processed patch-by-patch. This strategy is time consuming and suffers
from the boundary effects. As an improvement, Kowalski et al. [1] proposed a new cascaded deep
neural network, named Deep Alignment Network (DAN), which avoids the drawbacks of patch-wise
operations and processes an input images as a whole. More recently, Liu et al. [35] detected facial
landmarks in not only the spatial domain, but also exploited the temporal domain using recurrent
neural networks (RNNs) in video-based face alignment.
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In summary, the deep CNN based methods discussed above mainly focus on solving a
cascaded regression problem with iterative optimization. Such solutions are resource-intense and
computation-heavy, therefore prohibit the deployment on resource-constrained devices such as
mobile phones.

Network binarization. Several methods attempt to binarize the weights and the activations in
neural networks.The performance of highly quantized networks (e.g., binarized) were believed to
be very poor due to the destructive property of binary quantization. Expectation BackPropagation
(EBP) in [36] showed high performance can be achieved by a network with binary weights and
binary activations In [12], a BinaryConnect scheme using real-valued weights as a key reference is
exploited to improve the binarization process. The work of [11] goes one step further and binarizes
both parameters and activations. In this case multiplications can be replaced with elementary binary
operations In [10], XNOR-Net is presented where both the weights and inputs of the convolution
kernels are approximated with binary values via reconstructing the unbinarized filters simply by
the average of absolute weight values, leading to a bad performance compared with full-precision
version. Ref. [10] is the first work to report good results on a large dataset (ImageNet). Instead of
focusing on image classification, Ref. [37] propose a novel binary architecture network in the facial
landmark localization task and enhance the performance but using the same method for binarization
as in XNOR-Net [10]. Our method differs from all aforementioned works, it is the first time that an
efficient facial landmark localization is implemented by improving the quantization method.

3. Amplitude Convolutional Networks

3.1. Problem Formulation

The inference process of any binary neural network (BNN) model is based on the binarized kernels,
which means that the kernels must be binarized in the forward step (corresponding to the inference)
during training, so that the training loss is calculated based on the binarized filters. Accordingly, we
have to update the kernel x using the gradient derived from the binarized kernel, i.e.,

xk+1 ← xk − ηδk
x, (1)

where δk
x is calculated based on the binarized kernel x̂, which is elaborated in Section 3.4. Contrary to

the forward process, during back propagation, the resulting kernels are not necessary to be binarized
and can be full-precision. Under this situation, the full-precision kernels are binarized to gradually
bridge the binarization gap during training. Therefore, the learning of most BNN models involve both
discrete and continuous spaces, which poses great challenges in practice. To address these challenges
and improve the optimization of binarizing CNNs, we decouple the kernel x and represent x̂ by its
amplitude and direction as:

x̂ = a · d, (2)

where a and d respectively denote the amplitude and the direction of x. d is easily calculated by sign(x)
as −1 for negative x and 1 for positive x. We can then focus on the computation of the amplitude a,
which involves complex kernel reconstruction and feature learning. To compute a, we propose an
asynchronous back propagation method.

3.2. Loss Function of ACNs

In order to achieve binarized weights, we design a new loss function in ACNs. Note that the
kernels of ACNs are binarized, while for 1-bit ACNs, both the kernels and the activations are binarized,
which will be briefly described at the end of Section 3.4. In Table 1, we elaborate D, A and Â: Dl

i are
the directions of the full-precision kernels Xl

i of the lth convolutional layer, l ∈ {1, · · · , N}; Al shared
by all Dl

i represents the amplitude of the lth convolutional layer; Âl and Al are of the same size and
all the elements of Âl are equal to the average of the elements of Al . In the forward pass, Âl is used
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instead of the full-precision Al . In this case, Âl can be considered as a scalar. The full-precision Al is
only used for back propagation during training. This process is the same as the way of calculating x̂
from x in an asynchronous manner, which is also illustrated in Figure 1. Accordingly, Equation (3) is
represented for ACNs as:

X̂ = Â� D, (3)

where � denotes the element-wise multiplication between matrices. We then define an amplitude loss
function to reconstruct the full-precision kernels as:

LÂ =
θ

2 ∑
i,l
‖Xl

i − X̂l
i‖2 =

θ

2 ∑
i,l
‖Xl

i − Âl � Dl
i‖2, (4)

where Dl
i = sign(Xl

i ) represents the binarized kernel. The element-wise multiplication combines the
binarized kernels and the amplitude matrices to approximate the full-precision kernels. Our final loss
function is defined with the MSE loss:

LS =
1

2S ·M ∑
s,m
‖Ŷs,m −Ys,m‖2

2, (5)

where Ŷs,m is the ground truth of the mth facial landmark for the sth example; Ys,m is the corresponding
detected position by ACNs. Finally, the overall loss function L is applied to supervise the training of
ACNs in the asynchronous back propagation in the following form:

L = LS + LÂ. (6)
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Figure 1. Facial landmark localization based on Amplitude Convolutional Networks (ACNs). ACNs are
designed based on the convolutional kernels’ directions Dl

i and amplitude matrices Al . The amplitude
matrices are particularly designed to efficiently approximate the unbinarized convolutional filters
in the end-to-end framework. Since an amplitude matrix is shared at each layer, ACNs are high
compressed. The full-precision convolutional kernels Xl

i are quantized to Dl
i via the sign function.

Both the new loss LÂ and the traditional loss LS are used to train ACNs. We illustrate our network
structure based on conventional Convolutional Neural Networks (CNNs), and more specific details
are shown in the dotted box. � indicates the element-wise multiplication between matrices. Note that
the amplitude matrices Al and the full-precision kernels Xl

i are not used in the inference. ACNs have
binarized kernels. To compress CNNs, 1-bit ACNs are proposed based on ACNs by further binarizing
the full-precision feature maps of ACNs into binary feature maps.
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Table 1. A brief description of the main notations used in the paper.

X: full-precision kernel X̂: binarized kernel A: amplitude matrix
F: feature map D: X′s direction Â: generated from A

i: kernel index g: input feature map index h: output feature map index
m: facial landmark index l: layer index M: number of facial landmarks
S: number of examples

3.3. Forward Propagation of ACNs

In ACNs, X̂l in the lth layer are used to calculated the output feature maps Fl+1 as:

Fl+1 = ACconv(Fl , X̂l), (7)

where ACconv denotes the newly designed amplitude convolution operation in Equation (8). A simple
illustration of the forward pass operation in ACNs is depicted in Figure 1. In ACconv, the channels of
the output feature maps are generated as follows:

Fl+1
h = ∑

i,g
Fl

g ⊗ X̂l
i , (8)

where ⊗ denotes the convolution operation; Fl+1
h is the hth feature map in the (l + 1)th convolutional

layer; Fl
g denotes the gth feature map in the lth convolutional layer.

3.4. Back-Propagation Updating

In ACNs, what need to be learned and updated are the full-precision kernels Xi and amplitude
matrices A. The kernels and the matrices are jointly learned. In each convolutional layer, ACNs update
the full-precision kernels and then the amplitude matrices. In what follows, the layer index l is omitted
for simplicity.

3.4.1. Updating the Full-Precision Kernels

We denote δXi as the gradient of the full-precision kernel Xi, and have:

δXi =
∂L
∂Xi

=
∂LS
∂Xi

+
∂LÂ
∂Xi

, (9)

Xi ← Xi − η1δXi , (10)

where η1 is a learning rate. We then have:

∂LS
∂Xi

=
∂LS

∂X̂i
· ∂X̂i

∂Xi
=

∂LS

∂X̂i
· Â · 1, (11)

∂LÂ
∂Xi

= θ · (Xi − Â� Di), (12)

where Xi is the full-precision convolutional kernel corresponding to Di, and 1 is the indicator
function [10] widely used to estimate the gradient of non-differentiable function.

3.4.2. Updating the Amplitude Matrices

After updating X, we update the amplitude matrix A. Let δA be the gradient of A. According to
Equation (6), we have:

δA =
∂L
∂A

=
∂LS
∂A

+
∂LÂ
∂A

, (13)
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A← |A− η2δA|, (14)

where η2 is another learning rate. Note that the amplitudes are always set to be non-negative. We then
have:

∂LS
∂A

= ∑
i

∂LS

∂X̂i
· ∂X̂i

∂Â
· ∂Â

∂A
= ∑

i

∂LS

∂X̂i
· Di, (15)

∂LÂ
∂A

=
∂LÂ

∂Â
· ∂Â

∂A
= −θ · (Xi − Â� Di) · Di, (16)

where ∂Â
∂A is set to 1 for easy implementation of the algorithm. Note that Â and A are respectively used

in the forward pass and the backward propagation in an asynchronous manner. The above derivations
show that ACNs are learnable with the new BP algorithm. The 1-bit ACNs are obtained via binarizing
the kernels and activations simultaneously as in [10,11]. We summarize the training procedure in
Algorithm 1.

Algorithm 1 Optimization of ACNs with the asynchronous back propagation
Require:

The training dataset; the full-precision kernels X; the amplitude matrices A; the learning rates η1 and η2.
Ensure:

The ACNs with the learned X, A.
1: Initialize X and A randomly;
2: repeat
3: // Forward propagation
4: for l = 1 to L do
5: Generate Âl from Al ; //Every element of Âl is the average of all the elements of Al .
6: X̂l

i = Âl � sign(Xl
i ), ∀i;

7: if 1 bit then
8: F̂l =sign(Fl); //1 bit ACNs
9: end if

10: Perform 2D convolution with X̂l
i , ∀i;

11: end for
12: // Backward propagation
13: Compute ∂LS

∂Xl
i
, ∀l, i;

14: for l = L to 1 do
15: Calculate δXl

i
, δl

A; // using Equations (9)∼(16)

16: Update parameters Xl
i and Al using Adam;

17: end for
18: until the algorithm converges.

4. Implementation and Experiments

Our ACNs and 1-bit ACNs are generic, which can be applied to any CNNs architectures. In our
experiments, we used four convolutional layers and two fully-connected (FC) layers as the backbone
of our ACNs. Similar CNN structures are widely used for facial landmark localization in prior
work [29,34,38–40]. Figure 2 shows the details of the network architectures of the backbone CNNs,
ACNs and 1-bit ACNs. The input was the face region obtained from a face detector. The compared
networks were evaluated using the same training and testing sets. To further evaluate the performance
of our method, we first experimented on three small-scale datasets to verify the generalization ability of
the model. Specifically, we trained the detectors only based on the LFW+Webface training dataset [29].
Then we further compared them on two other public test sets, CelebA and BioID, without changing
the training set. Then a significant experiment on the large-scale benchmark 300-W was employed to
compare with the state-of-the-art works.
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Figure 2. Network architectures of CNNs (top), Amplitude Convolutional Networks (ACNs) (middle,
binarized kernels) and 1-bit ACNs (bottom).

4.1. Datasets and Evaluation Metric

Datasets: The LFW+Webface dataset was processed by [34] and it was composed of a training
set of 10, 000 and a testing set of 3466 face images, among which 7876 images were downloaded from
the web and the remaining 5590 images are from LFW. Each face was labeled with the positions of
five keypoints.

The CelebA dataset [41] was a large-scale face attribute dataset with more than 200 K celebrity
images, each with 40 attribute annotations. The images in the dataset covered large pose variations and
background clutter. CelebA had large diversities and quantities, and rich annotations. Each image was
also labeled with the positions of five keypoints. Therefore, it was convenient for us to test the model on
the dataset. Finally, we randomly chose 2599 images as the testing set for the performance comparison.

The BioID dataset [42] consisted of 1521 gray level images of 23 persons with a resolution of
384× 286 pixels. Each image showed the frontal view of a face. Each face was labeled with the
positions of five key points by [34]. This test set was characterized by large variations in lighting,
background, and face size. We used all images as our test images and compared the performance of
different algorithms.

300-W [43] consisted of several datasets including AFW, HELEN, LFPW, XM2VTS. 300 W had a
68-point annotation for each face image, We followed [44] to split the dataset into four sets, training,
common testing, challenging testing, and full testing, respectively. We regarded all the training samples
from LFPW, HELEN and the full set of AFW as the training set, in which there is 3148 training images.
The full test set (689 images) was divided into a common subset (554 images), which contained the test
sets from LFPW and HELEN, and a challenging subset (135 images) which was from IBUG.

Evaluation metric. We used the normalized mean error (NME) as the evaluation metric, which is
defined as follows:

NME =
1

N · d
N

∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (17)

where (x, y) and (x̂, ŷ) denotes the ground truth and predicted coordinates respectively, N denotes the
number of landmarks, and for LFW+Webface, CelebA and BioID datasets, d is the face size, for 300-W
dataset, d is the inter-ocular distance. For brevity, % is omitted in all tables.

4.2. Implementation Details

In our experiments, four NVIDIA GeForce TITAN X GPUs are used. On LFW+ Webface, CelebA
and BioID datasets, all the original images were firstly cropped by face bounding box and resized
to 39× 39 gray-scale. We replaced the spatial convolution layers with ACconv modules. In all the
experiments, we adopted Max-pooling except the last convolution layer, ReLU after the convolution
layers, and a dropout layer after the first FC layer to avoid over-fitting. We used the Adam optimization
algorithm [45]. β1 and β2 were the exponential decay rates for the first and the second moment
estimates and they were set to 0.9 and 0.999 respectively. The two learning rates η1 and η2 in
Equations (10) and (14) were both set to 1× 10−4. The models were trained for 1600 epochs. In addition,
in Equation (4), LÂ was balanced by the hyper-parameter θ, which was empirically set to 5× 10−4.
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On 300-W dataset, we utilized CPM [46] as our backbone, which extracted features by the first
four convolutional layers of VGG-16 and predicted heatmaps with three CPM stages. Based on the
ImageNet pre-trained model, we replaced the CPM convolution with ACconv modules. We follow the
settings of [46] that randomly cropped and resize faces to (256, 256). The model was trained with SGD
for 40 epochs using batch size of 8. The learning rate was set to 5× 10−5 at first and reduced by 0.5 at
20th and 30th epochs.

All the models were implemented using the PyTorch platform. We plotted the training error
curves of CNN, ACN and 1-bit ACN in Figure 3. The curves showed that the convergence of ACN,
marginally affected by the binarization process, was similar to the corresponding full-precision CNN.
This validated the accuracy and reliability of the model.

Figure 3. Training error curves.

4.3. Results on LFW+Webface, CelebA and BioID

In this section, we first compare the full-precision CNN, ACN, and 1-bit ACN with four kernel
structures, 10-20-40-80, 20-40-60-80, 40-60-80-100, and 20-20-40-40-60-60-80-80. The structures shown in
Figure 2 correspond to 20-40-60-80.The experimental results are given in Table 2 with the normalized
mean error(NME) and amounts of model parameters. Next, we describe the results on all the datasets.

LFW+Webface:From Table 2, it is observed that for the kernel structure 20-40-60-80, ACN achieved
2.1925% error on the test set, which is comparable to the full-precision CNN (2.06%). Although the
detection error 3.0633% of the 1-bit ACN was a little higher than the full-precision CNN, this difference
can be ignored with the significant increase of computational efficiency. When the kernel structure
became 40-60-80-100, ACN achieved 1.9429% error, which outperformed the full-precision CNN
(2.0190%).

CelebA: We tested three networks on the CelebA dataset, which were trained on the
LFW+Webface training set. In Table 2, for the kernel structure 20-40-60-80, ACN obtained 2.1538% error,
which is very close to the full-precision CNN (2.1256%). At the same time, the gap between the 1-bit
ACN and the full-precision CNN was only 0.3811%. When the kernel structure becomes 40-60-80-100,
ACN achieved 1.9091% error, which again outperformed the full-precision CNN (2.0608%). Moreover,
the detection error of the 1-bit ACN reduced when the network became deeper.

BioID: With the three networks trained on the LFW+Webface training set, we compared them on
BioID. The errors of the full-precision CNN, ACN, and 1-bit ACN reached 1.669%, 1.7769%, and 2.4555%
respectively, for the kernel structure 20-40-60-80. The slight difference between the full-precision CNN
and ACN further validated the effectiveness of our model. Meanwhile, the 1-bit ACN maintained a



Electronics 2020, 9, 1236 9 of 14

close performance to the full-precision CNN. When the kernel structure became 40-60-80-100, ACN
yielded 1.6064% error, which again performed better than the full-precision CNN (1.675%).

Table 2. Results comparison of normalized mean error (NME) on different datasets. Note that for each
kernel structure, the numbers of the parameters of the three networks are similar. However, ACN and
1-bit ACN use binarized kernels.

Network Kernels #Param. Model LFW+Webface CelebA BioID

10-20-40-80 0.06M

full-precision CNN 2.1532 2.2503 1.7286

ACN 2.2436 2.2344 1.8395

1-bit ACN 3.1224 2.7782 2.8510

20-40-60-80 0.09M

full-precision CNN 2.0600 2.1256 1.6690

ACN 2.1925 2.1538 1.7769

1-bit ACN 3.0633 2.5067 2.4555

40-60-80-100 0.15M

full-precision CNN 2.0190 2.0608 1.6750

ACN 1.9429 1.9091 1.6064

1-bit ACN 2.8099 2.4284 2.4298

20-20-40-40-
60-60-80-80 0.16M

full-precision CNN 1.8994 2.0194 1.4668

ACN 1.9000 2.1663 1.4045

1-bit ACN 3.1091 2.9447 2.6785

A few visual detection results are presented in Figure 4. Besides, examples of the kernels and
feature maps of the three networks are illustrated in Figures 5 and 6. From Figure 6, we can see that
similar to the full-precision CNN, the features from different layers of ACN and 1-bit ACN captured
the rich and hierarchical information, which demonstrated the advantages of our models as well as the
binarized kernels.

Failure cases. To gain more insight into our proposed method, we show some challenging cases
that failed our model in Figure 7. In the first three cases, the regions highlighted by the yellow circle
were occluded, which made it challenging for them to be detected. In the last three cases, large head
pose variations destroyed the face shape and led to poor performance, which could be relieved by
using post processing operations. We will address these problems in the future work.

Figure 4. Some detection results of faces with large pose and expression variations. The face images
are from LFW+Webface. First row: results by ACN. Second row: results by 1-bit ACN. Both of the two
models use the 20-40-60-80 kernel structure.
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Figure 5. Illustration of kernels of the full-precision CNN (first row), ACN (second row) and 1-bit ACN
(third row).

Figure 6. Illustration of the feature maps of the four layers of the full-precision CNN (first row), ACN
(second row) and 1-bit ACN (third row). The network structures are shown in Figure 2. Note that
similar to the full-precision CNN, the features from different layers of ACN and 1-bit ACN capture the
rich and hierarchical information, which illustrates the advantages of our models.

Figure 7. Visualization of some failure cases on the 300-W dataset. Yellow circles indicate the
clear failures.

4.4. Results on 300-W

Table 3 shows the performance of different facial landmark detection algorithms on the 300-W and
AFLW dataset. We compared our approach with recently proposed state-of-the-art algorithms. Our
ACN was established following the settings in baseline method CPM [46] but replaced the convolution
with ACconv modules. The 1-bit ACN was obtained via binarizing the kernels and activations
simultaneously. The implementation details are in Section 4.2. As in shown, our ACN with binarized
kernels achieved very competitive results 4.39 NME on the full set of 300-W and 2.28 NME on the
AFLW compared with others. Note that our ACN gave better results on the challenging set of 300-W
compared with the baseline method, which indicated the robustness of our method and that ACN
could alleviate the overfitting problem by increasing the model compactness, since one amplitude
matrix was shared at one layer and also the binarized kernels were used. Moreover, there was only a
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small gap between the 1-bit ACN and the real-valued version of the baseline CPM. Note that our 1-bit
ACN outperformed many current state-of-the-art methods, all of which use large real-valued CNNs.
Figure 8 shows visual detection results of ACN and 1-bit ACN on 300-W dataset.

Table 3. Comparisons of NME with state-of-the-art methods on 300-W and AFLW datasets.

Methods
300-W

AFLW
Common Challenging Full Set

SDM [22] 5.57 15.40 7.52 5.43
LBF [24] 4.95 11.98 6.32 4.25

MDM [31] 4.83 10.14 5.88 -
TCDCN [38] 4.80 8.60 5.54 -

CFSS [44] 4.73 9.98 5.76 3.92
DSRN [47] 4.12 9.68 5.21 1.86

Two-Stage [48] 4.36 7.56 4.99 2.17

CPM(baseline) [46] 3.39 8.14 4.36 2.33
ACN 3.67 7.36 4.39 2.28

1-bit ACN 4.16 8.97 5.10 2.91

Figure 8. Qualitative results of our ACN (row 1) and 1-bit ACN (row 2) on 300-W dataset.

Efficiency analysis: The memory usage of a network is computed as the summation of 32 bits
times the number of full-precision kernels and 1 bit times the number of the binary kernels in the
network. As shown in Table 4, our ACN reduced the memory usage by 32 times compared with
the full-precision CNN. The reason is that the amplitude matrices were only used when training for
enriching the diversity of the kernels of ACN, whereas they were not used in inference. XNOR-Net [7]
is another popular 1-bit CNN, and can also be used for the same landmark detection task. Note that the
parameter amount of ACN was almost the same as XNOR-Net.However, the ways of approximating
the unbinarized filters were clearly different, where the unbinarized filters in XNOR-Net were
reconstructed using binary filters with a single scaling factor while ours accomplished it by a set
of amplitude matrics together with the binary filters. For the efficiency analysis of the 1-bit ACN,
if all the convolution operations were binary, then the convolutions could be estimated by XNOR
and bit counting operations [11], which gained 58× speedup in CPUs same as XNOR-Net [7]. We
compared XNOR-Net with our ACN and 1-bit ACN on the 300-W dataset.The results are given in
Table 4, from which we observe that our models consistently outperformed XNOR-Net with a large
margin in all the cases.
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Table 4. Comparisons of performance with XNOR-Net on 300-W dataset. Note that the results of
memory saving and speedup are compared with the full-precision baseline CPM.

Method Memory Saving Speedup Common Challenging Full Set

XNOR-Net 32× 58× 5.97 12.43 7.24
ACN 32× - 3.67 7.36 4.39

1-bit ACN 32× 58× 4.16 8.97 5.10

5. Conclusions

In this paper, we propose an efficient facial landmark localization framework, termed as binarized
CNNs. Specifically, we improve the efficiency and compactness of CNNs for facial landmark
localization via the extremely compressed 1-bit ACNs. On top of that, we also design a new architecture
to recover the full-precision kernels efficiently using a single factor at each convolution layer in
an end-to-end manner. Compared with the full-precision networks, our ACNs not only save the
storage space by a factor of 32 but also achieve comparable localization performance. In addition,
ACNs perform better than the popular binary CNNs, such as XNOR-Nets. Code is available at
https://github.com/bczhangbczhang.
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