
electronics

Article

VaultPoint: A Blockchain-Based SSI Model that
Complies with OAuth 2.0

Seongho Hong and Heeyoul Kim *

Department of Computer Science, Kyonggi University, Suwon 16227, Korea; elHongsh@gmail.com
* Correspondence: heeyoul.kim@kgu.ac.kr

Received: 10 July 2020; Accepted: 29 July 2020; Published: 31 July 2020
����������
�������

Abstract: An identity management including authentication and authorization in a network
environment is a critical security factor. Various models for identity management have been
developed continually, from the silo model to the federated model and to the recently introduced
self-sovereign identity (SSI) model. In particular, SSI makes users manage their own information by
themselves independently of any organizations. SSI utilizes the newly emerged blockchain technology
and many studies of it are in progress. However, SSI has not had wide public use because of its low
compatibility and inconvenience. This is because it involves an unfamiliar user experience and an
immature process. To solve this problem, this paper proposes a new blockchain-based SSI model
that complies with the popular and mature standard of OAuth 2.0. Using blockchain, the proposed
model secures users’ data sovereignty where users can use and control their own information in a
decentralized manner, instead of depending on a specific monopolistic service-providers. Users and
clients who are familiar with the existing OAuth can easily accept the proposed model and apply it,
which makes both usability and scalability of the model excellent. This paper confirmed the feasibility
of the proposed model by implementing it and a security analysis was performed. The proposed
model is expected to contribute to the expansion of both blockchain technology and SSI.

Keywords: self-sovereign identity; blockchain; OAuth; authentication; authorization

1. Introduction

Identity management models to authenticate and authorize users in the Internet environment
have been continually developed by addressing the problems of the existing models. In the early silo
model, individual service providers possessed user information and directly authenticated the users.
The silo model was limited, however, because only the service provider who possessed the user data
could perform authentication. This led to the problem of password fatigue among users as Internet
services became increasingly diverse.

To solve the problem of the silo model, the federated model was developed to perform
authentication by delegating authentication to a certain service. The federated model was implemented
in various forms [1,2]. One of them was the single sign-on [3], where the delegated authentication
server processes all the authentication in a single network based on the SAML (Security Assertion
Markup Language) protocol. Another approach was OAuth, where multiple third-party services
delegate the authentication and authorization to a certain service, such as Google and Facebook,
based on HTTP. The federated model helped to reduce password fatigue, but the authentication
service came to possess huge amounts of user data. This created management and security issues [4]
because the service may violate privacy of users by abusing user data it possesses [5]. Another problem
is that those third-party services cannot work properly if there is a temporary failure or a permanent
suspension of the authentication service.

Electronics 2020, 9, 1231 ; doi:10.3390/electronics9081231 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6341-580X
http://www.mdpi.com/2079-9292/9/8/1231 ?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9081231
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1231 2 of 20

The user-centric model [6] was created as a way to give data sovereignty to users and solve the
problems of previous models. There was a representative service named OpenID [7] whose wide
dissemination failed because of the unfamiliar concept of its authentication process [8]. Afterwards,
several authentication services similar to OpenID were created. However, most of those services were
not very different from the federated model and they had weak public appeal. With their vulnerability
to phishing attacks, the range of use was largely restricted [9].

The self-sovereign identity (SSI) model, which was made possible by the emergence of blockchain
technology, solved the existing shortcomings while achieving the same goal as the user-centric
model [10]. The problem of data reliability of the existing OpenID was solved by the transparent
and consistent characteristics of blockchain [11,12]. Uport [13] and Sovrin [14] are two representative
blockchain-based SSI models. Efforts are being made to standardize the SSI model, such as discussions of
the decentralized identifier (DID) [15] in W3C (World Wide Web Consortium). However, many problems
must be solved to enable dissemination of the SSI model. Each SSI model has its own process for
authentication and authorization. This means that users must learn a new authentication and
authorization process for each SSI model. Furthermore, there is the problem that service developers
must implement this process for each SSI model separately to link their service to the SSI models.
The SSI models have made efforts to solve this problem by providing a tutorial page to help users learn
the new process or by providing a library for easy development. However, this does not solve the
fundamental problems described above.

This paper proposes a novel blockchain-based SSI model that solves those problems. The proposed
model follows the concept of the SSI model and complies with the OAuth 2.0 framework at the same
time. OAuth 2.0 is a mature authorization standard [16,17] with wide public use. By complying with
OAuth, the proposed model could not only make development easy but also reduce users’ burden of
learning new authentication and authorization process because they are already familiar with OAuth.
In the proposed model, user-centric authentication and authorization are made possible with a design
that makes each user play the role of the authorization server in OAuth using the user’s own device.
By using blockchain, the proposed model has increased availability as users can stably manage their
information, and it provides a decentralized authentication and authorization process that is not
restricted to a certain service provider, such as Google.

The proposed model has the following contributions. First, it is the first SSI model that complies
with OAuth 2.0 standard, which results in high reliability and interoperability. Second, it provides novel
user-centric authentication and authorization which are controlled under a user’s own device with the
help of blockchain ledger. Third, from the viewpoint of service developers, the proposed model can be
easily applied to their service because it follows the flow of OAuth 2.0. Fourth, it enables a user to
manage personal information in a both secure and high accessible way by storing the information in
the blockchain after encryption.

The rest of this paper presents the following. Section 2 shows how OAuth 2.0 works and it
examines existing studies related to SSI. Section 3 describes the structure and processes of the proposed
model. Section 4 displays the results of implementing the proposed model. Section 5 provides the
results of a security analysis and Section 6 contains conclusions.

2. Related Work

2.1. The OAuth 2.0 Framework

OAuth is an authorization framework in which a third-party application is delegated limited
right to access the user information that is stored in another web service. OAuth 2.0 provides more
development convenience and has a simpler authentication process than OAuth 1.0 and OAuth 1.1 [18].
It does this by removing a complicated encrypting process and using the HTTPS protocol. Figure 1
describes the entities that constitute OAuth and their roles.

Electronics 2020, 9, 1231 3 of 20
Electronics 2020, 9, x FOR PEER REVIEW 3 of 20

Figure 1. The abstract flow of OAuth 2.0.

• User (resource owner)

The user is the owner of the resource requested by a client, which is described next. A user can
approve or deny access to the resource. Although a device or file can become a resource owner in
some case, the user is the resource owner in most cases. The proposed model follows this convention.

• Client

A client is an entity that provides the Internet service that the resource owner wants to use. The
client wants to obtain an access token from the authorization server, which means the right to acquire
the user information.

• Authorization Server (AS)

The authorization server issues an access token to the client after successfully verifying
authentication and authorization.

• Resource Server (RS)

The resource server hosts the protected resources such as a user’s personal data. The client can
request user information to the RS by using the access token.

OAuth 2.0 has four grant types (authorization code, implicit, resource owner and password
credential and client credential). Although each type has its own scenario, the authorization code
grant type has become the de facto standard for user authentication. Most clients that use OAuth 2.0
work on a server interacting with the user’s web browser and this grant type was created by focusing
on the server-based clients. The typical flow of the authorization code grant type is described below
and our model also uses this grant type.

1. As shown in Figure 1, when the user accesses to the client, the client sends an authorization
request to the user. The request includes the client_id, response_type, state and redirect_URI
together as parameters. These parameters are:

- client_ID (mandatory): an identifier of the client that provides the service.
- response_type (mandatory): this value must be set to “code” for the authorization code.
- state (recommended): used as a countermeasure against CSRF (Cross Site Request Forgery)

attacks.
- redirect_URI (optional): the URI (Uniform Resource Identifier) to be redirected for response

to the request.

2. The user grants or denies the authorization request of the client with the help of AS, as shown
in Figure 2. In general, AS’s authentication of the user is included in this process. After the user’s
granting, AS redirects the user back to the client with the following values.

- auth code (mandatory): a one-time code to obtain an access token.

Figure 1. The abstract flow of OAuth 2.0.

• User (resource owner)

The user is the owner of the resource requested by a client, which is described next. A user can
approve or deny access to the resource. Although a device or file can become a resource owner in some
case, the user is the resource owner in most cases. The proposed model follows this convention.

• Client

A client is an entity that provides the Internet service that the resource owner wants to use.
The client wants to obtain an access token from the authorization server, which means the right to
acquire the user information.

• Authorization Server (AS)

The authorization server issues an access token to the client after successfully verifying
authentication and authorization.

• Resource Server (RS)

The resource server hosts the protected resources such as a user’s personal data. The client can
request user information to the RS by using the access token.

OAuth 2.0 has four grant types (authorization code, implicit, resource owner and password
credential and client credential). Although each type has its own scenario, the authorization code grant
type has become the de facto standard for user authentication. Most clients that use OAuth 2.0 work
on a server interacting with the user’s web browser and this grant type was created by focusing on the
server-based clients. The typical flow of the authorization code grant type is described below and our
model also uses this grant type.

1. As shown in Figure 1, when the user accesses to the client, the client sends an authorization
request to the user. The request includes the client_id, response_type, state and redirect_URI
together as parameters. These parameters are:

- client_ID (mandatory): an identifier of the client that provides the service.
- response_type (mandatory): this value must be set to “code” for the authorization code.
- state (recommended): used as a countermeasure against CSRF (Cross Site Request

Forgery) attacks.
- redirect_URI (optional): the URI (Uniform Resource Identifier) to be redirected for response

to the request.

Electronics 2020, 9, 1231 4 of 20

2. The user grants or denies the authorization request of the client with the help of AS, as shown in
Figure 2. In general, AS’s authentication of the user is included in this process. After the user’s
granting, AS redirects the user back to the client with the following values.

- auth code (mandatory): a one-time code to obtain an access token.
- state (recommended): the same value received from the client in step 1.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 20

- state (recommended): the same value received from the client in step 1.

Figure 2. An example screenshot showing that a user signs in with Google ID and then grants
authorization request from the client.

3. The client delivers the auth code to AS, together with client ID, client secret, and redirect URI.
AS authenticates the client with the client ID and client secret, and then validates the auth code.

- grant_type (mandatory): “authorization_code” is set for the authorization code grant type.
- code (mandatory): the auth code received in step 2.
- redirect_URI (mandatory): the path that shows where to return the response when the user

requests.
- client_ID (mandatory): a unique identifier of the client.
- client_secret (mandatory): a credential used for authentication of the client.

4. AS issues and delivers an access token, which allow the client to access the user information.

- access_token (mandatory): a credential used to access protected resources.
- token_type (mandatory): there are "bearer" and "mac" types, and at present, the "bearer"

type is generally used.
- scope: informs the client of the access token issued.

5. After the client receives a valid access token, it can present the token to the resource server (RS)
and obtain the protected resource which it wants to access.

2.2. Self Sovereign Identity

SSI is an identity management model where an individual user owns and controls his identity
and personal information [19]. SSI should satisfy several requirements including decentralization,
portability, simplicity and usability [6]. However, it is difficult for each user to establish such
environment satisfying the requirements above with his own hands [20]. Moreover, the decentralized
nature of SSI makes it hard to guarantee reliability and integrity [21].

Applying distributed ledger technology (DLT) and the smart contract technology of blockchain
to SSI can solve the problems discussed earlier. DLT is a storage technology that shares identical
information among participants in a P2P network for the purpose of guaranteeing integrity and
preventing forgery attacks. Blockchain implements DLT by generating blocks containing the hash
value of a previous block via the consensus process. DLT prevents forgery because an attacker who
attempts to forge the data stored in some block needs to forge the hash values of the block and all the
subsequent blocks [22]. A smart contract is a kind of program that operates automatically on a
blockchain platform [23]. In Ethereum, a smart contract is developed with Solidity and deployed in
the blockchain by a specific transaction whose destination address is 0. The execution result of a smart

Figure 2. An example screenshot showing that a user signs in with Google ID and then grants
authorization request from the client.

3. The client delivers the auth code to AS, together with client ID, client secret, and redirect URI.
AS authenticates the client with the client ID and client secret, and then validates the auth code.

- grant_type (mandatory): “authorization_code” is set for the authorization code grant type.
- code (mandatory): the auth code received in step 2.
- redirect_URI (mandatory): the path that shows where to return the response when the

user requests.
- client_ID (mandatory): a unique identifier of the client.
- client_secret (mandatory): a credential used for authentication of the client.

4. AS issues and delivers an access token, which allow the client to access the user information.

- access_token (mandatory): a credential used to access protected resources.
- token_type (mandatory): there are “bearer” and “mac” types, and at present, the “bearer”

type is generally used.
- scope: informs the client of the access token issued.

5. After the client receives a valid access token, it can present the token to the resource server (RS)
and obtain the protected resource which it wants to access.

2.2. Self Sovereign Identity

SSI is an identity management model where an individual user owns and controls his identity
and personal information [19]. SSI should satisfy several requirements including decentralization,
portability, simplicity and usability [6]. However, it is difficult for each user to establish such
environment satisfying the requirements above with his own hands [20]. Moreover, the decentralized
nature of SSI makes it hard to guarantee reliability and integrity [21].

Electronics 2020, 9, 1231 5 of 20

Applying distributed ledger technology (DLT) and the smart contract technology of blockchain
to SSI can solve the problems discussed earlier. DLT is a storage technology that shares identical
information among participants in a P2P network for the purpose of guaranteeing integrity and
preventing forgery attacks. Blockchain implements DLT by generating blocks containing the hash
value of a previous block via the consensus process. DLT prevents forgery because an attacker who
attempts to forge the data stored in some block needs to forge the hash values of the block and all
the subsequent blocks [22]. A smart contract is a kind of program that operates automatically on a
blockchain platform [23]. In Ethereum, a smart contract is developed with Solidity and deployed in
the blockchain by a specific transaction whose destination address is 0. The execution result of a smart
contract is also recorded in blockchain after being validated by nodes using identical parameters and
states. Because the logic and states in the smart contract is transparent to all participants, the reliability
and integrity problem which was a significant issue of SSI can be solved.

Recently several blockchain-based SSI models are being developed. Among them, Sovrin [14] is a
project that began with the purpose of solving the problem that a considerable amount of identity is
created in a duplicated and repeated manner in the on-line environment. Sovrin has an independent
blockchain network and it produces fast consensus by using a modified PBFT algorithm names Plenum.
However, most of the operational authority of the blockchain is granted to Guardian and Admin.
Sovrin stores data in public claims or private claims according to the importance of the data and it has
a characteristic that claim and identifier are not expressed in a direct association. Because a private
claim is stored in off-chain storage and it is not recorded in blockchain, there occurs an accessibility
problem of using a specific client program. Uport [13] is similar to Sovrin and it was developed based
on Ethereum. By distributing the ID restoration authority to a socially reliable party named the Trustee,
ID owners can restore their ID when they lose the device that has authority to control their DID. It can
interact with users in a variety of forms, such as QR codes, emails and push notifications, and it
complies with the DID format suggested by W3C. Uport supports various libraries so developers can
incorporate it into a variety of environments. However, third parties depend heavily on these libraries
to follow the distinctive authentication process of Uport.

3. VaultPoint

Although SSI models that use blockchain have been developed and proposed, most have not been
broadly adopted. The fundamental problem is that each model adopts a unique authentication and
authorization process, which creates technical barriers when existing systems try to incorporate the SSI
model. Users face the unfamiliarity and inconvenience of using the new process. Furthermore,
the security of the models’ unique authentication and authorization processes have not been
sufficiently analyzed.

To solve these problems, this paper proposes a new SSI model named VaultPoint. The proposed
model complies with the broadly used OAuth and it provides users with familiar experience by
designing novel authentication and authorization processes based on OAuth. By using blockchain,
the proposed model provides decentralization and integrity of user and client information and it
guarantees the reliability of the authentication and authorization processes. The proposed model
not only solves the information centralization and the privacy issue of the existing federated ID
management models governed by major companies, but it also provides users with secure accessibility
to and sovereignty over their own information. Figure 3 shows the system architecture of VaultPoint.
The role of each system component is described below.

Electronics 2020, 9, 1231 6 of 20

Electronics 2020, 9, x FOR PEER REVIEW 6 of 20

A component that is responsible for delivering the requests to the proper user device. The
response of the device is transferred to the proxy, which then delivers it to the client. Each client
shares a client secret with the proxy, so the proxy performs the role of validating the client.

• FCM

Firebase Cloud Messaging which is a messaging system for mobile devices. The proxy utilizes
FCM as a means of delivering the requests to the devices. A device token is needed for the correct
delivery of a push message [22] and the corresponding token can be acquired through the notification
contract.

• Blockchain

A decentralized system that records both client data and user data, manages the client’s
authority information and scope that the user authorizes and stores information required to connect
to the user device. VaultPoint uses the Ethereum platform and the following three types of smart
contracts are run in blockchain. An identification contract is created by each user and it manages the
user’s own information. A notification contract manages the device tokens required for the delivery
of push message to the device. The client management contract stores the name of the client service,
client ID and scope in a succinct form so that users can refer to it when granting authorization to
access data.

Figure 3. System Architecture of VaultPoint.

3.1. Smart Contract

In VaultPoint, three types of smart contracts are deployed and executed in blockchain. The
notification contract and client management contract are deployed in the early phase of system set-
up and each operates in one instance. The identification contract operates in different instances by
each user and users generate their instance following the user registration process in Section 3.2.1.

3.1.1. Identification Contract

An identification contract stores the personal information of the user and it provides appropriate
information to granted clients. As shown in Figure 4, a user’s personal information is expressed in
one default claim and multiple claims where a claim is a statement describing a specific attribute of
the subject. The default claim comprises the user’s basic information, such as the email address,
nickname and gender, and it is disclosed to the public without being encrypted. Other than the email
address and nickname, users can choose whether to provide the items in the default claim. Besides

Figure 3. System Architecture of VaultPoint.

• User

Someone who uses a service provided by the client. The user accesses the client through web
browser and he controls the authorization process with his own device.

• Client

An entity that provides a service to the user. The client is willing to be granted the right to access
the user information by using VaultPoint.

• User device

A device like a mobile phone where an application that manages the user’s identity is installed.
The user device performs the roles of both authorization server and resource server in OAuth.
Growing out of the existing centralized identity management models, it helps users manage their own
identity and personal data. The device validates authorization requests and it delivers user information
which is encrypted and stored in blockchain to the client.

• Proxy

A component that is responsible for delivering the requests to the proper user device. The response
of the device is transferred to the proxy, which then delivers it to the client. Each client shares a client
secret with the proxy, so the proxy performs the role of validating the client.

• FCM

Firebase Cloud Messaging which is a messaging system for mobile devices. The proxy utilizes FCM
as a means of delivering the requests to the devices. A device token is needed for the correct delivery
of a push message [22] and the corresponding token can be acquired through the notification contract.

• Blockchain

A decentralized system that records both client data and user data, manages the client’s authority
information and scope that the user authorizes and stores information required to connect to the user
device. VaultPoint uses the Ethereum platform and the following three types of smart contracts are

Electronics 2020, 9, 1231 7 of 20

run in blockchain. An identification contract is created by each user and it manages the user’s own
information. A notification contract manages the device tokens required for the delivery of push
message to the device. The client management contract stores the name of the client service, client ID
and scope in a succinct form so that users can refer to it when granting authorization to access data.

3.1. Smart Contract

In VaultPoint, three types of smart contracts are deployed and executed in blockchain.
The notification contract and client management contract are deployed in the early phase of system
set-up and each operates in one instance. The identification contract operates in different instances by
each user and users generate their instance following the user registration process in Section 3.2.1.

3.1.1. Identification Contract

An identification contract stores the personal information of the user and it provides appropriate
information to granted clients. As shown in Figure 4, a user’s personal information is expressed in
one default claim and multiple claims where a claim is a statement describing a specific attribute
of the subject. The default claim comprises the user’s basic information, such as the email address,
nickname and gender, and it is disclosed to the public without being encrypted. Other than the email
address and nickname, users can choose whether to provide the items in the default claim. Besides
the default claim, users can create various types of claims, depending on the purpose of the claim.
Each claim is stored in an encrypted form and those claims are managed as key-value pairs. Users can
create, edit and delete the default claim and other claims using their identification contract, which is
supported by update, upsert and delete functions. This contract also has an access control mechanism,
which ensures that only the proper owner executes the functions.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 20

the default claim, users can create various types of claims, depending on the purpose of the claim.
Each claim is stored in an encrypted form and those claims are managed as key-value pairs. Users
can create, edit and delete the default claim and other claims using their identification contract, which
is supported by update, upsert and delete functions. This contract also has an access control
mechanism, which ensures that only the proper owner executes the functions.

Figure 4. An example of identification contracts.

3.1.2. Notification Contract

A notification contract is used when the proxy delivers the client’s authorization request to the
user device. Proxy can acquire appropriate device token from this contract using the user’s email
address for the FCM push notification.

As shown in Figure 5, The token structure used in this contract is composed of device type,
device token and Ethereum address and it binds the device token for push notification. with the
Ethereum address of the device user. Each user’s token is newly created by the user device following
the user registration process in Section 3.2.1. The device gets the device token from the FCM server
and the Ethereum address to create or modify his token.

These tokens are stored as key-value pairs in the notification contract and the hash value of the
user’s email address plays the role of key. A notification contract provides a register function, an
update function and an unregister function. Because the user’s email address is a unique identifier
and the contract verifies whether the requester of the function is a legitimate owner of the target token
or not, it prevents both duplicate registration and malicious modification.

3.1.3. Client Management Contract

A client management contract is used to describe the client who requests the use of user data
and to store the resource list requested from each client. A client who wants to be authorized registers
his ClientInfo. The ClientInfo includes the client's name, a public key that will be used for secure
transmission of user data, a list of resource authority requested to users, his Ethereum address and
URI for delivery of auth code, as shown in Figure 5. Similarly, a client can create or modify his own
ClientInfo only because the ownership of the ClientInfo is validated with corresponding Ethereum
address.

Figure 4. An example of identification contracts.

3.1.2. Notification Contract

A notification contract is used when the proxy delivers the client’s authorization request to the
user device. Proxy can acquire appropriate device token from this contract using the user’s email
address for the FCM push notification.

As shown in Figure 5, The token structure used in this contract is composed of device type,
device token and Ethereum address and it binds the device token for push notification. with the
Ethereum address of the device user. Each user’s token is newly created by the user device following

Electronics 2020, 9, 1231 8 of 20

the user registration process in Section 3.2.1. The device gets the device token from the FCM server
and the Ethereum address to create or modify his token.Electronics 2020, 9, x FOR PEER REVIEW 8 of 20

Figure 5. An example of notification contract and client-management contract.

3.2. Registration

Users must perform the user registration in Section 3.2.1 to use VaultPoint. Similarly, clients
must perform the client process in Section 3.2.2 to provide services. Here, it is assumed that both the
users and the clients already possess normal Ethereum accounts.

3.2.1. User Registration

By performing this user registration process, users create and possess self-sovereign identity
which uses their email address as an identifier. Although standardizing the Decentralized Identifiers
(DIDs) is being discussed in W3C, it has not been publicly disseminated. An identifier that uses an
email address has the advantage of being simple and easy to understand, compared to a
decentralized identifier. Users install the VaultPoint application in their device and follow the
registration procedure shown in Figure 6.

Figure 6. The flow of user registration process.

Figure 5. An example of notification contract and client-management contract.

These tokens are stored as key-value pairs in the notification contract and the hash value of
the user’s email address plays the role of key. A notification contract provides a register function,
an update function and an unregister function. Because the user’s email address is a unique identifier
and the contract verifies whether the requester of the function is a legitimate owner of the target token
or not, it prevents both duplicate registration and malicious modification.

3.1.3. Client Management Contract

A client management contract is used to describe the client who requests the use of user data and
to store the resource list requested from each client. A client who wants to be authorized registers
his ClientInfo. The ClientInfo includes the client’s name, a public key that will be used for secure
transmission of user data, a list of resource authority requested to users, his Ethereum address and URI
for delivery of auth code, as shown in Figure 5. Similarly, a client can create or modify his own ClientInfo
only because the ownership of the ClientInfo is validated with corresponding Ethereum address.

3.2. Registration

Users must perform the user registration in Section 3.2.1 to use VaultPoint. Similarly, clients must
perform the client process in Section 3.2.2 to provide services. Here, it is assumed that both the users
and the clients already possess normal Ethereum accounts.

3.2.1. User Registration

By performing this user registration process, users create and possess self-sovereign identity
which uses their email address as an identifier. Although standardizing the Decentralized Identifiers
(DIDs) is being discussed in W3C, it has not been publicly disseminated. An identifier that uses an
email address has the advantage of being simple and easy to understand, compared to a decentralized
identifier. Users install the VaultPoint application in their device and follow the registration procedure
shown in Figure 6.

Electronics 2020, 9, 1231 9 of 20

Electronics 2020, 9, x FOR PEER REVIEW 8 of 20

Figure 5. An example of notification contract and client-management contract.

3.2. Registration

Users must perform the user registration in Section 3.2.1 to use VaultPoint. Similarly, clients
must perform the client process in Section 3.2.2 to provide services. Here, it is assumed that both the
users and the clients already possess normal Ethereum accounts.

3.2.1. User Registration

By performing this user registration process, users create and possess self-sovereign identity
which uses their email address as an identifier. Although standardizing the Decentralized Identifiers
(DIDs) is being discussed in W3C, it has not been publicly disseminated. An identifier that uses an
email address has the advantage of being simple and easy to understand, compared to a
decentralized identifier. Users install the VaultPoint application in their device and follow the
registration procedure shown in Figure 6.

Figure 6. The flow of user registration process. Figure 6. The flow of user registration process.

(A) The user writes the personal information to be included in the default claim in his device. The user
device makes a transaction that creates the creation of a new identification contract for the user
using the user’s Ethereum account. The transaction including the default claim above is submitted
to Ethereum blockchain.

(B) Blockchain executes the transaction in (A) and the user’s identification contract is created.
A receipt for this transaction is delivered to the user device and the identification contract address
in the receipt is stored in the device.

(C) The device submits a transaction that registers his device token for FCM in the notification contract.
(D) The notification contract in blockchain stores the user’s token and delivers a receipt, to the user

device. Through these processes, the user successfully creates his digital identity, which he
possesses and controls.

3.2.2. Client Registration

Clients must first register themselves in VaultPoint and be issued a client ID and client secret, In the
existing OAuth-based services, AS generally provided a client registration interface. For VaultPoint,
the proxy component plays this role. The flow for client registration is shown in Figure 7.

(A) The client creates a pair of public and private keys (Pubc, Prvc) and requests his registration to
the proxy. This key pair is used for secure transfer of user data later.

(B) The proxy creates a new client ID and provides a web form that contains this ID and the address
of the client management contract to the client. The client writes the name of the service that he
provides, a list of authorities to be granted from the user and his public key Pubc in this form.

(C) The transaction to store the client information in the form is created and submitted to the
blockchain. Here, the transaction is created using the client’s Ethereum account.

(D) The blockchain executes this transaction to register the client information in the client management
contract and then transaction receipt is transferred to the client. Client reviews the receipt to
verify that he was correctly registered.

(E) The client delivers his Ethereum account address to the proxy together with the receipt.

Electronics 2020, 9, 1231 10 of 20

(F) The proxy verifies that the client’s information was correctly registered in the client management
contract by using the received Ethereum address and client ID. Then, it creates a new client secret
and delivers it to the client.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 20

(A) The user writes the personal information to be included in the default claim in his device. The
user device makes a transaction that creates the creation of a new identification contract for the
user using the user’s Ethereum account. The transaction including the default claim above is
submitted to Ethereum blockchain.

(B) Blockchain executes the transaction in (A) and the user’s identification contract is created. A
receipt for this transaction is delivered to the user device and the identification contract address
in the receipt is stored in the device.

(C) The device submits a transaction that registers his device token for FCM in the notification
contract.

(D) The notification contract in blockchain stores the user’s token and delivers a receipt, to the user
device. Through these processes, the user successfully creates his digital identity, which he
possesses and controls.

3.2.2. Client Registration

Clients must first register themselves in VaultPoint and be issued a client ID and client secret, In
the existing OAuth-based services, AS generally provided a client registration interface. For
VaultPoint, the proxy component plays this role. The flow for client registration is shown in Figure
7.

Figure 7. The flow of client registration process.

(A) The client creates a pair of public and private keys (Pubc, Prvc) and requests his registration to
the proxy. This key pair is used for secure transfer of user data later.

(B) The proxy creates a new client ID and provides a web form that contains this ID and the address
of the client management contract to the client. The client writes the name of the service that he
provides, a list of authorities to be granted from the user and his public key Pubc in this form.

(C) The transaction to store the client information in the form is created and submitted to the
blockchain. Here, the transaction is created using the client’s Ethereum account.

(D) The blockchain executes this transaction to register the client information in the client
management contract and then transaction receipt is transferred to the client. Client reviews the
receipt to verify that he was correctly registered.

(E) The client delivers his Ethereum account address to the proxy together with the receipt.
(F) The proxy verifies that the client’s information was correctly registered in the client management

contract by using the received Ethereum address and client ID. Then, it creates a new client secret
and delivers it to the client.

Figure 7. The flow of client registration process.

3.3. Authentication and Authorization

In VaultPoint, authorization is the process by which a client is granted authority to access
user information. VaultPoint follows the authorization code grant type of OAuth, which comprises
the following three phases. First, a client asks a user for authorization and receives an auth code
(Section 3.3.1). Second, user authentication in Section 3.3.2 is performed if it is required during the first
phase. Third, the client is issued an access token that gives him access to the user information using
the auth code (Section 3.3.3).

3.3.1. Client Authorization

A client must be authorized by the user to get the desired user information. When approval is
given an auth code is provided to the client. In the existing OAuth-based services, the authorization
server to which the user belongs performs the client authorization process by interacting with the user.
In VaultPoint, this process is performed in the user device with help from the proxy. The flow for client
authorization is shown in Figure 8.

(A) When the user approaches the client’s service, the client creates an authorization request for
access to the user’s information. This request is redirected to the proxy (instead of the existing AS)
through the user. If the user has not been authenticated, the process in Section 3.3.2 is performed,
followed by the next process.

(B) The proxy acquires the device token for the user device from the notification contract of blockchain
using the user’s email address. It then transfers an FCM-based push notification to the user
device using this token, which includes the client’s request.

(C) The device acquires client information from the client management contract of blockchain by
using the received client ID. Based on this information, the device checks the name and identity
of the requesting client and learns the scope of information that client wants. The user can
approve or deny this authorization request by looking at the information displayed on the device.
When the result is delivered to proxy, the proxy delivers it to the client. If the user has given
approval, an auth code is created and delivered together to the client.

Electronics 2020, 9, 1231 11 of 20

Electronics 2020, 9, x FOR PEER REVIEW 10 of 20

3.3. Authentication and Authorization

In VaultPoint, authorization is the process by which a client is granted authority to access user
information. VaultPoint follows the authorization code grant type of OAuth, which comprises the
following three phases. First, a client asks a user for authorization and receives an auth code (Section
3.3.1). Second, user authentication in Section 3.3.2 is performed if it is required during the first phase.
Third, the client is issued an access token that gives him access to the user information using the auth
code (Section 3.3.3).

3.3.1. Client Authorization

A client must be authorized by the user to get the desired user information. When approval is
given an auth code is provided to the client. In the existing OAuth-based services, the authorization
server to which the user belongs performs the client authorization process by interacting with the
user. In VaultPoint, this process is performed in the user device with help from the proxy. The flow
for client authorization is shown in Figure 8.

Figure 8. The flow of client authorization process.

(A) When the user approaches the client’s service, the client creates an authorization request for
access to the user’s information. This request is redirected to the proxy (instead of the existing
AS) through the user. If the user has not been authenticated, the process in Section 3.3.2 is
performed, followed by the next process.

(B) The proxy acquires the device token for the user device from the notification contract of
blockchain using the user’s email address. It then transfers an FCM-based push notification to
the user device using this token, which includes the client’s request.

(C) The device acquires client information from the client management contract of blockchain by
using the received client ID. Based on this information, the device checks the name and identity
of the requesting client and learns the scope of information that client wants. The user can
approve or deny this authorization request by looking at the information displayed on the
device. When the result is delivered to proxy, the proxy delivers it to the client. If the user has
given approval, an auth code is created and delivered together to the client.

3.3.2. User Authentication

For users to approve an authorization request from the client, they first must be verified that
they are the correct subject of the client's request. With services that support OAuth, AS verifies the
user with authentication tools such as a password. With VaultPoint, however, the user device plays
the role of AS so it is not necessary to use a complicated authentication tool for user authentication.
The user only needs to verify that his authentication request has successfully arrived at his device. In

Figure 8. The flow of client authorization process.

3.3.2. User Authentication

For users to approve an authorization request from the client, they first must be verified that they
are the correct subject of the client’s request. With services that support OAuth, AS verifies the user
with authentication tools such as a password. With VaultPoint, however, the user device plays the role
of AS so it is not necessary to use a complicated authentication tool for user authentication. The user
only needs to verify that his authentication request has successfully arrived at his device. In addition,
VaultPoint creates a random secret code for each request to prevent impersonation attacks where an
attacker deceives users by sending another authentication request simultaneously. The flow for user
authentication is shown in Figure 9.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 20

addition, VaultPoint creates a random secret code for each request to prevent impersonation attacks
where an attacker deceives users by sending another authentication request simultaneously. The flow
for user authentication is shown in Figure 9.

Figure 9. The flow of user authentication process.

(A) When a user requests authentication, the proxy creates a new secret code and provides it to the
user. The user delivers his ID (email address) to the proxy.

(B) The proxy acquires the device token of the user from the notification contract of blockchain. The
proxy notifies the user device that an authentication request arrived using this token.

(C) The user checks whether the secret code that arrived along with the authentication request to his
device is identical to the value received in (A). If the values are identical, user authentication is
completed and the result is delivered to the proxy.

3.3.3. Issuance of an Access Token

The auth code obtained in Section 3.3.1 means that authorization request was approved by the
user. For the client to acquire user information, the auth code should be transferred to AS and the
corresponding access token should be issued first. With VaultPoint, the user device confirms the auth
code and issues an access token through the proxy. This process is automatically performed without
additional intervention from the user. The flow requesting and issuing the access token is shown in
Figure 10.

Figure 9. The flow of user authentication process.

(A) When a user requests authentication, the proxy creates a new secret code and provides it to
the user. The user delivers his ID (email address) to the proxy.

(B) The proxy acquires the device token of the user from the notification contract of blockchain.
The proxy notifies the user device that an authentication request arrived using this token.

Electronics 2020, 9, 1231 12 of 20

(C) The user checks whether the secret code that arrived along with the authentication request to his
device is identical to the value received in (A). If the values are identical, user authentication is
completed and the result is delivered to the proxy.

3.3.3. Issuance of an Access Token

The auth code obtained in Section 3.3.1 means that authorization request was approved by the
user. For the client to acquire user information, the auth code should be transferred to AS and the
corresponding access token should be issued first. With VaultPoint, the user device confirms the auth
code and issues an access token through the proxy. This process is automatically performed without
additional intervention from the user. The flow requesting and issuing the access token is shown in
Figure 10.Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

Figure 10. The flow of access token request and issuance.

(A) The client delivers auth code, client ID and client secret to the proxy and requests access token.
Client secret is a value shared between the client and the proxy by the client registration process
and it is used to verify the client.

(B) The proxy finds the user device that issued the auth code in Section 3.3.1 and delivers the request
to it.

(C) The device verifies whether the auth code is what it created previously. If correct, the device
newly issues an access token and delivers it to the proxy.

(D) The proxy delivers the received access token to the client.

3.4. Access to User Information

In VaultPoint, the user device performs the role of resource server and the actual user
information is stored in the blockchain. This approach has the advantage that user information is not
lost when the device is missing or replaced. User information is managed through the user’s
identification contract. Because the blockchain data is transparent to all participants, all claims except
the default claim are encrypted by the users’ private key to prevent from being exposed. The client
who acquired a valid access token in Section 3.3.3 can access the user information through the
following process. The flow for user information acquisition is shown in Figure 11.

Figure 11. The flow of acquisition of user information.

Figure 10. The flow of access token request and issuance.

(A) The client delivers auth code, client ID and client secret to the proxy and requests access token.
Client secret is a value shared between the client and the proxy by the client registration process
and it is used to verify the client.

(B) The proxy finds the user device that issued the auth code in Section 3.3.1 and delivers the request
to it.

(C) The device verifies whether the auth code is what it created previously. If correct, the device
newly issues an access token and delivers it to the proxy.

(D) The proxy delivers the received access token to the client.

3.4. Access to User Information

In VaultPoint, the user device performs the role of resource server and the actual user information
is stored in the blockchain. This approach has the advantage that user information is not lost when the
device is missing or replaced. User information is managed through the user’s identification contract.
Because the blockchain data is transparent to all participants, all claims except the default claim are
encrypted by the users’ private key to prevent from being exposed. The client who acquired a valid
access token in Section 3.3.3 can access the user information through the following process. The flow
for user information acquisition is shown in Figure 11.

Electronics 2020, 9, 1231 13 of 20

Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

Figure 10. The flow of access token request and issuance.

(A) The client delivers auth code, client ID and client secret to the proxy and requests access token.
Client secret is a value shared between the client and the proxy by the client registration process
and it is used to verify the client.

(B) The proxy finds the user device that issued the auth code in Section 3.3.1 and delivers the request
to it.

(C) The device verifies whether the auth code is what it created previously. If correct, the device
newly issues an access token and delivers it to the proxy.

(D) The proxy delivers the received access token to the client.

3.4. Access to User Information

In VaultPoint, the user device performs the role of resource server and the actual user
information is stored in the blockchain. This approach has the advantage that user information is not
lost when the device is missing or replaced. User information is managed through the user’s
identification contract. Because the blockchain data is transparent to all participants, all claims except
the default claim are encrypted by the users’ private key to prevent from being exposed. The client
who acquired a valid access token in Section 3.3.3 can access the user information through the
following process. The flow for user information acquisition is shown in Figure 11.

Figure 11. The flow of acquisition of user information. Figure 11. The flow of acquisition of user information.

(A) The client request user information to the proxy and delivers access token, client ID and client secret
together. The proxy delivers this request to the user’s device using FCM, similarly to Section 3.3.

(B) The user can access to client information using the client ID given from Proxy. Result of query
show what sort of information client want and need to get.

(C) The user device verifies access token and checks its validity. Then it collects the user information
that the client requested from its identification contract. The encrypted user information is
decrypted using the user’s private key. This process can be skipped if the device has up-to-date
user information.

(D) The device gets the client’s public key Pubc from the client management contract and transfers
the user information to the proxy after encrypting it with the Pubc. The proxy delivers this
information to the client. Finally, the client successfully gets the requested information by
decrypting it using his private key Prvc.

4. Implementation

The proposed VaultPoint was implemented and its soundness was confirmed through an
experiment. Table 1 describes the implementation environment of each component of VaultPoint.
The implemented smart contracts were deployed to Kovan Ethereum testnet [24] and the addresses of
contracts are shown in Table 2. The device application and proxy were connected to the blockchain
by using Ethereum nodes provided by Infura [25] as an entry point. A client providing a mock web
service connected to VaultPoint was also implemented to show that applying VaultPoint is simple
and easy.

Table 1. Implemented components and their environments.

Component Environment

Proxy Django on Ubuntu 18.04
Client Gorilla on Ubuntu 18.04

Device App Xamarin on Android 8.0 Oreo (API 26), tested on Galaxy A7 device
Smart contract Solc 4.26 on Kovan Test Network

Table 2. Addresses of smart contracts deployed to Kovan testnet by VaultPoint.

Contract Name Address

Notification 0x913464b9cD148874840EB0906fDa04e274F01DbB
Identification 0x4c70902a3Ef0279eBcE14967a8b66aEf22e87dd5

ClientManagement 0x0025182d23AAA37c2D5a642415F7Dc87022B82Ff

Electronics 2020, 9, 1231 14 of 20

The following figures reflect the operations of VaultPoint in the experiment. Figure 12 shows an
example of a user’s registration using his mobile application. The user is given a form for writing his
information as shown in Figure 12B and he can write additional information once the registration is
complete. The user can scan the QR code of the private key and address of his Ethereum account,
as shown in Figure 12A. When the user touches the button at the bottom of Figure 12B, the user
registration process in Section 3.2.1 is executed and the user’s identification contract is created. Figure 13
shows the receipt of the user’s contract creation transaction executed in Kovan testnet.Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

Figure 12. Example screenshots of user registration: (A) scanning Ethereum key and (B) writing user
information.

Figure 13. An example receipt of identification contract creation transaction in user registration.

Figure 14 shows an example where a client who provides a mock service named Eth-one
registers it following the process in Section 3.2.2. As shown in Figure 14A, the client requests
registration to the proxy and receives a registration form to fill in the necessary information.
Afterward, the client makes and submits a transaction that requests for the registration in the client
management contract using its Ethereum account. This process is performed with the help of
Metamask [26], which is a popular Ethereum wallet, as shown in Figure 14B and the client waits for
a while until this pending transaction is confirmed and recorded in the block. Figure 15 shows the
receipt of this client registration transaction. Once the receipt of the transaction is delivered to the

Figure 12. Example screenshots of user registration: (A) scanning Ethereum key and (B) writing
user information.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

Figure 12. Example screenshots of user registration: (A) scanning Ethereum key and (B) writing user
information.

Figure 13. An example receipt of identification contract creation transaction in user registration.

Figure 14 shows an example where a client who provides a mock service named Eth-one
registers it following the process in Section 3.2.2. As shown in Figure 14A, the client requests
registration to the proxy and receives a registration form to fill in the necessary information.
Afterward, the client makes and submits a transaction that requests for the registration in the client
management contract using its Ethereum account. This process is performed with the help of
Metamask [26], which is a popular Ethereum wallet, as shown in Figure 14B and the client waits for
a while until this pending transaction is confirmed and recorded in the block. Figure 15 shows the
receipt of this client registration transaction. Once the receipt of the transaction is delivered to the

Figure 13. An example receipt of identification contract creation transaction in user registration.

Electronics 2020, 9, 1231 15 of 20

Figure 14 shows an example where a client who provides a mock service named Eth-one registers
it following the process in Section 3.2.2. As shown in Figure 14A, the client requests registration to
the proxy and receives a registration form to fill in the necessary information. Afterward, the client
makes and submits a transaction that requests for the registration in the client management contract
using its Ethereum account. This process is performed with the help of Metamask [26], which is a
popular Ethereum wallet, as shown in Figure 14B and the client waits for a while until this pending
transaction is confirmed and recorded in the block. Figure 15 shows the receipt of this client registration
transaction. Once the receipt of the transaction is delivered to the proxy, the proxy verifies its validity
and creates a client secret. The client receives this client secret as shown in Figure 14C.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 20

proxy, the proxy verifies its validity and creates a client secret. The client receives this client secret as
shown in Figure 14C.

Figure 14. Example screenshots of client registration: (A) initial registration form, (B) register
transaction submission and (C) acquisition of client secret after registration.

Figure 15. An example receipt of client registration transaction executed in Kovan testnet.

Figure 14. Example screenshots of client registration: (A) initial registration form, (B) register transaction
submission and (C) acquisition of client secret after registration.

Figure 16 shows an example of the screen views that appear when a user confirms and approves
the client’s authorization request and an example of user authentication that is performed during
the former process. Both Figure 16A and B are displayed on the user’s web browser, whereas both
Figure 16C and D are displayed on the user’s device. As shown in Figure 16A, when the user approaches
the client service through the browser and touches the “Sign in with VaultPoint” button, the client
requests authorization to get the user information and the user is redirected to the proxy. If user
authentication is required, the proxy provides a web form having a random secret code (Figure 16B) to
the user. When the user inserts his email address, the proxy delivers the authentication request to the
user device using blockchain and FCM, and the device displays this request as in Figure 16C. The user
verifies whether the secret code “LTZP-QRVD” displayed on his browser in Figure 16B is equal to the
secret code displayed on his device in Figure 16C and selects accept. Afterward, the authorization
process in Section 3.3.1 continues. The information about the client who requested authorization and

Electronics 2020, 9, 1231 16 of 20

requested items are displayed in the user device, as shown in Figure 16D. When the user selects the
“Accept” button, a new auth code is created and delivered to the client. Afterward, the process in
Section 3.3.3 where the client is issued an access token continues without any interaction with the user.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 20

proxy, the proxy verifies its validity and creates a client secret. The client receives this client secret as
shown in Figure 14C.

Figure 14. Example screenshots of client registration: (A) initial registration form, (B) register
transaction submission and (C) acquisition of client secret after registration.

Figure 15. An example receipt of client registration transaction executed in Kovan testnet. Figure 15. An example receipt of client registration transaction executed in Kovan testnet.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 20

Figure 16 shows an example of the screen views that appear when a user confirms and approves
the client’s authorization request and an example of user authentication that is performed during the
former process. Both Figure 16A and B are displayed on the user’s web browser, whereas both Figure
16C and D are displayed on the user’s device. As shown in Figure 16A, when the user approaches
the client service through the browser and touches the “Sign in with VaultPoint” button, the client
requests authorization to get the user information and the user is redirected to the proxy. If user
authentication is required, the proxy provides a web form having a random secret code (Figure 16B)
to the user. When the user inserts his email address, the proxy delivers the authentication request to
the user device using blockchain and FCM, and the device displays this request as in Figure 16C. The
user verifies whether the secret code “LTZP-QRVD” displayed on his browser in Figure 16B is equal
to the secret code displayed on his device in Figure 16C and selects accept. Afterward, the
authorization process in Section 3.3.1 continues. The information about the client who requested
authorization and requested items are displayed in the user device, as shown in Figure 16D. When
the user selects the “Accept” button, a new auth code is created and delivered to the client. Afterward,
the process in Section 3.3.3 where the client is issued an access token continues without any
interaction with the user.

Figure 16. Example screenshots of authentication and authorization process: (A) user’s access to client
service, (B) user authentication request from the proxy, (C) secret code displayed on the user’s device
and (D) authorization request of client.

The client who successfully acquired the access token gets the desired user information by
preforming the process in Section 3.4. As shown in upper right corner of Figure 17, the client acquired
the user’s nickname and utilized it.

Figure 16. Example screenshots of authentication and authorization process: (A) user’s access to client
service, (B) user authentication request from the proxy, (C) secret code displayed on the user’s device
and (D) authorization request of client.

The client who successfully acquired the access token gets the desired user information by
preforming the process in Section 3.4. As shown in upper right corner of Figure 17, the client acquired
the user’s nickname and utilized it.

Electronics 2020, 9, 1231 17 of 20

Electronics 2020, 9, x FOR PEER REVIEW 17 of 20

Figure 17. An example screenshot showing that user information has been acquired by client.

5. Security Analysis

This section provides the security analysis of the proposed VaultPoint. OAuth 2.0 with which
VaultPoint complies is being used broadly and existing security analyses have confirmed its security.
Thus, the security analysis on VaultPoint was conducted under the assumption that OAuth 2.0 is
safe. The security of VaultPoint against two major threats, which are identity theft and leakage of
personal information, is explained below.

5.1. Prevention of Identity Theft

A malicious attacker’s theft of a user's identity is a very serious threat. Here we consider three
attack scenarios where a hacker attempts identity theft, along with the countermeasures taken by
VaultPoint.

In the first attack scenario, an attacker approaches the client disguising himself as the target user.
If the attacker succeeds in replacing the FCM token of the target user in the notification contract with
his own token, the authentication request in Section 3.3.2 is sent to the attacker’s device instead of the
target user’s device, which results in success of the attack. However, it is very hard to forge the FCM
token because blockchain guarantees the integrity of data recorded in the smart contracts. The only
way to replace the token is to use the update function of the contract and before update the contract
verifies whether the requester is the owner of the Ethereum address bound to the token. Therefore,
the attacker cannot replace the token of the target user without having the user’s Ethereum account
and corresponding private key.

The second attack scenario occurs when the target user requests authentication. The attacker
pretends to be the target user and requests authentication simultaneously. In that case, two
authentication request messages are delivered to the target user’s device. If the attacker is lucky, the
attacker’s request arrives first and the user may approve it because he thinks it is the legitimate
request that he created. To prevent this kind of attack, VaultPoint generates and uses a random secret
code for each authentication request. Normal users can verify their own authentication request by
checking whether if the secret code provided on the browser at the time of requesting is equal to the
secret code displayed on their device.

In the third attack scenario, an attacker is authenticated as himself but then provides target user’s
email address and fake information to the client. In that case, the attacker can access the client as if
he is the target user and perform malicious activities causing damage to the target. To prevent this
possibility, VaultPoint supports the client’s verification by sending the email address of the user from
whom the client requests authorization together when the proxy delivers the user information to the
client.

5.2. Preventing the Leakage of Personal Information

Users’ personal information is stored in their identification contact in blockchain. This has the
advantage that the information is not lost in case of an accident like as missing device. Because of the

Figure 17. An example screenshot showing that user information has been acquired by client.

5. Security Analysis

This section provides the security analysis of the proposed VaultPoint. OAuth 2.0 with which
VaultPoint complies is being used broadly and existing security analyses have confirmed its security.
Thus, the security analysis on VaultPoint was conducted under the assumption that OAuth 2.0 is safe.
The security of VaultPoint against two major threats, which are identity theft and leakage of personal
information, is explained below.

5.1. Prevention of Identity Theft

A malicious attacker’s theft of a user’s identity is a very serious threat. Here we consider
three attack scenarios where a hacker attempts identity theft, along with the countermeasures taken
by VaultPoint.

In the first attack scenario, an attacker approaches the client disguising himself as the target user.
If the attacker succeeds in replacing the FCM token of the target user in the notification contract with
his own token, the authentication request in Section 3.3.2 is sent to the attacker’s device instead of the
target user’s device, which results in success of the attack. However, it is very hard to forge the FCM
token because blockchain guarantees the integrity of data recorded in the smart contracts. The only
way to replace the token is to use the update function of the contract and before update the contract
verifies whether the requester is the owner of the Ethereum address bound to the token. Therefore,
the attacker cannot replace the token of the target user without having the user’s Ethereum account
and corresponding private key.

The second attack scenario occurs when the target user requests authentication. The attacker
pretends to be the target user and requests authentication simultaneously. In that case,
two authentication request messages are delivered to the target user’s device. If the attacker is
lucky, the attacker’s request arrives first and the user may approve it because he thinks it is the
legitimate request that he created. To prevent this kind of attack, VaultPoint generates and uses a
random secret code for each authentication request. Normal users can verify their own authentication
request by checking whether if the secret code provided on the browser at the time of requesting is
equal to the secret code displayed on their device.

In the third attack scenario, an attacker is authenticated as himself but then provides target user’s
email address and fake information to the client. In that case, the attacker can access the client as if
he is the target user and perform malicious activities causing damage to the target. To prevent this
possibility, VaultPoint supports the client’s verification by sending the email address of the user from
whom the client requests authorization together when the proxy delivers the user information to
the client.

Electronics 2020, 9, 1231 18 of 20

5.2. Preventing the Leakage of Personal Information

Users’ personal information is stored in their identification contact in blockchain. This has the
advantage that the information is not lost in case of an accident like as missing device. Because of
the transparency of blockchain, however, there is a possibility that an attacker accesses to the user’s
identification contract directly without authorization. Although the address of this contact is not
disclosed to the public, the attacker can discover the contract address of the target user by visiting,
the addresses that he learned from examining all the transaction. In VaultPoint, all claims inside
the contract (except for the default claim) are encrypted to prevent this kind of threat. Moreover,
VaultPoint performs access control for the functions provided by this contract using the function
modifier in Solidity. It checks whether the sender of the transaction that seeks to access the contract is
the owner of the contract. If not, the transaction is reverted.

VaultPoint has a decentralized form where each user device performs the role of the authorization
server, instead of depending on a centralized authorization server. The proxy is the medium that
connects a client and the user device. The proxy is a single point of failure and it becomes an
attractive target for attackers. However, this type of threat is identical to the threats against the existing
authorization servers that support OAuth. In addition, the proxy was implemented based on the cloud
computing to be fault tolerant and highly available. Furthermore, the damage from attacks on the
proxy is significantly less than the one on the existing authorization servers because the personal and
critical information of the users is not stored in the proxy.

As the proxy performs the role of receiving user information from the user device and transferring
it to the client, a malicious proxy might collect and misuse multiple users’ information. To minimize
this risk, VaultPoint encrypts user information in the user device with the client’s public key before the
transfer as shown in Figure 18, so the proxy cannot acquire user information by decrypting it in the
middle of the transmission. The integrity of the client’s public key is guaranteed, as it is managed
by the client management contract in blockchain. Hence, neither the proxy nor outside attackers can
change or forge the public key.

Electronics 2020, 9, x FOR PEER REVIEW 18 of 20

transparency of blockchain, however, there is a possibility that an attacker accesses to the user’s
identification contract directly without authorization. Although the address of this contact is not
disclosed to the public, the attacker can discover the contract address of the target user by visiting,
the addresses that he learned from examining all the transaction. In VaultPoint, all claims inside the
contract (except for the default claim) are encrypted to prevent this kind of threat. Moreover,
VaultPoint performs access control for the functions provided by this contract using the function
modifier in Solidity. It checks whether the sender of the transaction that seeks to access the contract
is the owner of the contract. If not, the transaction is reverted.

VaultPoint has a decentralized form where each user device performs the role of the
authorization server, instead of depending on a centralized authorization server. The proxy is the
medium that connects a client and the user device. The proxy is a single point of failure and it
becomes an attractive target for attackers. However, this type of threat is identical to the threats
against the existing authorization servers that support OAuth. In addition, the proxy was
implemented based on the cloud computing to be fault tolerant and highly available. Furthermore,
the damage from attacks on the proxy is significantly less than the one on the existing authorization
servers because the personal and critical information of the users is not stored in the proxy.

As the proxy performs the role of receiving user information from the user device and
transferring it to the client, a malicious proxy might collect and misuse multiple users’ information.
To minimize this risk, VaultPoint encrypts user information in the user device with the client’s public
key before the transfer as shown in Figure 18, so the proxy cannot acquire user information by
decrypting it in the middle of the transmission. The integrity of the client’s public key is guaranteed,
as it is managed by the client management contract in blockchain. Hence, neither the proxy nor
outside attackers can change or forge the public key.

Figure 18. Secure delivery of user’s claim from user’s device to client.

An attacker can attempt to acquire user information by eavesdropping messages transferred
among the components of VaultPoint through the network. VaultPoint prevents this threat as follows.
First, similarly to OAuth 2.0, eavesdropping is prevented by using the HTTPS protocol for
communication among the user, client and proxy. The HTTPS protocol is also used when the proxy
requests a push message to the FCM server and XMPP over TLS protocol is used when the FCM
server delivers messages to the user device, which also prevents malicious attacker’s eavesdropping.
The Infura service, which was used to connect to the blockchain, also supports HTTPS and the
transaction itself prevents falsification through the digital signature. Moreover, the user information
is transferred in an encrypted form as described above. Therefore, the combination of these means
effectively prevents data leakage.

6. Conclusions

This paper proposed a new blockchain-based SSI model that complies with OAuth 2.0. With
help from blockchain, users have increased accessibility to their information without being restricted
to a certain service. Users can perform authentication and authorization using their own device. The

Figure 18. Secure delivery of user’s claim from user’s device to client.

An attacker can attempt to acquire user information by eavesdropping messages transferred among
the components of VaultPoint through the network. VaultPoint prevents this threat as follows. First,
similarly to OAuth 2.0, eavesdropping is prevented by using the HTTPS protocol for communication
among the user, client and proxy. The HTTPS protocol is also used when the proxy requests a push
message to the FCM server and XMPP over TLS protocol is used when the FCM server delivers
messages to the user device, which also prevents malicious attacker’s eavesdropping. The Infura
service, which was used to connect to the blockchain, also supports HTTPS and the transaction itself
prevents falsification through the digital signature. Moreover, the user information is transferred in an
encrypted form as described above. Therefore, the combination of these means effectively prevents
data leakage.

Electronics 2020, 9, 1231 19 of 20

6. Conclusions

This paper proposed a new blockchain-based SSI model that complies with OAuth 2.0. With help
from blockchain, users have increased accessibility to their information without being restricted
to a certain service. Users can perform authentication and authorization using their own device.
The proposed model provides a user experience that is similar to the existing OAuth procedure and
it can be easily applied to those clients who have been using OAuth. This makes the scalability of
the proposed model excellent. This study showed the feasibility of the proposed model through an
implementation and the security analysis shows the proposed model is secure against identity theft
and information leakage.

The proposed model provides a solution to the problem that user information is managed in a
monopolistic manner by several major IT companies. It helps users secure data sovereignty, which refers
to the right to use and control one’s own information. A future study will investigate the possibility of
a new type of user-centric web, based on this proposed model, where user can directly manage the
history of their activity and the contents that they created and shared with other users.

Author Contributions: Conceptualization, H.K.; Methodology, S.H.; software, S.H.; validation, S.H. and H.K.;
writing—original draft, S.H. and H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Ministry of Science ICT Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education(2018R1C1B6002903).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nongbri, I.; Hadem, P. A Survey on Single Sign On. IJCRT 2018, 6, 595–602.
2. Radha, V.; Reddy, D. A Survey on Single Sign-On Techniques. Procedia Technol. 2012, 4, 134–139. [CrossRef]
3. Jiang, J.; Duan, H. A Federated Identity Management System with Centralized Trust and Unified Single

Sign-On. In Proceedings of the 6th International ICST Conference, Harbin, China, 17–19 August 2011;
pp. 785–788.

4. Khattak, Z.; Sulaiman, S. A Study on Threat Model for Federated Identities in Federated Identity Management
System. In Proceedings of the International Symposium on Information Technology, Kuala Lumpur, Malaysia,
15–17 June 2010.

5. Isaak, J.; Pouwelse, J. User Data Privacy: Facebook, Cambridge Analytica and Privacy Protection.
IEEE Comput. 2018, 8, 56–59. [CrossRef]

6. Ferdous, S. In Search of Self-Sovereign Identity Leveraging Blockchain Technology. IEEE Access 2019, 7,
103059–103079. [CrossRef]

7. David, R.; Drummond, R. OpenID 2.0: A Platform for User-Centric Identity Management. In Proceedings of
the 2nd Workshop on Digital Identity Management, Alexandria, VA, USA, 3 November 2006; pp. 11–16.

8. San-Tsai, S.; Eric, P. What Makes Users Refuse Web Single Sign-On? An Empirical Investigation of OpenID.
In Proceedings of the 7th Symposium on Usable Privacy and Security, Pittsburgh, PA, USA, 20–22 July 2011;
pp. 1–20.

9. Delft, B.; Oostdijk, M. A Security Analysis of OpenID. In Proceedings of the Second IFIP WG 11.6 Working
Conference on Policies and Reseach Management (IDMAN), slo, Norway, 18–19 November 2010; pp. 73–84.

10. Paul, D.; Fabien, P. A First Look at Identity Management Schemes on the Blockchain. IEEE Secur. Priv.
2019, 16, 20–29.

11. Goodell, G.; Aste, T. A Decentralized Digital Identity Architecture. Front. Blockchain 2019. [CrossRef]
12. Van, B.; Rico, H. Self-Sovereign Identity Solutions: The Necessity of Blockchain Technology. Available online:

https://arxiv.org/pdf/1904.12816.pdf (accessed on 30 July 2020).
13. uPort: A Platform for Self-Sovereign Identity. Available online: https://blockchainlab.com/pdf/uPort_

whitepaper_DRAFT20161020.pdf (accessed on 1 July 2020).
14. Sovrin-Protocol-and-Token-White-Paper. Available online: https://sovrin.org/wp-content/uploads/2018/03/

Sovrin-Protocol-and-Token-White-Paper.pdf (accessed on 1 July 2020).
15. Decentralized Identifiers (DIDs). Available online: https://www.w3.org/TR/did-core/ (accessed on 1 July 2020).

http://dx.doi.org/10.1016/j.protcy.2012.05.019
http://dx.doi.org/10.1109/MC.2018.3191268
http://dx.doi.org/10.1109/ACCESS.2019.2931173
http://dx.doi.org/10.3389/fbloc.2019.00017
https://arxiv.org/pdf/1904.12816.pdf
https://blockchainlab.com/pdf/uPort_whitepaper_DRAFT20161020.pdf
https://blockchainlab.com/pdf/uPort_whitepaper_DRAFT20161020.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://www.w3.org/TR/did-core/

Electronics 2020, 9, 1231 20 of 20

16. Fett, D.; Kusters, R. A Comprehensive Formal Security Analysis of OAuth 2.0. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019.

17. OAuth 2.0 Authorization Framework. Available online: https://tools.ietf.org/html/rfc6749 (accessed on 1 July 2020).
18. Differences between OAuth 1 and 2. Available online: https://www.oauth.com/oauth2-servers/differences-

between-oauth-1-2/ (accessed on 1 July 2020).
19. Der, U.; Jahnichen, S. Self-Sovereign Identity—Opportunities and Challenges for the Digital Revolution.

Available online: https://arxiv.org/abs/1712.01767 (accessed on 10 July 2020).
20. Mainka, C.; Mladenov, V. Do Not Trust Me: Using Malicious IdPs for Analyzing and Attacking Single

Sign-on. In Proceedings of the IEEE European Symposium on Security and Privacy, Saarbrücken, Germany,
21–24 March 2016.

21. Zheng, Z. An Overview of Blockchain Technology: Architecture, Consensus, and Trends. In Proceedings of
the 6th IEEE International Congress on Big Data, Honolulu, HA, USA, 25–30 June 2017; pp. 558–560.

22. Warren, I.; Meads, A. Push Notification Mechanisms for Pervasive Smartphone Applications.
IEEE Pervasive Comput. 2014, 13, 61–71.

23. Chinchilla, C. A Next-Generation Smart Contract and Decentralized Application Platform,
Ethereum Whitepaper. Available online: https://ethereum.org/en/whitepaper/ (accessed on 27 July 2020).

24. Kovan. Proposal: Kovan Testnet. Available online: https://kovan-testnet.github.io/website/proposal/
(accessed on 10 July 2020).

25. Infura. Ethereum API|IPFS API Gateway|ETH Node as Service|Infura. Available online: https://infura.io
(accessed on 10 July 2020).

26. Marks, E.; Akers, A. Metamask/Metamask-Docs: Metamask Project Documentation. Available online:
https://github.com/MetaMask/metamask-docs (accessed on 10 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://tools.ietf.org/html/rfc6749
https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/
https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/
https://arxiv.org/abs/1712.01767
https://ethereum.org/en/whitepaper/
https://kovan-testnet.github.io/website/proposal/
https://infura.io
https://github.com/MetaMask/metamask-docs
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The OAuth 2.0 Framework
	Self Sovereign Identity

	VaultPoint
	Smart Contract
	Identification Contract
	Notification Contract
	Client Management Contract

	Registration
	User Registration
	Client Registration

	Authentication and Authorization
	Client Authorization
	User Authentication
	Issuance of an Access Token

	Access to User Information

	Implementation
	Security Analysis
	Prevention of Identity Theft
	Preventing the Leakage of Personal Information

	Conclusions
	References

