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Abstract: In general, a convolutional neural network (CNN) consists of one or more convolutional
layers, pooling layers, and fully connected layers. Most designers adopt a trial-and-error method to
select CNN parameters. In this study, an AlexNet network with optimized parameters is proposed for
face image recognition. A Taguchi method is used for selecting preliminary factors and experiments
are performed through orthogonal table design. The proposed method filters out factors that are
significantly affected. Finally, experimental results show that the proposed Taguchi-based AlexNet
network obtains 87.056% and 98.72% average accuracy of image gender recognition in the CIA and
MORPH databases, respectively. In addition, the average accuracy of the proposed Taguchi-based
AlexNet network is 1.576% and 3.47% higher than that of the original AlexNet network in CIA and
MORPH databases, respectively.

Keywords: convolutional neural network; Taguchi method; parameter optimization; image
recognition

1. Introduction

In recent years, face recognition has been widely used in various fields. Because the face is a
very complex and important biological feature, it contains a lot of information, such as gender, age,
and expression. Refs [1–4] Automatic gender and age analysis has produced many business model
applications. For example, demographic data collection and product sales [5]. The intelligent facial
recognition system can be based on the big data of the customer’s gender and age, so that the seller
can accurately and clearly understand the customer group that purchased this product. Therefore, this
study focuses on gender classification analysis.

Machine learning has been successfully applied in gender recognition. Saatci et al. [4] proposed a
method to identify the gender and expression of facial images through the active appearance model
(AAM). Features extracted using trained AAM can be used to construct support vector machine (SVM)
classifiers. These classifiers are arranged in a cascade structure to optimize the overall recognition
performance. Mäkinen and Raisamo [5] conducted experiments by arithmetically combining the
output of the gender classifier. This leads to improved classification accuracy. Singh et al. [6] used
local binary pattern (LBP) and histogram of oriented gradient (HOG) feature extraction algorithms and
SVM classifiers to obtain the more efficient gender classification from face images. Eidinger et al. [7]
proposed the dropout-support vector machine approach for face attribute estimation in order to avoid
over-fitting. This method was inspired by the popular dropout learning technology in deep belief
networks. In addition, a robust face alignment technique is also proposed that explicitly considers the
uncertainty of the face feature detector. Although the aforementioned methods can successfully achieve
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gender recognition, the user needs to determine the features of gender images in advance. Therefore,
this study will adopt a convolutional neural network (CNN) to overcome the above problems.

Recently, a CNN is a type of deep neural network that is commonly used to identify and detect
visual images [8–11]. CNN has been widely used in various fields, such as object detection [12], face
recognition [13,14], and speech recognition [15]. For the gender classification, Duan [8] proposed a
hybrid of CNN and extreme learning machine (ELM) to incorporate the synergy of two classifiers for
classifying gender images. Levi and Hassner [14] used deep-convolutional neural networks to learn
representations. A significant increase in performance can be obtained on the gender classification.
Ozbulak et al. [16] explored the portability of the existing CNN models for age and gender classification.
A common AlexNet-like architecture and domain-specific VGG-Face CNN model were used and
fine-tuned with the Adience data set to classify age and gender in an uncontrolled environment.
In order to obtain better gender classification performance, users usually use the trial-and-error method
to adjust the structural parameters of CNN during training process.

Many researchers [17–19] used various methods to optimize the structural parameters.
Esteban et al. [17] proposed a genetic algorithm (GA) and deoxyribonucleic acid (DNA) based coding
scheme to determine the CNN architecture parameters. Benteng et al. [18] proposed an autonomous
and continuous learning (ACL) algorithm to generate automatically a deep convolutional neural
network (DCNN) architecture for each given vision task. Zoph and Le [19] proposed neural architecture
search (NAS) with reinforcement learning. The recurrent network architecture is used to generate
neural networks. CNN is trained through reinforcement learning to maximize the expected accuracy
of the architecture generated on the validation set. NAS is based on reinforcement learning and uses a
total of 800 graphics processing unit (GPUs). This method has a very large search space and is also
very time-consuming.

Competition is becoming increasingly fierce in various manufacturing sectors. To optimize
product quality, Taguchi methods are usually used. Taguchi methods [20–22] were proposed by
Dr. Genichi Taguchi from the 1950s to the early 1960s. Well known robust design methods now face
competition from Taguchi quality engineering and Taguchi experimental design methods. A Taguchi
method usually selects an appropriate orthogonal table based on the number of design parameters
and the number of levels; an appropriately selected table can minimize the number of tests. The goal
is to discover the best optimal product quality characteristics and maintain the stability of product
quality. With Taguchi methods, the average loss of the product during the manufacturing process can
be minimized.

To reduce the number of experiments and to optimize the parameters of a CNN architecture
for gender image recognition, this study proposes a Taguchi-based convolutional neural network.
Four well-known CNN architectures, LeNet [23], AlexNet [24], GoogLeNet [25], VggNet [26] and
ResNet [27] are commonly used by researchers. In this study, we focus on the popular AlexNet network
architecture, which is bigger than LeNet and smaller than GoogLeNet and ResNet. In addition, transfer
learning [28] is suitable for large neural networks and small data sets. For the case where the data set
itself is small, it is unrealistic to start training a large neural network with thousands of parameters
because the generated model requires basic data. The problem of overfitting is unavoidable. Since
this study does not use large neural networks, it does not use transfer learning in this study. Recently,
researchers proposed to use transfer learning before training GoogleNet, SqueezeNet, and ResNet50
network architectures [29]. These network architectures are relatively complex, so transfer learning is
needed to avoid overfitting. In this study, using AlexNet and omitting transfer learning can also achieve
high accuracy. To avoid using the trial-and-error method to determine the architectural parameters of
the AlexNet network, we use a Taguchi method with an orthogonal table based on the numbers of
design parameters and levels. In our experiments, the Taguchi-based AlexNet network recognized the
genders of faces in the Computational Intelligence Application (CIA) and MORPH Facial Recognition
database. The major contributions of this study are presented as follows:
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(1) To avoid using the trial-and-error method to determine the parameters of the network
architecture, the Taguchi-based AlexNet network is proposed.

(2) To avoid time-consuming for optimal parameters of the network, the orthogonal array is used.
Without the orthogonal array, the 486 experimental number would be needed; however, there is
18 needed in this study.

(3) Experimental results proved that the average accuracy rates of the proposed Taguchi-based
AlexNet network is higher 1.576% and 3.47% than the original AlexNet network in CIA and
MORPH databases, respectively.

(4) Although this study only uses the Taguchi method to optimize the structural parameters of
the AlexNet network, other networks can also adopt the proposed method to determine their
network structure and obtain a better average accuracy.

The remainder of the paper is organized as follows. Section 2 introduces the Taguchi-based
AlexNet network. The experimental results of the proposed method in CIA and MORPH databases are
described in Section 3. Section 4 offers conclusions and suggestions for future work.

2. The Taguchi-Based AlexNet Network

This section presents a Taguchi-based CNN for detecting gender from an image data set. Figure 1
shows the flowchart of the proposed Taguchi-based AlexNet [24] architecture
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2.1. Convolutional Neural Networks

Any major breakthrough in deep learning is relevant to CNNs. CNNs constitute the main force in
the current development of deep neural networks; they recognize images even more accurately than
humans. A CNN is a feed-forward neural network structure that responds to the pixel surrounding
relevant image sections; CNNs excel at large image processing. LeCun et al. [23] have demonstrated
that CNNs can have powerful image classification capabilities. CNNs mainly consists of three types
of layers: convolutional layers, pooling layers, and fully connected layers. Convolutional layers and
pooling layers are the most vital layers. A convolution layer is used to extract features by convolving an
image area with multiple filters. Because its number of layers is increased, a CNN can more accurately
parse the features of its input image. The pooling layer reduces the size of the convolution output
mapping. If these two layers are managed properly, the number of parameters and the calculation
complexity in a CNN can be minimized.

AlexNet is a classic model for image classification. As illustrated in Figure 2, the AlexNet
architecture has five convolution layers (Conv), three pooling layers (Pool), and three fully connected
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layers (each marked in the figure with FC and a number in Figure 2). Table 1 lists the parameters of
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Figure 2. Architecture of AlexNet.

Table 1. Parameters for each layer of AlexNet.

Conv-1 Pool-1 Conv-2 Pool-2 Conv-3 Conv-4 Conv-5 Pool-5

Kernel size (KS) 11 × 11 3 × 3 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3
Stride (S) 4 2 1 2 1 1 1 2

Padding (P) 0 0 2 0 1 1 1 0

• Convolution layer

The convolution layer uses a specific feature detector called the convolution kernel to perform
the convolution operation on the original image. The picture size is 227 × 227 × 3 during training.
In the first convolution layer, 96 number of 11 × 11 × 3 convolution kernels are used for convolution
calculation to generate new pixels. The input data of the second layer is the 27 × 27 × 96 pixel layer
output by the first layer. In order to facilitate subsequent processing, the upper, lower, left, and right
edges of each pixel are filled with 2 pixels. The size of the convolution kernel size of the second
layer is 5 × 5, and the stride is 1 pixel, which is the same as the calculation formula of the first layer.
The input data of the third layer is a set of 13 × 13 × 128 pixel layers output by the second layer. For the
convenience of subsequent processing, the upper, lower, left, and right edges of each pixel layer are
filled with 1 pixel. The input data of the fourth layer is sets of 13 × 13 × 192 pixel layers output by the
third layer, similar to the third layer. The input data of the fifth layer is a set of 13 × 13 × 192 pixel
layers output by the fourth layer. For the convenience of subsequent processing, the upper, lower, left,
and right edges of each pixel layer are filled with one pixel.

The KS, stride (S), and padding (P) in the convolution layer are used to determine the sizes of
input and output images. Specifically, the calculation formula of the convolution layer.

O =
(I−KS + 2P)

S
+ 1 (1)

• Pooling layer

This study mainly uses max pooling, which picks the maximum value in the array. When the
image is translated by several pixels, the max pooling does not affect the judgment at all. The major
advantage of max pooling is to remove noise efficaciously. Max pooling layers are only after the first,
second and fifth convolution layers.

• Fully connected layer

In AlexNet, there are three fully connected layers. 4096 convolution kernels are in the first and
second fully connected layer, and the size of each convolution kernel is 6 × 6 × 256. It is because the
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size of the convolution kernel is exactly the same as the size of the feature map to be processed. Each
coefficient in the convolution kernel is only multiplied by a pixel value of the size of the feature map,
and one-to-one correspondence. Therefore, the size of the pixel layer after convolution is 4096 × 1 × 1,
that is, there are 4096 neurons. Because the number of categories is 2 in this study, 2 neurons in the
third fully connected layer are set.

2.2. Proposed Taguchi Method

The proposed Taguchi method is a low-cost, high-efficiency quality engineering method.
It emphasizes that product quality is improved by design rather than by inspection. In this study,
the optimization parameters of Taguchi-based AlexNet are taken as the research object to explore
the stability of AlexNet design. First, numerous factors are screened for the most pivotal factors to
determine the optimal performance conditions. We use the screened factors as the design parameters
of the Taguchi method. The quality of our objective function must be defined, and the factors and
levels that affect the objective function must be identified. We use orthogonal arrays (abbreviated as
OA in Figure 3) to determine the number of experiments and the factor allocations of experiments.
It is expected that reference data equivalent to the full factor can be obtained with a few experiments.
Finally, the key factor levels must be determined to verify that the Taguchi-based AlexNet parameters
are optimal. This experiment considers cost- effectiveness to discover the best combination of factor
levels. A flowchart of the Taguchi method is depicted in Figure 3. The detailed process of the Taguchi
method is explained as follows:
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• Step 1: Understand the narrative of the problem

To understand the tasks need to be completed. To achieve simplified experiments and a
good accuracy, this study adopts the Taguchi method to adjust the parameters of the convolutional
neural network.

• Step 2: Determine the levels of each factor

This study uses the Taguchi method to determine the structural parameters of the AlexNet
network. AlexNet has five convolutional layers. Many researchers suggest that the convolutional
layers of LeNet or AlexNet have the highest impact [30,31]. Therefore, we also use the first and
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fifth convolution layers of the AlexNet network as the structural parameters. In the first and fifth
convolution layers, the structural parameters include the kernel size, stride, and padding. In this
study, there are six affecting factors in total. Except for the two levels used for the padding of the first
convolutional layer, three levels are selected among these affecting factors.

• Step 3: Select the applicable Orthogonal Arrays (OA)

Before selecting the OA, the number of affecting factors and levels must be considered. According
to the selected levels and factors, a suitable OA is selected. In this study there is one factor of two levels
and five factors of three levels. So that L18

(
21
× 35

)
OA is selected. Up to 6 factors can be configured,

with 3 and 2 representing the number of levels.

• Step 4: Assign the factors to columns of the OA

The purpose of using the OA is to obtain the desired result with a very small number of
experiments. For example, when parameter design only considers the main effect and does not consider
the interaction between various factors. After the configuration of the factors and levels of the OA is
completed, the experiment can be conducted according to the experimental combination configured
in the OA to obtain the optimal level combination. This experiment selects 3 levels and 2 levels for
each of the selected 6 factors, so an L18 orthogonal array is used for the experiment. The factors KS of
conv-1, S of conv-1, P of conv-1, KS of conv-5, S of conv-5, and P of conv-5 are arranged in rows 1, 2, 3,
4, 5 and 6, and shown in Table 2.

Table 2. L18
(
21
× 35

)
orthogonal arrays.

KS of
Conv-1

S of
Conv-1

P of
Conv-1

KS of
Conv-5

S of
Conv-5

P of
Conv-5

1 13 4 2 7 3 2
2 13 3 2 5 2 1
3 13 2 2 3 1 0
4 11 4 2 7 2 1
5 11 3 2 5 1 0
6 11 2 2 3 3 2
7 9 4 2 5 3 0
8 9 3 2 3 2 2
9 9 2 2 7 1 1
10 13 4 1 3 1 1
11 13 3 1 7 3 0
12 13 2 1 5 2 2
13 11 4 1 5 1 2
14 11 3 1 3 3 1
15 11 2 1 7 2 0
16 9 4 1 3 2 0
17 9 3 1 7 1 2
18 9 2 1 5 3 1

• Step 5: Conduct the experiments

According to the L18
(
21
× 35

)
OA and conduct the experiments.

• Step 6: Analyze the experimental data

Through the experimental factor level planning of the Taguchi experiment design, the observation
values obtained from the experiment are carried out. It is decided that the number of repeats for
each experiment is 5 times. Calculate the Signal-to-noise ratio (S/N ratio), and then analyze the
experimental data.
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• Step 7: Define the optimal the levels of the factors

According to the Step 6 results define the optimal the levels of the factors.

• Step 8: Carry out the confirmation experiment

Finally, carry out the confirmation experiment. Use the optimal parameter combination to train
the AlexNet.

3. Experimental Results

In this experiment, there are two data sets. First is the CIA data set and the second is the MORPH
database. Our trials randomly selected 70% of the data set for training and 30% of the data for testing.
All experiments are performed on Ubuntu 16.04 with a 3.30 GHz Intel® Xeon® E3-1225 v5(4C4T)
processor and Nvidia GTX 1080 8GB (MSI, New Taipei City, Taiwan).

3.1. AlexNet

The architecture of AlexNet consists of eight layers. The first to fifth layers are convolutional layers
for convolution operation and pooling; the sixth to eighth layers are fully connected layers. In this
experiment, the first and fifth convolutional layers are used for structural parameter optimization.
Figure 4 shows the structural parameter optimization diagram of the AlexNet. Because the main
purpose of the convolutional layer is to capture the characteristics of the image, it affects the quality of
the feature map and the accuracy of recognition. Therefore, this paper uses the Taguchi method to
optimize the structural parameters of the convolution layer has obtained better characteristics. As for
the fully connected neural network, we adopt the same as the original AlexNet.
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3.2. Computational Intelligence Application (CIA) Data Set

To evaluate the proposed Taguchi-based AlexNet network, CIA data set is used. The CIA data
set is a small face database collected by our laboratory. The database images depict male and female
persons in the age range of 6 to 80 years, as illustrated in Figure 5. This data set includes 1880 face
pictures and comprises male and female subjects. Most subjects are East Asian in this data set.

3.2.1. Determine the Levels of Each Factor

In this experiment, only the convolution kernel parameters are considered in the first and fifth
convolutional layers. The affecting factors selected in AlexNet include KS, stride (S), and padding (P)
of the convolution kernel in the first and fifth convolutional layers. The system had six affecting factors
in total. The levels of key factors are set by referring to the results of experts and actual experiments in
Table 3.
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Table 3. Control factors and levels.

KS of
Conv-1

S of
Conv-1

P of
Conv-1

KS of
Conv-5

S of
Conv-5

P of
Conv-5

Level 1 13 4 2 7 3 2
Level 2 11 3 1 5 2 1
Level 3 9 2 3 1 0

3.2.2. Factor Allocation of Taguchi Experiments

This experiment is based on five previously selected factors with three experimental levels and
one factor with two experimental levels. The total number of degrees of freedom is 12. Therefore,
the L18

(
21
× 35

)
orthogonal array is used. The factors, KS of conv-1, S of conv-1, P of conv-1, KS of

conv-5, S of conv-5, and P of conv-5, are configured in columns 2, 3, 4, 5, 6, and 7, as shown in Table 4.
The selected factors and levels originally require 21

× 35 = 486 experiments, and only 18 experiments
after using the Taguchi experiment.

Table 4. L18
(
21
× 35

)
orthogonal array.

KS of
Conv-1

S of
Conv-1

P of
Conv-1

KS of
Conv-5

S of
Conv-5

P of
Conv-5

1 13 4 2 7 3 2
2 13 3 2 5 2 1
3 13 2 2 3 1 0
4 11 4 2 7 2 1
5 11 3 2 5 1 0
6 11 2 2 3 3 2
7 9 4 2 5 3 0
8 9 3 2 3 2 2
9 9 2 2 7 1 1
10 13 4 1 3 1 1
11 13 3 1 7 3 0
12 13 2 1 5 2 2
13 11 4 1 5 1 2
14 11 3 1 3 3 1
15 11 2 1 7 2 0
16 9 4 1 3 2 0
17 9 3 1 7 1 2
18 9 2 1 5 3 1
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3.2.3. Accuracy and S/N Ratio Results

Because of the experimental factor level planning of the Taguchi experiment design, the quality
characteristics of this study are larger the better (LTB). A cross-validation experiment is performed
and tested. The S/N ratio of the experimental response value is calculated. The experimental accuracy
values were calculated with five rounds of cross-validation, and the S/N ratios are listed in Table 5.
This study does not consider the interaction between these factors. The LTB is calculated as follows.

S/NLTB = −10 log10
1
t

t∑
i=1

1
ai2

(2)

where t is the number of repeated experiments and ai is the ith accuracy of repeated experiments.
The larger S/N ratio presents a smaller standard deviation and illustrates higher stability for the quality.

Table 5. Accuracy and S/N ratio of AlexNet in CIA data set.

NO. Cross-
Validation 1

Cross-
Validation 2

Cross-
Validation 3

Cross-
Validation 4

Cross-
Validation 5 S/N Ratio

1 83.69 89.18 87.41 89.01 87.23 −1.18618
2 84.93 83.51 84.57 85.11 87.23 −1.40709
3 87.23 86.88 86.88 84.93 85.28 −1.28739
4 85.46 84.22 84.93 88.48 85.99 −1.33231
5 85.99 87.23 85.11 83.33 85.99 −1.36063
6 81.91 82.09 85.11 83.16 83.51 −1.6046
7 83.16 85.64 84.4 86.17 87.06 −1.38582
8 87.23 86.17 82.45 85.82 85.28 −1.37656
9 88.83 84.4 86.17 84.93 84.93 −1.32939

10 86.17 86.88 84.22 85.64 87.23 −1.3092
11 87.59 85.11 85.46 84.22 82.8 −1.41238
12 86.17 85.11 84.75 85.28 84.22 −1.40154
13 88.3 85.64 84.93 85.28 87.59 −1.27808
14 84.04 83.87 84.57 81.38 87.06 −1.50144
15 87.23 85.64 85.99 84.4 82.09 −1.41003
16 84.75 83.51 84.4 85.11 84.4 −1.47017
17 85.64 89.01 85.99 87.77 85.28 −1.23927
18 82.62 84.75 83.33 84.04 85.28 −1.51569

3.2.4. Quality Characteristics and Optimal Parameters

The average S/N ratio of each factor and level is listed in Table 5. The higher S/N ratio represents
the higher stability of the quality. The optimal parameter combination is displayed in the last row in
Table 6. That is, the best parameter combination has levels 1, 1, 1, 1, 3, and 1 for KS of conv-1, S of
conv-1, P of conv-1, KS of conv-5, S of conv-5, and P of conv-5, respectively. In addition, the S/N ratio
effect of each factor is depicted in Figure 6. The first three significant factors are S of conv-5, KS of
conv-5, and S of conv-1.

Table 6. Average S/N ratio of each factor and level in CIA data set.

Factors
Levels KS of Conv-1 S of Conv-1 P of Conv-1 KS of Conv-5 S of Conv-5 P of Conv-5

1 −1.33396 −1.32696 −1.36333 −1.31826 −1.43435 −1.3477
2 −1.41451 −1.38289 −1.39309 −1.39147 −1.39962 −1.39919
3 −1.38615 −1.42477 - −1.42489 −1.30066 −1.38774

Delta 0.08055 0.097813 0.029757 0.106632 0.13369 0.051481
Rank 4 3 6 2 1 5

Best levels 1 1 1 1 3 1
Best factors 13 4 2 7 1 2
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3.2.5. Optimal Combination of Experimental Parameters

In light of the experimental quality results, the final experiment is performed based on the optimal
parameter combination. Table 7 lists five cross-validation experiments and the average accuracy of the
optimal combination for experiments in the proposed Taguchi-based AlexNet network. In addition,
the original AlexNet network is tested with the CIA data set and performance levels are compared.
And Table 7 lists the accuracy of the original AlexNet network. The average accuracy values of the
proposed Taguchi-based AlexNet network and the original AlexNet network are 87.056% and 85.48%,
respectively. Experimental results prove that the proposed Taguchi-based AlexNet network has a
better average accuracy than the original AlexNet network.

Table 7. Accuracy of the optimal parameter combination in CIA data set.

Optimal Parameter
Combination

Cross-
Validation 1

Cross-
Validation 2

Cross-
Validation 3

Cross-
Validation 4

Cross-
Validation 5

Average
Accuracy

Original AlexNet
network 85.99 84.22 86.11 84.93 86.17 85.48

Taguchi-based
AlexNet network 86.88 86.93 86.17 87.89 87.41 87.056
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3.3. MORPH Facial Recognition Database

MORPH database is a large database and contains the classes of age, gender and ethnicity.
In this study, we focus on gender classification. MORPH database contains about 55,000 facial
images, including about 46,660 boys and 8493 girls. In this experiment, the same reference to the
CIA experiment only considers the convolution kernel parameters in the first and fifth convolutional
layers. The selected affecting factors include the KS, convolution (S) and padding (P) of the convolution
kernels in the first and fifth convolutional layers. There are six key factors. Therefore, the level and
distribution of each factor in the Taguchi experiment are the same as those in the CIA data experiment.

3.3.1. Results of Accuracy and S/N Ratio

The experimental accuracy values are calculated with five rounds of cross-validation, and the S/N
ratios are listed in Table 8. This study also does not consider the interaction between these factors.

Table 8. Accuracy and S/N ratio of AlexNet in MORPH database.

NO. Cross-
Validation 1

Cross-
Validation 2

Cross-
Validation 3

Cross-
Validation 4

Cross-
Validation 5 S/N Ratio

1 97.96 98.1 97.96 97.99 98.02 −0.17495
2 98.11 97.79 97.07 97.89 97.74 −0.2005
3 97.79 97.88 97.82 97.55 97.68 −0.19822
4 97.09 97.99 98.21 98.01 98.13 −0.18581
5 97.14 97.68 97.76 97.49 97.08 −0.22625
6 97.7 97.87 97.39 97.33 97.15 −0.22107
7 97.32 98.16 97.62 97.93 98.26 −0.18824
8 97.69 97.91 97.75 97.75 98.24 −0.18724
9 97.87 97.91 98.28 97.94 98.31 −0.17003

10 97.7 98.01 97.76 97.19 97.66 −0.20541
11 97.92 97.86 97.76 97.67 97.49 −0.19858
12 97.91 96.96 97.44 97.56 96.89 −0.2333
13 97.42 97.83 98.16 97.61 97.87 −0.19526
14 97.59 97.46 97.1 97.76 97.38 −0.22372
15 97.9 97.67 97.74 97.77 97.09 −0.20809
16 97.62 97.49 97.24 97.66 97.85 −0.21355
17 97.18 98.22 98.15 98.39 98.1 −0.17502
18 97.65 97.59 97.6 96.69 97.85 −0.22227

3.3.2. Quality Characteristics and Optimal Parameters

The average S/N ratio of each factor and level are listed in Table 8. The optimal parameter
combination is displayed in the last row in Table 9. That is, the best parameter combination has levels
3, 1, 1, 1, 3, and 1 for KS of conv-1, S of conv-1, P of conv-1, KS of conv-5, S of conv-5, and P of conv-5,
respectively. In addition, the S/N ratio effect of each factor is depicted in Figure 7. The first three
significant factors are KS of conv-5, KS of conv-1, and S of conv-1.

Table 9. Average S/N ratio of each factor and level in MORPH database.

Factors
Levels KS of Conv-1 S of Conv-1 P of Conv-1 KS of Conv-5 S of Conv-5 P of Conv-5

1 −0.20183 −0.19387 −0.1947 −0.18541 −0.20481 −0.19781
2 −0.21003 −0.20188 −0.20836 −0.21097 −0.20475 −0.20129
3 −0.19273 −0.20883 - −0.2082 −0.19503 −0.20549

Delta 0.017308 0.01496 0.013654 0.025556 0.009774 0.007681
Rank 2 3 4 1 5 6

Best levels 3 1 1 1 3 1
Best factors 9 4 2 7 1 2
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3.3.3. Optimal Combination of Experimental Parameters

This experiment is performed by using the optimal parameter combination. Table 10 lists the
accuracy of the original AlexNet network. The average accuracy values of the proposed Taguchi-based
AlexNet network and the original AlexNet network are 95.25% and 98.72%, respectively. Experimental
results again prove that the proposed Taguchi-based AlexNet network has a better average accuracy
than the original AlexNet network. Besides, Table 11 also shows the comparison results of accuracy
and training time using various methods in the MORPH database. The results show that the proposed
method not only has higher accuracy than other methods, but also has a shorter training time.

Table 10. Accuracy of the optimal parameter combination in the MORPH database.

Optimal Parameter
Combination

Cross-
Validation 1

Cross-
Validation 2

Cross-
Validation 3

Cross-
Validation 4

Cross-
Validation 5

Average
Accuracy

Original AlexNet
network 94.53 94.58 95.98 95.75 95.45 95.25

Taguchi-based
AlexNet network 98.99 98.65 98.78 99.08 98.1 98.72
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Table 11. Comparison results of accuracy and training time using various methods in the MORPH database.

Optimal
Parameter

Combination

Taguchi-Based
AlexNet
Network

LeNet [14] ResNet [18] GoogLeNet [16] CNN–ELM +
Dropout 0.5 [6]

CNN–ELM +
Dropout 0.7 [6]

Accuracy 98.72% 96.30% 98.15% 97.48 87.30% 88.20%
Training time 40 min 23s 41 min 9s 1 h 2 min 52s 1 h 33 min 8s - -

4. Conclusions

Generally, the adjustment of CNN parameters is time-consuming. In this study, a Taguchi-based
AlexNet network is proposed for optimizing the parameters of an AlexNet architecture. To avoid using
the trial-and-error method to determine the network parameters of the AlexNet, a Taguchi method is
used. The Taguchi method has an orthogonal array based on the number of design parameters and
levels. Without the orthogonal array, 486 experimental number would be needed; however, there are
18 needed in this study. According to the average S/N ratio of each factor and level obtained, S of
conv-5 and KS of conv-5 are significant factors. Experimental results proved that the average accuracy
rates of the proposed Taguchi-based AlexNet network is higher 1.576% and 3.47% than the original
AlexNet network in CIA and MORPH databases.

In future work, we will use the proposed Taguchi-based AlexNet network to realize practical
hardware applications in embedded systems. An extensible open computing platform NVIDIA
DRIVE™ AGX is used. It is like an artificial intelligence brain that can provide industry-leading
performance and energy-efficient computing. In order to develop and produce functional safety and
adopt artificial intelligence technology, we join this hardware and are able to practically apply various
systems including this gender classification system. In addition, the experimental results prove that,
in CIA and MORPH databases, the average accuracy of the Taguchi-based AlexNet network is higher
than the original AlexNet network. Therefore, this method will be extended to LeNet, GoogLeNet and
ResNet in the future.
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