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Abstract: In this paper, we describe the design of a dual polarized packaged patch antenna for 5G
communications with improved isolation and bandwidth for K-band. We introduce a differential
feeding technique and a heuristic-based design of a matching network applied to a single layer patch
antenna with parasitic elements. This approach resulted in broader bandwidth, reduced layer count,
improved isolation and radiation pattern stability. The results were validated through finite element
method (FEM) and method of moments (MoM) simulations. A peak gain of 5 dBi, isolation above
40 dB and a radiation efficiency of 60% were obtained.
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1. Introduction

The European 5G communication band in the frequency range from 24.25 GHz to 27.5 GHz
is considered the most adequate solution for limited coverage and high throughput scenarios [1].
Its usage drives the need for new antenna technologies capable of beamforming, polarization diversity
and large bandwidths.

Patch antennas are a possible solution for the challenge of 5G K-band antennas, given their
size which facilitates package integration, simplicity and ability to support two polarizations in two
degenerate modes. Nonetheless, their bandwidth is usually very limited and bandwidth improvement
techniques are generally required in broadband communication systems [2].

The most common solution found in the state-of-the-art to overcome bandwidth limitations is
the usage of a stacked patch topology. However, such a technique can lead to higher order modes
which will degrade radiation pattern stability throughout the band of operation [3]. Furthermore,
these higher order modes also compromise isolation in dually polarized antennas. In some cases,
a different patch topology has been used to improve isolation between polarizations.

The authors of [4] presented an antenna-in-package solution based on LTCC for 28 GHz. A stacked
patch topology was used with a stripline-based feeding network that allowed a wide impedance
bandwidth of approximately 3.5 GHz to be obtained. Nonetheless, their approach focused on a
single polarized patch antenna which does not allow for polarization diversity usage. Lu et al.
presented a patch antenna for 28 GHz based on a parasitic patch antenna on an unbalanced substrate.
This approach is based on flip-chip technology and allowed a large bandwidth of approximately
4 GHz to be obtained [5]. Once again, this design was only suitable for single polarization. In [6],
the authors proposed a flip-chip structure for a parasitic patch antenna. They used single ended probe
feeds for each polarization and were able to achieve a wide bandwidth of approximately 4.5 GHz.
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However, as only single-ended feeding was used, the isolation has its worst value of 20 dB at the
centre frequency.

In this work, we propose the usage of a patch antenna with parasitic elements in the same layer
to improve its bandwidth, reducing the layer count from the typical stacked patches as reported in
the previous paragraph. Based on [7], we utilized a differential feeding technique. In this approach,
each mode is excited with two feeds with opposing phases, which cancels out higher order modes,
reduces feed radiation and reinforces the fundamental degenerate modes TM010 and TM100 of the
patch antenna. Ultimately this improves isolation between polarizations and radiation pattern stability.

2. Antenna Design

2.1. Patch Antennas

Considering the equivalent transmission line model of a patch antenna, which considers it as an
half-wave microstrip resonator, shown in Figure 1, one can calculate the antenna dimensions for a
particular design frequency, given the substrate height h and dielectric constant εr. The patch is seen
as a microstrip line whose width should be given as [2]

W =
1

2 f0
√

µ0ε0

√
2

εr + 1
(1)

where f0 denotes the desired resonant frequency. The parameters µ0 and ε0 denote the magnetic
permeability and electrical permittivity of vacuum. As this microstrip line is wide enough for radiation
to occur and the substrate is thin enough for substrate modes and surface waves to be absent [2],
one can calculate its effective dielectric constant as

εre f f =
εr + 1

2
+

εr − 1
2

[
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h
W

]−1/2
(2)

Given the effective dielectric constant of the microstrip line, the fringing field extension ∆L can be
given as

∆L = 0.412 · h
(εre f f + 0.3)(W

h + 0.264)

(εre f f − 0.258)(W
h + 0.8)

(3)

This allows us to calculate the actual patch length as

L =
1

2 f0
√

εre f f
√

µ0ε0
− 2∆L (4)

Figure 1. Fundamental mode half-wave microstrip resonator model of patch antenna.

This type of antennas can be fed in a variety of ways [2]. In the case of microstrip and probe
feeds, the feeding method is direct. However, due to the microstrip discontinuity and probe length,
a stray inductance develops which can be hard to compensate in probe feed, mostly in thicker
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substrates. Slot feed can be seen as the coupling of two resonant systems, the slot and the patch
antenna itself. This feeding method allows more degrees of freedom for tuning and is able to provide
wider bandwidths. However, if the slot size becomes electrically large, backside radiation will
start developing which distorts the patch radiation pattern and degrades the front-to-back ratio.
Proximity coupling feed is also an indirect feeding method as slot feed. It can also be viewed as the
coupling of two resonant structures but instead of inductive coupling, they couple through capacitive
means. Both these methods are able to provide wider impedance bandwidths but the final end result
is the need for higher layer counts which increases fabrication costs.

2.2. Rotationally Symmetric Patch with Parasitics

The most common solution found in the state-of-the-art to overcome the bandwidth limitations
of the patch antenna is the usage of a stacked patch topology [4,5], as seen in Figure 2. However,
such technique usually leads to higher order modes which will degrade radiation pattern stability
throughout the band of operation [3]. Furthermore these higher order modes also compromise
isolation in dual-polarized antennas. In [6], a different patch topology has been used to improve
isolation between polarizations.

μ

Parasitic Patch

Driven Patch

Feeding network

Figure 2. Example of parasitic patch antenna topology.

To reduce the layer count and the manufacturing costs a probe-fed patch with parasitic elements
in the same layer to improve its bandwidth, as reported in [8], was used. Furthermore, based on [7,9],
a differential feeding technique was utilized. As stated before, this approach allows TM010 and TM100

modes of the patch antenna to be reinforced and have a very low coupling. Such leads to high isolation
between orthogonal polarizations and improved radiation pattern stability.

The antenna stackup for land-side die attach packaging is shown in Figure 3, where a Rogers
RO4350B (εr = 3.48) core was used with Rogers RO4450T prepreg (εr = 3.35). These substrates offer a
good compromise between cost, moderate permittivity values and low losses (tan δ ≈ 0.004). The metal
layers are all composed of 17.5 µm thick copper. Since the patch has to be rotationally symmetric for
both polarizations to have the same resonant frequency, we have W = L. As the purpose is to design
an antenna with dual polarization it is required that W = L, which results in a square patch with
the two orthogonal modes TM010 and TM100 having the same frequency, that is they are degenerate.
However, it also results in an equation with no analytical solutions for the resonant frequency of the
antenna. Therefore a numerical approach was used to determine the initial patch size. The remaining
calculation variables for obtaining the resonant frequency as a function of W = L are h = 0.762 mm
and εr = 3.48, since the patch is designed in M1 layer, being M2 the ground plane. To obtain the length
and width of the rotationally symmetric patch L = W a simple patch length was first calculated using
the method described in Section 2.1. The result of such calculation can then be used as the initial guess
of a Newton algorithm approach as described in [10]. The Newton algorithm in this case was set to
obtain the root of the objective function

f (L) = f0 −
1

2(L + 2∆L)√εre f f
√

µ0ε0
(5)

where f0 = 26 GHz is the desired resonant frequency. The values for εre f f and ∆L can be obtained
during the algorithm from Equations (2) and (3), respectively, by making W = L. Using this algorithm
a resonant frequency of f0 = 26 GHz was obtained for a patch size of W = L ≈ 2.75 mm.
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Figure 3. Antenna stackup.

The patch and its parasitics for bandwidth enhancement are designed in M1 metal layer, as shown
in Figure 4. The vertically polarized stream (port 1) is fed from M3 and the horizontal (port 2) from
M5 metal layer. In each feeding network a lossless half-wavelength 50 Ω transmission line was
connected between the two corresponding balanced ports to obtain the needed 180 ◦ phase shift for
differential feeding. Another 50 Ω lossless line was connected to one of the balanced ports in each
polarization, to evaluate the single-ended reflection coefficient. Considering the previously calculated
patch size, it was set to ps = 2.75 mm. As stated in [8], optimization is needed for determining
the size of the parasitics and their distance to the driven patch, which should be kept pg < 2.5 h.
The design of [8] was scaled down for our patch size and used as an initial guess of a gradient based
optimizer combined with the Method of Moments simulation in ADS. The objective was to maximize
the bandwidth centred at 26 GHz in both ports. After optimization, the values of ps = 2.75 mm (patch
size), fo = 0.8 mm (probe feed offset from patch centre), pl = 1.7 mm (parasitic length), pw = 1.2 mm
(parasitic width), pg = 0.1 mm (parasitic gap) resulted in the plot of Figure 5, where a low reflection
coefficient at the centre frequency of 26 GHz, was obtained at both ports. However, a limited bandwidth
of approximately 2.5 GHz can be verified, which falls short from the needed 3.25 GHz.

Figure 4. Antenna layout.
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Figure 5. S11 and S22 magnitudes as a function of frequency for the patch antenna without matching
network.
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To overcome the bandwidth limitation a matching network was designed. Since the transition
from the antenna feeding networks to the PCB presents some parasitics, the matching network must
be designed after such transition is modelled.

3. PCB-to-Package Transition

The transition between the hosting PCB and the antenna-in-package is designed as shown in the
3D model of Figure 6. The transition is simply a connection between a microstrip on the host PCB and
a stripline with via stitching on M5 layer of the package. To connect to the feeding network on M3 an
internal transition between M5 and M3 was required to be designed as well. Port 1 is placed in the
microstrip on the PCB and port 2 in the stripline inside the package.

Figure 6. PCB to package transition.

According to [11], the microstrip dimensions for a certain impedance Z0 can be obtained by
calculating two factors A and B as

A =
Z0

60

√
εr + 1

2
+

εr − 1
εr + 1

(
0.23 +

0.11
εr

)
(6)

and
B =

377π

2Z0
√

εr
(7)

which for W/d > 2 we have

W/d =
8eA

e2A − 2
(8)

and for W/d ≤ 2

W/d =
2
π

[
B− 1− ln (2B− 1) +

εr − 1
2εr

{
ln (B− 1) + 0.39− 0.61

εr

}]
(9)

where W is the microstrip width and d the substrate height. To obtain the stripline width, according
to [11], one can write

W
b

=

{
x for

√
εrZ0 < 120

0.85−
√

0.6− x for
√

εrZ0 < 120
(10)

where b is the substrate height, Z0 the desired characteristic impedance and

x =
30π√
εrz0
− 0.441 (11)

These formulas for stripline assume that the transmission line is of zero thickness and that
it sits in the exact centre of the two ground planes. The latter assumption can be considered as
acceptable given the stackup of Figure 3. However, since the stripline in the real case has no zero
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thickness, its impedance was optimized in ADS Controlled Impedance Line Designer as shown in the
cross-section of the stripline structure of Figure 7.

Figure 7. ADS controlled impedance line designer setup for obtaining stripline dimensions.

After FEM simulation in ADS, the S-parameters plotted in Figures 8 and 9 were obtained where it
can be seen that an acceptable return and insertion losses were obtained which validates the technique.
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Figure 8. S11 magnitude as a function of frequency for the microstrip input of the PCB (port 1) to
package stripline transition (port 2).
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Figure 9. S21 magnitude as a function of frequency for the microstrip input of the PCB (port 1) to
package stripline transition (port 2).

4. Final Assembly

Due to the reduced bandwidth obtained in the modelling described in Section 2, the patch antenna
is re-optimized to achieve peak gain instead of maximizing impedance bandwidth, as matching
networks will later be connected for each polarization. The resulting values for peak gain obtained
after the gradient based optimizer are ps = 2.83 mm, f o = 0.8 mm, pl = 1.7 mm, pw = 0.7 mm,
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pg = 0.1 mm. Matching networks are later introduced to obtain 50 Ω input impedance at the
package input.

In [12] a method with a dual-frequency impedance transformer, composed of two arbitrary
cascaded transmission lines, was reported to match complex impedances in a wide bandwidth.
The proposed matching network circuit for the antenna is shown in Figure 10, where two cascaded
transmission lines and two reactance cancellation stubs can be seen. The values of the electrical
parameters for both matching networks are obtained by resorting to a particle swarm optimizer
(PSO) algorithm, because the method reported in [12] does not consider load impedance variation
with frequency, therefore rendering analytical calculations useless for our case. The upper bound
for the impedance of each transmission line is obtained by calculating the characteristic impedance
of a stripline with the minimum trace width of 100 µm, for easier fabrication. This impedance was
calculated using ADS Controlled Impedance Line Designer and the value obtained was Zmax =

53.8 Ω. The remaining PSO parameters are defined as recommended in [13], where the number of
particles N = 100, the social and cognitive coefficients c1 = c2 = 2 and the inertia coefficient w = 1.
The objective function is defined so that its value reduces as more simulation points for the magnitude
of the S11 are below the −10 dB. Mathematically this can be described as summing all the points that
lie above the −10 dB line and therefore are unmatched. The objective function can be normalized by
dividing the sum of points above−10 dB and dividing by the total simulated points k. In mathematical
terms we can write

OF =
1
k

k

∑
i=1

ai (12)

where i denotes the index of the simulation point corresponding to a simulation frequency within the
considered span of 24.25 to 27.5 GHz and ai is given as

ai =

{
0 for |S11i|dB < −10

1 for |S11i|dB ≥ −10
(13)

in which S11i denotes the simulated reflection coefficient at frequency index i. After optimization the
values for the transmission line electrical parameters are obtained as given in Table 1 for both the
V-Pol and H-Pol inputs of the antenna. Despite the rotational symmetry of the antenna, the matching
networks have to be different because of an added transition between M3 and M5 metal layers,
which results in an asymmetric S-parameter matrix. This transition serves as a connection between M3

layer and the package to PCB transition.

Figure 10. Matching network schematic.

Table 1. Matching network transmission line electrical parameters at 26 GHz.

Polarization Z1 E1 Z2 E2 Z3 E3

V-Pol 53.8 Ω 50 ◦ 53.8 Ω 0 ◦ 20.1 Ω 107 ◦

H-Pol 53.8 Ω 58 ◦ 53.8 Ω 26.8 ◦ 16 Ω 43.4 ◦

The final layout is presented in Figure 11, where the values of Table 1 were mapped to striplines by
resorting to Equation (10) and ADS Controlled Impedance Line Designer. In this layout, the transition
between metal layers M3 and M5 is also shown, as well as the package to PCB transition. A 3D
representation of the model is shown in Figure 12.
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Figure 11. Final layout with feeding and matching networks, inter layer and PCB to package transitions
(ground planes and grounding vias omitted).

Figure 12. 3D model of full layout (ground planes and grounding vias omitted).

The full system is simulated using ADS Momentum and the magnitude of the S-parameters
on V-pol (port 1) and H-pol (port 2) ports when fed from a 50 Ω microstrip line on the host PCB,
are shown in Figure 13, where it can be seen that not only the reflection coefficient magnitude is below
−10 dB in both ports, but also the isolation is greater than 40 dB over the bandwidth of 24.25 GHz to
27.5 GHz. The E-Plane and H-Plane radiation patterns at 24.25 GHz, 26 GHz and 27 GHz are shown
in Figures 14–16, respectively. It can be seen that the radiation pattern suffers practically no change
from the beginning to the end of the 5G K-band. Such is due to the differential feed topology which
reinforces the fundamental TM100 and TM010 degenerate modes and cancels higher order modes
resulting in a frequency stable radiation pattern. A radiation efficiency of approximately 60 % and a
peak gain of 5 dBi were observed, in simulation, at both V-pol and H-pol ports.
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Figure 13. Simulated results for the magnitude of V-Pol (port 1) and H-Pol (port 2) S-parameters.
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Figure 14. Simulated V-pol (a) and H-pol (b) radiation patterns at 24.25 GHz.
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Figure 15. Simulated V-pol (a) and H-pol (b) radiation patterns at 26 GHz.
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Figure 16. Simulated V-pol (a) and H-pol (b) radiation patterns at 27.5 GHz.

5. Conclusions

In this work, a new topology of patch antenna-in-package was shown. The usage of differential
feeding was shown to be capable of achieving isolation in the order of 40 dB, by exploiting the
cancellation of common mode interference between adjacent probe feeds. Furthermore it was shown
that such technique results in a frequency stable radiation pattern. An heuristic approach was used for
the design of a two section matching network that allowed the impedance bandwidth improvement of
the antenna cell.

Nonetheless, despite reducing the number of layers for the antenna by using coplanar parasitic
elements instead of a parasitic patch antenna on top, extra complexity was added in the matching



Electronics 2020, 9, 1223 10 of 10

process. This added complexity comes with higher fabrication costs that can ultimately cancel the
cost reduction of a single layer patch antenna. For this reason, cheaper packaging solutions can be
exploited with this topology to significantly reduce fabrication costs.
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