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Abstract: Since the discovery of ferroelectricity in HfO2-based materials which are comparable
to the complementary metal-oxide–semiconductor (CMOS) fabrication process—a negative
capacitance effect in the HfO2-based materials has been actively studied. Owing to nonuniform
polarization-switching (which is originated from the polycrystalline structures of HfO2-based
ferroelectric materials), the formation of multi-domains in the HfO2-based materials is inevitable.
In previous studies, perovskite-based ferroelectric materials (which is not compatible to CMOS
fabrication process) were utilized to improve the electrical properties of a nanoelectromechanical
(NEM) relay. In this study, the effects of a multi-domain HfO2-based ferroelectric material on the
electrical characteristics of an NEM relay were theoretically examined. Specifically, the number of
domains, domain inhomogeneity and ferroelectric thickness of the multi-domain ferroelectric material
were modulated and subsequently, its corresponding results were discussed. It was observed that the
switching voltage variation was decreased with increasing the number of domains and decreasing
domain inhomogeneity. In addition, the switching voltage was decreased with increasing ferroelectric
thickness, owing to enhanced voltage amplification.

Keywords: ferroelectric capacitor; HfO2-based ferroelectric materials; nanoelectromechanical relay;
negative capacitance

1. Introduction

In the era of the Internet of things (IoTs), various objects are connected to each other, allowing the
real-time sharing and processing of data. Because most mobile products operate in environments with
limited power supplies, ensuring low power consumption is essential. However, the energy efficiency of
conventional complementary metal-oxide–semiconductor (CMOS)-based devices is limited, primarily
because of inevitable off-state leakage current in CMOS devices. To address this energy dissipation
problem, nanoelectromechanical (NEM) relays have received lots of attention owing to their negligible
off-state leakage current and steep switching behaviors [1,2]. However, the operating voltages of NEM
relays are generally higher than those of the conventional CMOS devices [3]. Therefore, numerous
studies have proposed techniques to decrease the operating voltage of an NEM relay, such as coating it
with a self-assembled monolayer [4]. Recently, several studies have been proposed to improve the
electrical characteristics as well as to lower the operating voltages of NEM relays by connecting them
to a ferroelectric capacitor in series [5,6]. This system takes advantage of using the negative capacitance
(NC) effect in ferroelectric materials. This NC phenomenon in ferroelectrics results in a voltage
amplification effect [7], thus enabling the series-connected system (i.e., NC + NEM relay) to operate at
a much reduced voltage. Numerous experimental studies have demonstrated that the NC effect occurs in
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ferroelectric materials possessing a perovskite structure (e.g., Pb(Zr0.2Ti0.8)O3 [8,9], P(VDF–TrFE) [10,11]
and BaTiO3 [12]) and/or a HfO2-based fluorite structure [13–16]. However, perovskite-structured
ferroelectric materials are incompatible with the CMOS fabrication process and require a large
thickness to generate the voltage amplification effect [17]. Owing to these technical problems,
perovskite-structured ferroelectric materials are inappropriate for state-of-the-art devices. In contrast,
HfO2-based ferroelectric materials can be fabricated below a 10-nm thickness, owing to their large
electrical bandgap and compatibility with the CMOS fabrication process [18]. Therefore, the electron
device community has been actively studying the generation/utilization of the NC effect in HfO2-based
ferroelectric materials. Previous studies have theoretically investigated the impacts of single-domain
perovskite-structured ferroelectric materials on the electrical properties of an NEM relay [5,6,19].
However, the formation of multi-domains in HfO2-based ferroelectric materials is inevitable, owing to
the non-uniform polarization originating from the presence of various grain sizes [20] and various
crystallite orientations in polycrystalline ferroelectric structures [21]. Recently, several studies have
been suggested to control domain formations in ferroelectric such as utilizing oxygen vacancies [22].
To predict the electrical characteristics of an NC + NEM relay in detail, it is essential to study the effects
of a multi-domain ferroelectric material on the NEM relay. Specifically, in this study, the effects of
the number of domains (i.e., N = 103, 104, 105), domain inhomogeneity and ferroelectric thickness
(i.e., tFE = 4–10 nm) on the electrical characteristics of an NEM relay using a multi-domain ferroelectric
material are explored theoretically.

2. Simulation Methods

Figure 1a illustrates the isometric view of an NEM relay that is connected in series to a ferroelectric
capacitor (i.e., NC + NEM relay). Because the bottom electrode of the ferroelectric capacitor is
connected in series to the gate electrode of the NEM relay, the problem of a relatively large area (vs. the
conventional NEM relay) may arise. This problem of the NC + NEM relay area can be alleviated
by employing a ferroelectric capacitor on top of the CMOS circuit or in the CMOS back-end-of-line.
Figure 1b shows the cross-sectional view along the channel of NC + NEM relay; Figure 1c illustrates
the capacitive circuit of the NC + NEM relay. The ferroelectric capacitance (CFE) and the NEM relay
capacitance (CNEM) are two representative capacitive components in the NC + NEM relay. There are
three major forces that govern the behavior of the constituent NEM relay: (i) electrostatic force (Felec),
(ii) adhesion force (Fad) and (iii) spring force (Fspring). Felec and Fad induce physical contact between
the conductive electrodes of the NEM relay, causing current to flow in it. In contrast, Fspring induces
the conductive electrodes to separate, preventing the current flow in the NEM relay. As illustrated in
Figure 1a when the conductive electrodes of the NEM relay are physically separated, it is turned off,
and there is negligible current flow through the channel. If a sufficient voltage is applied to the NEM
relay so that the sum of Felec and Fad is stronger than Fspring (i.e., Felec + Fad > Fspring), a physical contact
is formed between the conductive electrodes. Therefore, current flows abruptly, and this phenomenon
is known as pull-in. The voltage at which the pull-in state occurs is the pull-in voltage (Vpi). In contrast,
the conductive electrodes are physically separated when the sum of Felec and Fad becomes weaker than
Fspring (i.e., Felec + Fad < Fspring), preventing the abrupt current flow. This phenomenon is known as
pull-out. Similarly, the voltage at which the pull-out state occurs is the pull-out voltage (Vpo). In the
present simulation, metal-to-metal electrodes were adopted to realize a low on–state resistance of the
NEM relay [23]. Specifically, tungsten (W) was used for improved endurance and contact resistance
stability [1]. Fad of metal-to-metal electrodes, which mainly originates from electron interaction, can be
expressed using the following equation [23,24]:

Fad(x) = 2γAc

(
x−D0

λM
2

)
e

x−D0
λM , (1)

where γ is the surface energy density; Ac is the contact area; D0 is the average atomic distance when
a physical contact is formed; λM is the characteristic decay length, which is related to the Thomas–Fermi
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screening length [25], and x is the distance between the conductive electrode of the upper movable
beam and the bottom fixed electrode. In this study, universal values of D0 = 0.165 nm and λM = 0.1 nm
were employed to predict Fad between the metal-to-metal contact [23,24]. Concurrently, the NEM
relay operates in the pull-in mode when the contact gap (xd) to air gap (x0) ratio is greater than 1/3
(i.e., xd/x0 > 1/3) and in the non-pull-in mode when xd/x0 < 1/3 [1]. It is known that an NEM relay
consumes less switching energy when it operates in the pull-in mode (as opposed to the non-pull-in
mode) [26]. Therefore, xd and x0 were designed to operate the NEM relay in the pull-in mode. In the
pull-in mode, Vpi and Vpo of the NEM relay are expressed as follows [27]:

Vpi_NEM =

√
8kx03

27ε0AN
(2)

Vpo_NEM =

√
2(x0 − xd)

2(kxd − Fad)

ε0AN
(3)

where k is the spring constant; ε0 is the dielectric constant of vacuum; and AN is the actuation area.
Concurrently, the switching voltages (i.e., Vpi and Vpo) of an NC + NEM relay change owing to the
voltage amplification effect. Therefore, the pull-in/-out voltages of an NC + NEM relay (i.e., Vpi_NCNEM
and Vpo_NCNEM) are expressed as follows [5,6]:

Vpi_NCNEM =
2αN

EFF

3
√

3

√
αNEFF

βNEFF , (4)

Vpo_NCNEM =
αN

EFF

αPI
Vpo_NEM −

βN
EFF

αPI3 Vpo_NEM
3, (5)

where αN
EFF = αN − αF = (kx0 − Fad)/kε0AN − (−α′tFE/AFE); βN

EFF = βN − βF = 1/(2k(ε0AN)
2
−

β′tFE/AFE
3; αPI = (x0 − xd)/(ε0AN); tFE and AFE are the thickness and area of the ferroelectric

material, respectively; and α′ and β′ are the ferroelectric anisotropy constants. Figure 2a illustrates
a ferroelectric material containing N × N domains (i.e., a multi-domain state). Recently, numerous
experimental/theoretical studies have suggested that the polarization-switching kinetics of HfO2-based
ferroelectric materials are not explained by the Kolmogorov-Avrami-Ishibashi (KAI) model, which is
commonly adopted for elucidating the polarization-switching kinetics of perovskite-structured
ferroelectric materials. The KAI model suggests that the switching times of ferroelectric materials are
determined by the lateral domain wall expansion and predicts an exponential relationship between
the switched polarization and the pulse width [28,29]. However, most of the HfO2-based ferroelectric
materials possess a polycrystalline structure, whose grain boundaries are known to hinder the lateral
domain wall expansion [13]. In addition, a logarithmic relationship between the switched polarization
and the pulse width of a HfO2-based ferroelectric is observed experimentally, which is not explained
by the KAI model [29]. Therefore, the polarization-switching kinetics of HfO2-based ferroelectrics
have been extensively explained by the nucleation-limited-switching (NLS) model, [21,29,30] instead
of using a conventional KAI model. The NLS assumes that ferroelectric materials are composed
of elementary regions, where each region has an independent coercive field (Ec) and a remnant
polarization (Pr) with a Gaussian distribution [21,31,32]. Based on a simple two-dimensional (2D)
multi-domain Landau-Khalatnikov (L-K) equation considering NLS, the relationship between the
polarization and the electric field of each domain can be expressed as follows [32]:

EFE = α′i, jPi, j + β′i, jPi, j
3, (6)
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where i and j are the locations of the domains, EFE is the electric field applied to the ferroelectric
material, and P is the polarization. Thus, the overall polarization of the ferroelectric material can be
obtained by averaging the P-values of all domains as follows [32]:

P =
1

N ×N

∑
i

∑
j
Pi, j. (7)
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Figure 1. (a) Isometric view of negative capacitance (NC) + nanoelectromechanical (NEM) relay.
Note that NEM relay is connected in series to ferroelectric capacitor; (b) cross-sectional view along the
channel of NC + NEM relay when it is turned off; (c) capacitive circuit schematic of NC + NEM relay.
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Figure 2. (a) Illustration of ferroelectric material containing N × N domains; (b) simulated polarization
vs. electric field of multi-domain ferroelectric material. Black/red curve represents polarization vs. electric
field of each domain/overall ferroelectric material, respectively.

To model the intrinsic randomness of the HfO2-based ferroelectric material due to the grain size
and crystallite orientation fluctuations, it was assumed that α′ and β′ of each domain have a Gaussian
distribution with a mean value µ and standard deviation σ [13,32]. For simplicity, only the variation in
α′ was considered in this study. The mean values of the ferroelectric anisotropy parameters (i.e., α′

and β′) were derived from the single-domain L-K equation as a function of remnant polarization (Pr)
and coercive field (Ec) as follows [33]:

α′ = −
3
√

3Ec

2Pr
, β′ =

3
√

3Ec

2Pr3 . (8)

Subsequently, α′ of each domain was generated from the MATLAB function, normrnd. The baseline
NEM relay and the ferroelectric capacitor were designed using the device parameters summarized
in Table 1. Note that Young’s modulus (E) and spring constant (k) were obtained from previous
works [34,35]. Figure 2b illustrates the P-E curve of the multi-domain ferroelectric material. The black
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curve represents the P-E curves of each domain, and the red curve is the P-E curve of the
overall ferroelectric.

Table 1. Modeling parameters.

Symbol Description Unit Value

AN Actuation area µm2 400
Ac Contact area µm2 100
xd Contact gap nm 40
x0 Air gap nm 70

Lbeam Beam length µm 10
tbeam Beam thickness nm 100

Wbeam Beam width µm 20
tFE Ferroelectric thickness nm 8
AFE Ferroelectric area µm2 1.6
Pr Remnant polarization µC/cm2 13.5
Ec Coercive field MV/cm 1
Γ Surface energy density J/m2 3.5

E Young’s modulus
(poly-Si0.4Ge0.6) 34 GPa 145

k Spring constant
(=32EWbeamtbeam

3/Lbeam
3) 35 N/m 92.8

3. Results and Discussion

3.1. Single-Domain

Before exploring the electrical characteristics of the NEM relay with the multi-domain ferroelectric
material, an NEM relay with a single-domain ferroelectric material were examined initially.
In a single-domain ferroelectric, it is assumed that the polarization in the ferroelectric material is
uniform; and, thus, the relation between the electric field and the polarization of the overall ferroelectric
material is expressed as below:

EFE = α′P + β′P3 (9)

where α′ and β′ are as given in Equation (8). To demonstrate the impact of the ferroelectric capacitor on
the NEM relay, the energy landscapes of the ferroelectric capacitor (UF), NEM relay (UN) and NC + NEM
relay (UFN) are illustrated in Figure 3. Herein, UF, UN and UFN are as follows:

UF = −
1
2
αFQ2 +

1
4
βFQ4

−VFQ, (10)

UN =
1
2
αNQ2

−
1
4
βNQ4

−VNQ, (11)

UFN =
1
2
αN

EFFQ2
−

1
4
βN

EFFQ4
−VFNQ, (12)

where VF, VN, VFN and Q are the voltages applied to the ferroelectric capacitor, NEM relay, NC + NEM
relay and charge, respectively. Figure 3a shows the energy landscapes in the equilibrium state
(i.e., voltage = 0 V). In contrast, Figure 3b illustrates the energy landscapes of ferroelectric capacitor,
NEM and NC + NEM relays when the pull-in voltage is applied. The pull-in voltages of the NEM and NC
+ NEM relays are as expressed in Equations (2) and (4), respectively. As indicated in Figure 3a, the energy
landscapes of the NEM relay and the ferroelectric capacitor have opposite shapes. Depending on
the values of αN

EFF and βN
EFF, the energy landscape of the NC + NEM relay can be categorized into

two types. If αN
EFF and βN

EFF are positive, the NC + NEM relay operates as a conventional NEM
relay, which is called the “effective NEM relay mode.” In contrast, if αN

EFF and βN
EFF are negative,

the NC + NEM relay operates as a ferroelectric capacitor, which is called the “effective FE mode.” [5]
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Previously, it was theoretically found that the operating voltage of an NC + NEM relay could be
lowered compared to that of the conventional NEM relay by operating it in the “effective NEM relay
mode” [5]. In this study, we designed the device design parameters (e.g., Lbeam, x0, tFE and AFE) to
operate the NC + NEM relay in the effective NEM relay mode. As illustrated in Figure 3a, the energy
landscape of the NC + NEM relay has the same shape as that of the NEM relay. Note that the maxima
in the energy landscape of the NC + NEM relay are much lower than that of the conventional NEM
relay. Therefore, the pull-in/-out state of the NC + NEM relay could be achieved at a much lower
voltage compared to the NEM relay. Specifically, the pull-in/-out voltages of the NC + NEM relay were
0.8159 V/0.0285 V and the pull-in/-out voltages of the NEM relay were 1.6319 V/0.7601 V, respectively.
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3.2. Multi-Domain: Domain Number (N) Change

We first explored the electrical characteristics of the NEM relay with the multi-domain ferroelectric
material by modulating the number of domains while maintaining the domain inhomogeneity
(i.e., σ = 0.4α′), to analyze the corresponding impact. The number of domains was initially set as
follows. Several studies have shown that the average grain size of HfO2-based ferroelectrics is
5–20 nm [18,36]. In addition, it was found that the domain size is generally smaller than the grain
size [37]. Therefore, the number of ferroelectric domains was approximated by dividing the ferroelectric
area by the domain area (i.e., 1.6 µm2/160 nm2

≈ 104). Subsequently, by modulating the number of
domains, the electrical characteristics of the NEM relay with the multi-domain ferroelectric material
were observed. Figure 4 illustrates the simulated input transfer curves (i.e., IDS vs. VGS) of the NEM
relay, NEM relay with the single-domain ferroelectric material and NEM relay with the multi-domain
ferroelectric material containing various number of domains. Herein, the input transfer curve of
200 samples of the NEM relay with the multi-domain ferroelectric material are illustrated. The red/black
curve represents the input transfer curve of the NEM relay with the single-/multi-domain ferroelectric,
respectively. Moreover, the green curve represents the input transfer curve of the conventional NEM
relay. Note that a compliance current of 100 nA was set to prevent welding-induced stiction between
the contact electrodes due to the Joule heating generated from the high current flow [38]. Figure 5
indicates that the switching voltage of the NEM relay with the single-/multi-domain ferroelectric
material (i.e., Vpi_NCNEM and Vpo_NCNEM) is much lower than that of the conventional NEM relay,
owing to voltage amplification. In addition, a variation in the switching voltage in the NEM relay with
the multi-domain ferroelectric material is observed, which is due to the intrinsic randomness of the
polycrystalline HfO2-based ferroelectric material. Figure 5 presents the distributions of the switching
voltages of the NEM relay and the NEM relay with the single-/multi-domain ferroelectric material.
When the number of domains is 103, 104 and 105, the average of the switching voltages is slightly
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different. Therefore, for a more accurate comparison, the relative standard deviation (i.e., σ/µ) was
obtained and comparisons made. The results indicate that the switching voltage distribution of the
NEM relay with the multi-domain ferroelectric material becomes larger as the number of domains
decreases. Herein, some samples of the NEM relay with the multi-domain ferroelectric material were
observed to have a pull-out voltage close to 0 V. When the pull-out voltage is less than 0 V, the NEM
relay will not be turned off even if Vgs = 0 V. Therefore, special care must be taken to avoid this problem.
In brief, in order to eliminate the variation of switching voltage in NC + NEM relay, it is most ideal to
use a single domain ferroelectric material. However, if inevitable, it is important to reduce/minimize
the number of domains in multi-domain ferroelectric material.

Figure 4. Simulated drain to source current vs. gate voltage of NEM relay, NEM relay with
single-domain ferroelectric and NEM relay with multi-domain ferroelectric containing (a) 103 domains,
(b) 104 domains and (c) 105 domains. Note that the pull-in/-out voltage of NEM relay (i.e., Vpi_NEM and
Vpo_NEM), pull-in/-out voltage of NEM relay with single-domain ferroelectric material (Vpi_NCNEM_SD

and Vpo_NCNEM_SD) and pull-in/-out voltage of NEM relay with multi-domain ferroelectric material
(Vpi_NCNEM_MD and Vpo_NCNEM_MD) are indicated in figure.
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3.3. Multi-Domain: Domain Inhomogeneity (σ) Change

Next, we examined the electrical properties of the NEM relay with the multi-domain ferroelectric
material by modulating the domain inhomogeneity while maintaining the number of domains
(i.e., N = 104) to analyze the corresponding effects. Specifically, domain inhomogeneity was changed to
σ= 0.2α′, σ= 0.4α′ and σ= 0.6α′. Domain inhomogeneity represents the differences in the ferroelectricity
of each domain. Therefore, a large domain inhomogeneity indicates that the inhomogeneity of the
ferroelectric properties of each domain (i.e., Pr and Ec) is large. Considering that α′ can be expressed as
a function of Pr and Ec (see Equation (8)), the inhomogeneity of α′ increases with increasing domain
inhomogeneity, which results in a switching voltage variation. Figure 6 displays the simulated input
transfer curves of the NEM relay, NEM relay with a single domain ferroelectric material and NEM relay
with the multi-domain ferroelectric material with various domain inhomogeneities (i.e., σ = 0.2α′, 0.4α′

and 0.6α′). The red/black curve illustrates the simulated input transfer curve of the NEM relay with
the single-/multi-domain ferroelectric material, respectively. Moreover, the green curve represents the
input transfer curve of the conventional NEM relay. Figures indicate that the switching voltages of the
NEM relay with the multi-domain ferroelectric material is still lower than that of the conventional NEM
relay, regardless of the domain inhomogeneity. Figure 7 shows the switching voltages distribution of
the NEM relay and NEM relays with the single-domain ferroelectric and multi-domain ferroelectrics.
A larger switching voltage distribution of the NEM relay with the multi-domain ferroelectric material
was observed as the domain inhomogeneity increased. Specifically, the relative standard deviations of
Vpi_NCNEM and Vpo_NCNEM increased by 0.31%/6.36%, 0.65%/13.52% and 0.86%/18.35% as the domain
inhomogeneity increased by σ = 0.2α′, σ = 0.4α′ and σ = 0.6α′, respectively.

Figure 6. Simulated drain to source current vs. gate voltage of NEM relay, NEM relay with single-domain
ferroelectric and NEM relay with multi-domain ferroelectric with various domain inhomogeneities
(i.e., (a) σ = 0.2α′; (b) σ = 0.4α′ and (c) σ = 0.6α′ ).
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3.4. Multi-Domain: Ferroelectric Thickness (tFE) Variation

Finally, we compared the electrical characteristics of the NEM relay with the multi-domain
ferroelectric material by changing the ferroelectric thickness (tFE), which can be modulated by the
fabrication process. Herein, the number of ferroelectric domains and the domain inhomogeneity were
assumed to be constant, while the tFE was varied to solely analyze the effect of the tFE on the electrical
characteristics of the NEM relay with the multi-domain ferroelectric material. Figure 8 illustrates the
switching voltages of the NEM relay with the multi-domain ferroelectric material with several tFE.

The figures indicate that the pull-in/-out voltage of the NEM relay with the multi-domain ferroelectric
material decreases as tFE increases. The voltage amplification at the internal gate (Av) owing to the
negative capacitance effect is given as below [17]:

Av =
∂Vint
∂VG

=
|CFE|

|CFE|−CNEM
(13)
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The equation above suggests that |CFE| is proportional to Pr/tFEEc. It is well-known that HfO2-based
ferroelectric materials coexist in tetragonal, monoclinic and orthorhombic phases. Among them,
ferroelectricity is known to originate from the orthorhombic phases [40]. It was investigated and found
that the portion of monoclinic phase increases with increasing tFE, thus decreasing the portion of the
orthorhombic phase. Therefore, the remnant polarization (Pr) decreases with increasing tFE, owing
to the decreased portion of the orthorhombic phase [40–42]. Concurrently, tFE-dependent coercive
fields (Ec) of perovskite materials have been extensively studied (i.e., Ec ~ tFE

−2/3) [43]. In contrast,
Ec of HfO2-based ferroelectric is found not to present any ferroelectric thickness dependence [30,43].
In summary, Pr decreases and Ec remains unchanged with an increase in tFE. This results in a decrease
in CFE with increasing tFE, as per Equation (14). Thus, a larger tFE results in increased Av as per
Equation (13). Therefore, the switching voltages of the NEM relay with the multi-domain ferroelectric
decrease with increasing tFE, as illustrated in Figure 8. Notably, if the number of domains and the
domain inhomogeneity vary simultaneously with tFE, relatively large variations in the switching
voltages of the NEM relay with the multi-domain ferroelectric material will occur.

4. Conclusions

In this study, the effects of a multi-domain HfO2-based ferroelectric material on the electrical
properties of an NEM relay were theoretically investigated. Switching voltage variations in the NEM
relay with the multi-domain ferroelectric material were observed, which were due to the randomness of
the polycrystalline HfO2-based ferroelectric material. Even considering the variation in the switching
voltages, the switching voltages of the NEM relay with the multi-domain ferroelectric material were
smaller than those of the conventional NEM relay. It was observed that the switching voltage variations
decreased with increasing the number of domains and decreasing domain inhomogeneity. In addition,
it was observed that the switching voltages decreased with increasing ferroelectric thickness because
the voltage amplification increased with the ferroelectric thickness.
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