
electronics

Article

REVERT: A Network Failure Recovery Method for
Data Center Networks

Yunhe Cui 1,2,*, Qing Qian 3, Guowei Shen 1,2, Chun Guo 1,2 and Saifei Li 4

1 School of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
gwshen@gzu.edu.cn (G.S.); cguo@gzu.edu.cn (C.G.)

2 State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
3 School of Information, International Joint Research Center for Data Science and High-Performance

Computing, Guizhou University of Finance and Economics, Guiyang 550025, China; qqian2018_P@163.com
4 School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;

lisaifei@swjtu.edu.cn
* Correspondence: yhcui@gzu.edu.cn

Received: 1 July 2020; Accepted: 20 July 2020; Published: 23 July 2020
����������
�������

Abstract: As a repository that holds computing facilities, storage facilities, network facilities and
other facilities, the Software Defined Data Center (SDDC) can provide computing and storage
resources for users. For a SDDC, it is important to provide continuous services for users. Hence,
in order to achieve high reliability in Software Defined Data Center Networks (SDDCNs), a network
failure recovery method for software defined data center networks (REVERT) is proposed to recover
failures in SDDCNs. In REVERT, the network failures that occurred in SDDCNs are classified into
three types, which are switch failure, failure of links among switches and failure of links between
switches and servers. Specially, except recovering the switch failure and failure of links between
switches, REVERT can also recover the failures of links between the switches and servers. To achieve
that, a failure preprocessing method used to classify the network failures, a data structure for
storing and finding the affected flows, a server cluster agent for communicating with the server
clustering algorithm and a routing path calculation method are designed in REVERT. Meanwhile,
REVERT has been implemented and evaluated on RYU controller and Mininet using three routing
algorithms. Compared with the link usage before recovering the network failures, when there are
more than 200 flows in the network, the mean link usages only slightly increase at about 1.83 percent.
More importantly, the evaluation results also demonstrate that except recovering switch failures,
intra-topo link failures, REVERT has the ability of recovering failures of links between servers and
edge switches successfully.

Keywords: Software-Defined Networking; data center; failure recovery; load balance

1. Introduction

As a significant component which provides massive Internet services, data center plays one of the
most important parts of Internet infrastructures. For instance, a Google data center can provide over
650k jobs with 12,000 hosts [1]. Meanwhile, the demands on continuous and high-quality services ask
increasingly stringent fault tolerance ability of the data center. However, with the rapid development
of technology such as network topology, routing system and power system used in data centers,
the scale of data center network is becoming more enormous. Therefore, the management of data
centers has already become a complex problem [2,3]. On the one hand, failures in a data center appear
more frequently due to a large amount of isomeric network devices. On the other hand, because the
complexity of managing a data center is growing dramatically, dealing with such failures becomes
harder for data center administrators [4].

Electronics 2020, 9, 1187; doi:10.3390/electronics9081187 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics9081187
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/8/1187?type=check_update&version=2


Electronics 2020, 9, 1187 2 of 20

As the rapid emergence of new network technologies, such as the network virtualization [5,6],
the Software-Defined Networking (SDN) gathered attentions from the industry and academia. SDN
offers flexible network management by decoupling forwarding and control planes [7]. In SDN, network
management is logically centralized at the control plane, while the forwarding plane only needs to
forward packets under the guideline of the control plane. As a result of its flexibility, programmability
and maintainability, SDN has been widely studied for its application in many fields [8–10]. Nowadays,
SDN has already been used in data centers. As an emerging architecture, SDN provides new solutions
to solve most problems which cannot be well solved in traditional data centers. Especially, taking
advantage of the programmability and centralized control function of SDN, the failure recovery
problem mentioned above can be solved effectively.

1.1. Motivation

A typical network architecture of a Software Defined Data Center (SDDC) is shown in
Figure 1. In that architecture, the service providers often make servers work together to collectively
provide service for users. Failures may occur in the switches of Software Defined Data Center
Networks (SDDCN) due to the circuit board failures, power failures and error configuration.
Meanwhile, failures may also occur in the links due to port failures and network cable problems.
Thus, the failure recovery technology is usually used to provide continuous service for users.

3001 3008

2001 2008

1001 1004

4001 4002

Internet

…………

server 100x-core switch, 200x-aggregation switch, 

300x-edge switch,400x-access switch
user

Figure 1. A typical network architecture of Software Defined Data Center (SDDC).

For the restoration failure recovery mechanisms, when a failure occurs, the failure detection
mechanism will find out that failure and send the relevant information (e.g., location of failure) of that
failure to the controller. Then the controller will use the rerouting algorithm to calculate the recovery
path based on the failure information and network status. Subsequently, the controller will send some
FlowMod messages to the related switches to install or modify flow entries. Then the recovery paths
will take effect. After that, the interrupted service will be carried by the recovery paths. In this way,
the interrupted service can be recovered from network failures.

The switch failure and link failure are the main failures occur in SDDCN. For the link failure,
we can further divide it into two kinds: failure of link between the switch and server and failure of
link between switches. For short, the former is referred as the s2e link failure, while the latter is named
as the intra-topo link failure in this work. Thus, the network failures that occurred in SDDCNs can be
divided into the switch failure, intra-topo link failure and s2e link failure.



Electronics 2020, 9, 1187 3 of 20

So far, a number of solutions regarding failure recovery in SDN have already been proposed [11–33].
Among these mechanisms, 7 mechanisms are protection failure recovery mechanisms [13–19].
Fourteen mechanisms are restoration failure recovery mechanisms [20–33]. The detailed description
of these references are given in Section 2. Generally, the current proposed failure recovery methods
are aimed at recovering the faulty switches and faulty links between switches, which means that
those methods cannot recover the faulty links between switches and servers. In order to solve the
above problem, REVERT is presented to recover all these network failures in SDDCNs. Meanwhile,
REVERT can be applied to different network topologies.

1.2. Our Proposal

In order to overcome the above issues, the network failures that occurred in SDDCNs are classified
into three types which contain the switch failure, failure of links among switches and failure of links
between switches and servers. The problem of recovering the faulty links between switches and
servers is proposed. Hence, REVERT is designed. A failure preprocessing method used to classify
the network failures, a data structure for storing and finding the affected flows, a server cluster agent
for communicating with the server clustering algorithm and a routing path calculation method is
proposed to recover the above network failures in SDDCNs, especially the failures of links between
the switches and servers are the main components of REVERT.

The essential idea of REVERT is that it first preprocesses and classifies the network failures into
the switch failure, intra-topo link failure and s2e link failure. Specifically, for the s2e link failure, it finds
out an alternative server to replace the un-reached server. Subsequently, the routing path between the
user and that alternative server is calculated and used to translate network traffic.

1.3. Contributions

The contributions of this paper are summarized below.

1. Except recovering the switches failures and failures of links between switches, how to recover the
failures of links between the switches and servers is also considered in this work.

2. The REVERT, which contains a failure preprocessing method, a data structure, a server cluster
agent and a routing path calculation method, is proposed to recover network failures in SDDCNs,
especially the failures of links between the switches and servers.

3. REVERT has been implemented based on the RYU controller. Meanwhile, the performance of
REVERT has been evaluated utilizing Mininet, in terms of ability of recovering the above three
kinds of network failures, recover time, link utilization and load balance degree.

This paper is organized as follows: Section 2 describes the background and related works in detail.
Subsequently, REVERT is illustrated in Section 3. Evaluations are presented in Section 4, followed by
the conclusions in Section 5.

2. Related Work

As shown in Figure 2, failure detection and failure recovery technologies are the main parts
of failover technology in SDN. Failure detection technology is responsible for detecting failures
while the failure recovery technology is responsible for selecting a new path to recover network
failures. Failure detection technology includes controller-based failure detection technology and
datapath-based failure detection technology. In the controller-based failure detection technology,
the controller detects whether a failure occurs in the network. That is usually done by sending special
packets (e.g., Link Layer Discovery Protocol (LLDP) packets) from the controller to the underlying
network devices. For the datapath-based failure detection technology, Open Shortest Path First (OSPF)
protocol and Bidirectional Forwarding Direction (BFD) protocol are usually used to detect failures.

Based on the techniques used in failure recovery, the failure recovery mechanisms in SDN can be
classified into restoration failure recovery mechanisms and protection failure recovery mechanisms.



Electronics 2020, 9, 1187 4 of 20

For the protection failure recovery mechanisms, the recovery path is constructed in advance. Once a
failure occurs, the recovery path will take over. For the restoration failure recovery mechanisms,
the recovery path will be calculated by the controller after detecting the network failure. The detailed
description of those mechanisms will be given in detail in the following sections.

Failure 

Detection

Path 

Recovery

    

Controlle

r-

      based

 

Datapath

-

      based

   

Protectio

n 

Restorati

on

Failure 

Recovery

Failure 

Detection

Failure 

Recovery

Controller-based

Restoration

Failover

Technology

Datapath-based

Protection

Figure 2. Classification of failover technology in data plane of Software-Defined Networking (SDN).

2.1. Failure Detection

The controller-based and datapath-based failure detection technologies are the main failure
detection methods in SDN. The controller-based failure detection technology often uses probe packets
to check the connectivity of the underlying network. The datapath-based failure detection technology
requires the switch to send some special packets to check the status of network.

In [11], a controller-based failure detection method which is composed of path alive monitoring
round and failure location identification round is proposed. In the path alive monitoring round,
a monitoring packet is sent from the controller to traverse the monitoring path. If that packet does not
return to the controller within a prefix time window, the monitoring path will be regarded as a failure
path. Then the failure location identification round starts to find out the location of failure. In this
round, the controller sends a special packet to the monitoring path. Once the switch receives this kind
of packet, it will forward that packet to the next hop and the controller. If one switch does not send
that packet to the controller, the link between this switch and the last switch will be identified as a
faulty link.

The datapath-based technology is also widely used [12,13]. In [14], BFD is used to detect failure
in SDN. BFD is a protocol used to rapidly detect failure between two network devices. The authors
integrate BFD in the stack of OpenFlow enabled switches. Meanwhile, they also expand the OpenFlow
protocol to run BFD among switches. When the links or switches are needed to be monitored,
the controller will send special messages to the switches. If a switch receives those messages, it will
send BFD packets through its local ports. Using BFD, they can quickly find network failures in SDN.

2.2. Failure Recovery

For the protection failure recovery mechanisms [13–19], the recovery path will be selected in
advance. No matter where the recovery path is stored, after the failure is detected, the recovery path
will be used to replace the faulty path. Hence, the subsequent arrived packets will be forwarded along
the recovery path. In SDN, the recovery path can be stored in the packet headers, group tables or
flow entries.

In [15], the path with minimum latency is selected as the primary path. For each hop in the
primary path, another path which can avoid link failures along the primary path is chosen as its
alternative path. After that, a segment containing the next hop of the primary path, the length of the
alternative path and the alternative path will be encoded into the packet header. Meanwhile, a bit
field which is used to indicate whether the primary path or the alternative path is taking effect is also
encoded in the packet header. If the switch receives a packet, it will check the packet header to get
the out port and the type of the working path (primary path or alternative path). Then the switch



Electronics 2020, 9, 1187 5 of 20

will find out whether the working path is available. If the primary path is being used and that path is
available, the packet will be forwarded through that path. If that path is unavailable, the switch will
check whether there is an alternative path. If there is an alternative path, the packet will be forwarded
through that path. Otherwise, the packet will be dropped. When the alternative path is in operation,
if it is unavailable, the packet will be dropped. Otherwise, the packet will be forwarded through
that path.

In [16], the primary path and the alternative path are firstly calculated by the controller. Then a
fast-failover group table is installed in the switch. Each entry of that group table contains several action
buckets. An action bucket contains a status and some actions associated to that status. The first action
bucket of that group table consists of the normal status (means that the primary path is available) and
the action that can forward that packet along the primary path. Another action bucket defines the
action of forwarding the packet along the alternative path when the first action bucket is unavailable.
Thus, when a packet is received, it will be handled according to the first action bucket of the group
table. If the primary path is available, that packet will be forwarded along this path. Otherwise, it will
be forwarded along the alternative path.

In [17], a path protection recovery mechanism is proposed. For an arbitrary new traffic, the controller
firstly calculates a primary path to carry that traffic. Then a backup path is also computed to avoid
the failures in the primary path. Subsequently, the primary path and the backup path are installed
in the switch using different flow entries. The primary entry has a higher priority than the backup
entry to ensure that packets will be forwarded through the primary path when there are no failures.
Meanwhile, a module called auto-reject is also installed in the switch. That module is responsible for
checking the status of each port of this switch. If any port is identified as unavailable, all flow entries
using that port as input port or output port will be deleted. This module guarantees that the backup
path will be used to deliver packets when the primary path is broken.

In [18], a backup-resource based failure recovery algorithm is proposed to minimize the
consumption of storage resources of switches and meet the required failure recovery delay. In the
proposed recovery algorithm, two metrics are firstly used to grade the important level of each link.
Then three kinds of strategies for different graded links are used to recover the faulty link. In [19],
for the hybrid SDN network, a set of rerouting paths are precomputed based on the column generation
technology and Integral Linear Programming (ILP).

At present, some restoration failure recovery mechanisms have already been proposed. In [20],
the anchors propose a restoration recovery approach to recover failure in hybrid SDN networks.
Tunnels which connect the traditional routers and SDN switches are established beforehand. When a
failure happens, the affected packets will be sent to the SDN switches. Subsequently, the SDN controller
will make a rerouting path from that SDN switches to the destination. Meanwhile, it can also minimize
the maximal link utilization to achieve load balancing and recover the failure. Then some new flow
entries will be installed in the switches based on the recovery path calculated by the SDN controller.

In [21], a restoration recovery method is presented. A connectivity matrix table is introduced to
store the identifier of switches and its related information (its active ports and the neighbor switches
connect to those ports). A local optimal method is proposed to find the recovery path as soon as the
failure is detected. When a failure occurs, that method will extract the source switch and destination
switch of the failed link and update the connectivity matrix table. Then the path calculator firstly finds
whether there is an available path which can recover the failure by inspecting the connectivity matrix
table. If the connectivity matrix table has an active entry of that failure, this failure will be treated
as recoverable. Then all active entries in the connectivity matrix table are found out and sorted in
descending order in terms of traffic load. After that, the least loaded port is chosen as the recovery out
port. Subsequently, the FlowMod message (a kind of message used in OpenFlow to add or modify flow
entries) is sent to the switch to deploy the recovery path. If the connectivity matrix table does not have
an active entry, that failure will be regarded as unrecoverable and the program will terminate.



Electronics 2020, 9, 1187 6 of 20

In [26], the authors show that the problem of computing recovery paths is related to graph
search. The modulo strategy, depth-first search strategy and breadth-first search strategy are proposed
to calculate the recovery paths. In [31], a restoration recovery mechanism is proposed to recover
failures in the data plane of SDN. The authors provide each path a priority. When a failure occurs,
the controller chooses the available path with the highest priority as the recovery path. The switchover
time and packet loss were measured to evaluate the proposed restoration recovery mechanism.
In [32], the operation cost and path cost of recovery are defined and used in the proposed restoration
recovery method.

Compared with the protection failure recovery mechanisms, the restoration failure recovery
mechanisms need to use the controller to calculate the recovery path when a failure occurs. Meanwhile,
the switches in that recovery path need to add or modify those flow entries. Thus, the restoration
failure recovery mechanisms will cause more recovery time than the protection failure recovery
mechanisms [16,33]. However, the restoration failure recovery mechanisms can achieve some important
goals which seem hard to be realized by the protection failure recovery mechanisms. For instance,
considering that the backup path is made in advance in the protection failure recovery mechanisms,
when several failures occur simultaneously, the backup path may also be affected. In this case,
even if there are other available paths which can deliver the affected packets, those packets cannot
be forwarded to the destination. On the contrary, as long as a backup path is available, the failure
can be recovered using the restoration failure recovery mechanisms. Meanwhile, based on the status
of the network, the restoration failure recovery mechanisms can also realize other network functions
which cannot be achieved by the protection failure recovery mechanisms. For example, the restoration
failure recovery mechanisms can dynamically make a recovery path based on the links state. Thus, it is
possible to achieve the network load balancing, Quality of Service (QoS) and other network functions
which can not be realized by the protection failure recovery mechanisms.

Therefore, the REVERT, a restoration failure recover method is proposed in this paper. In REVERT,
the network failures in SDDCNs are classified into three kinds which contain switch failure, failure of
links among switches and failure of links between switches and servers. Then how to recover the
failure of links between servers and switches is specially studied. Hence, a failure preprocessing
method used to classify the network failures, a data structure for storing and finding the affected flows,
a server cluster agent for communicating with the server clustering algorithm, and a routing path
calculation method is proposed to recover the above network failures in SDDCNs are proposed.

Main differences between the proposed mechanism and the existing mechanisms are listed
in Table 1.

Table 1. Brief analysis of REVERT and the existing mechanisms.

Reference Type Technique Application
Scenarios Contribution Limitation

[19] Protection ILP; column
generation

hybrid
SDN
network

It precomputes a set of
rerouting paths while
satisfies the service
function chain
requirements.

When recovering the
network failures,
the current network traffic
statistics information is
not considered.

[20] Restoration

heuristic
algorithm;
optimization
problem;
rerouting

hybrid
SDN
network

It can recover network
failures in hybrid SDN
networks, by reroute the
traffic on the failed link
through rerouting paths.

It needs to periodically
calculate rerouting paths,
no matter whether a link
failure occurs.

[21] Restoration

connectivity
matrix table;
local optimal
method; uplink
and downlink
separation

SDN
network

It can recover the network
failure using a connectivity
matrix table and a local
optimal method, where the
port has least load will be
chosen as the recover
out port.

A static value has been
chosen to collect the traffic
statistic information.
When calculating the
rerouting path, only the
traffic load is considered.



Electronics 2020, 9, 1187 7 of 20

Table 1. Cont.

Reference Type Technique Application
Scenarios Contribution Limitation

[26] Restoration
modulo
strategy; DFS;
BFS

SDN
network

It provides modulo
strategy, DFS- and
BFS-based routing
algorithms used to recover
the network failure.

No implementation and
evaluation have been
given in this work.

[27] Restoration 0-1 ILP; greedy
algorithm

hybrid
SDN
network

Network failures are
recovered by forwarding
the affected packets to SDN
switches.

The load balance is not
considered when
calculating rerouting
paths.

This paper Restoration

failure
preprocess;
failure classify;
server cluster

SDN
network

Except recovering the
switch failure and failure of
link between switches,
it can also recover the
failures of links between
the switches and servers.

It is designed for SDN
network, which means
that it can not work in
hybrid SDN network.

3. REVERT: A Network Failure Recovery Method for SDDCNs

3.1. Detailed Design of REVERT

Table 2 lists the notations used in this paper. Here, we consider an SDDCN topology G = (V, E, S)
which contains switches denoted by V = {v1, v2, ..., vn|n ∈ N+} and servers denoted by
S = {s1, s2, ..., sm|m ∈ N+}. Here, servers and switches are connected by links E = {eni ,nj =

(ni, nj)|ni, nj ∈ {V, S} and ni 6= nj}. E can also be denoted by E = {Eintra−topo, Es2e}, where Eintra−topo
is a intra-topo link set which stands for the set of intra-topo links. Meanwhile, Es2e is a s2e link set
which contains s2e links. For a request, the link cost of its routing path p is defined as ∑

eni ,nj∈p
cni ,nj . cni ,nj

is the cost of link eni ,nj and it is calculated by cni ,nj = uni ,nj ∗ bk, where uni ,nj is the unit price of link eni ,nj

and bk is the bandwidth required by the affected kth request. Meanwhile, the load ratio of link eni ,nj is
expressed as lni ,nj . It is denoted by lni ,nj = ubni ,nj /tbni ,nj , where ubni ,nj is the occupied bandwidth of
link eni ,nj and tbni ,nj is the total bandwidth of link eni ,nj . Thus, for a request, the load ratio of its routing

path p is defined as ∑
eni ,nj∈p

cni ,nj .

Table 2. Notations used in the paper.

Notations Definition

G Network topology
V A set of switches
E A set of links
S A set of servers
vi The ith switch

eni ,nj The link between node ni and nj

si The ith server
Eintra−topo A set of links among switches

Es2e A set of links connect switches and servers
cni ,nj The cost of link eni ,nj

uni ,nj The unit price of link eni ,nj

bk The bandwidth required by the affected kth request
lni ,nj The load rate of link eni ,nj

ubni ,nj The currently used bandwidth of link eni ,nj

tbni ,nj The total bandwidth of link eni ,nj



Electronics 2020, 9, 1187 8 of 20

3.1.1. Overall Architecture of REVERT

As shown in Figure 3, REVERT consists of five modules, including the failure preprocessing,
request maintainer, server cluster maintainer, routing path calculator and flow entry installer.
The failure preprocessing is responsible for receiving failure reports from switches, parsing those
reports, determining the failure types, finding the affected flows and controlling other modules based
on the failure types. The request maintainer stores information of the user, request, destination
server and relevant routing path. It provides these information to the failure preprocessing module.
The server cluster maintainer is implemented to calculate the alternative server and achieve server
load balancing. The routing path calculator uses the routing algorithm to calculate the optimal paths
for affected flows. The flow entry installer generates FlowMod messages based on the calculation result
of the routing path calculator. Meanwhile, the Network Address Translation (NAT) is also achieved by
the flow entry installer.

failure perprocessing

routing path calculator

flow entry installer

switch controller

find switch 
and link 
failure

failure 
recovery 

mechanism

send modify 
flow entry 
messages 

forward 
packets with 

NAT

forward 
users and 
servers 
packets

calculate 
routing path 

get network 
status

generate flow 
entry modify 

message

make NAT 
strategy

parse failure 
message

get flows 
information

find affected 
flows

find failure 
type

REVERT

forward 
LLDP 

packets

request maintainer
update 
request 

information

receive new 
request

supply 
request 

information

server cluster maintainer

find same 
switch server

find 
alternative 

server

server load 
balancing 
algorithm

s2e failure

other

Figure 3. Overall architecture of REVERT.

The detailed description of each module is shown as follows.
Failure preprocessing: When this module receives a failure report from switches, it will first parse

the failure report to obtain the location of the network failure. Then the information of all the requests
and routing paths will be obtained from the request maintainer. Using those information, the failure
preprocessing module finds out all flows affected by the failure. Taking advantages of the whole
network topology stored in the SDN controller, it can find out the failure type based on its location.
If that failure belongs to the s2e link failure, the server cluster maintainer will be initiated to handle
that s2e link failure. Otherwise, the routing path calculator will start to work.

Server cluster maintainer: Several servers often work together to provide same service as a server
cluster. Thus, the server cluster maintainer is used to find alternative servers for s2e link failure.
If an s2e link failure occurs, the service provided by the related server will be interrupted. Hence,
for recovering these failures, another server in the same server cluster which can provide same service
as the faulty server will be found out and taken effect to recover the interrupted service. Meanwhile,
the server load balancing algorithm is also achieved by this module.

Routing path calculator: The recovery path calculation is achieved in this module. This module
periodically gets the status of all links using the port_status_request message (a special kind of message



Electronics 2020, 9, 1187 9 of 20

that sent by controller to get the port status of a switch). Once this module starts, the routing algorithm
mentioned in Section 3.1.4 will be used to calculate the routing path.

Flow entry installer: This module generates forwarding rules for user requests based on the
calculation result made by the routing path calculator and the server cluster maintainer. For the gateway
proxy switch, the NAT strategy will be executed on the packets transferred through it. For packets
sent from user to server, its source IP and MAC address will be modified to the IP and MAC address
of the gateway. Meanwhile, its destination IP and MAC address will be modified to the IP and MAC
address of the destination server. For packets sent from server to user, the source IP and MAC address
will be modified to the IP and MAC address of the gateway. In addition, the destination IP and MAC
address will be modified to the IP and MAC address of the user. For other switches on the routing
path, they just forward the arriving packets without modifying those packets.

Request maintainer: When a user first visits the provided service or an flow affected by the
network failures is recovered, after the routing paths are made, a relevant message that contains
information of the affected flows, including the user, server and routing paths will be stored in this
module using the data structure mentioned in Section 3.1.3.

3.1.2. Recovering Network Failures

When a user firstly accesses the service provided by the SDDC, the switch will forward the
packets sent from that user to the controller. The controller will choose a server in the server cluster
as its destination server and use the routing algorithm to calculate a routing path to carry the traffic
between the user and destination server. After the routing path is made, a relevant message that
contains information of the user, server and routing path will be stored in the controller. When a failure
occurs, the proposed REVERT tries to recover that failure in SDDCNs, which is designed as shown in
Algorithm 1.

Once a network failure is detected, an event associated to that failure will be made and sent
to REVERT. Then REVERT will first parse the failure event to get the location of that failure ( floc).
The flows which are affected by the failure will be found out and recorded as a f s, using the information
of all flows including destination address, source address, input port, output port, protocol type and
routing path stored in REVERT.

Based on the topology of the underlying network and the parsed failure location, the type of
failure can be found out. If it belongs to switch failure fsw or intra-topo link failure fin, the routing
algorithm will be called to calculate a new routing path pr to recover that failure for each affected
flows. Then some flow entries will be installed on the switches based on pr.

If it is an s2e link failure, for each affected flow, the alternative server svra that can provide the
same service with the affected server will be firstly found out based on the destination IP address of
the affected flow, failure location and faulty server svr f . If there is no alternative server, REVERT will
stop and send an alert. Otherwise, the routing algorithm will be called to calculate the recovery path
pr for flows between the user and svra. Then some flow entries will also be installed on the switches of
the routing path based on pr and svra.

3.1.3. Storing Information and Finding Affected Flows

After the network failure is recovered, the related information of the alternative server and routing
path used to recover that failure will be updated. More exactly, a message containing the information
of the user, request, alternative server and routing path will be stored in REVERT. Hence, if a failure
occurs, those information will be traversed to find all affected flows.

However, if the data structure used to store those information is not well designed, more time will
be spent on the query. Even worse, the more users visit the data center, the more time will be wasted
on query. For example, for a data center that uses Fat-Tree as its network topology, the routing path
for a request will be more than 4 hops. We assume that a data center services m users and each user
visits n servers. When a link failure occurs, if a common array or a list is used to store the information,



Electronics 2020, 9, 1187 10 of 20

in order to find all affected flows, 4 ∗ m ∗ n times of query will be implemented, which will waste a
large amount of time and resources.

Algorithm 1 : Recovering network failures

Input: failure message fm

Output: recover affected flows
1: floc ← parse( fm);
2: a f s ← get_affct_flows ( floc);
3: if floc belongs to s2e link then
4: ft = fs2e

5: else if floc belongs to intra-topo link then
6: ft = fin

7: else
8: ft = fsw

9: end if
10: if ( ft = fin) or ( ft = fsw) then
11: for a f in a f s do
12: pr ← calc_path(a f ,a f .ips,a f .ipd)
13: for s in pr do
14: if s is gateway switch then
15: make a f low_mod message with NAT
16: send the f low_mod message to switch s
17: update related information based on pr

18: end if
19: end for
20: end for
21: else if ( ft = fs2e) then
22: for a f in a f s do
23: svr f ← find_faulty_servers (a f , floc)
24: svra ← find_alt_servers (svr f , a f , floc)
25: if (svra = None) then
26: generate an alert return
27: end if
28: pr ← calc_path(a f .ips, svra)
29: for s in pr do
30: if s is gateway switch then
31: make a f low_mod message with NAT based on pr and svra

32: send the f low_mod message to switch s
33: update related information based on pr and svra

34: end if
35: end for
36: end for
37: end if

In order to solve the above problem, a method designed for storing network information and
executing quick query is designed in REVERT, which is shown in Algorithm 2. In order to quickly
find the affected flows, SI and LI are designed to store the switch related flow and link related flow,
respectively. For the switch failure and intra-topo link failure, if an alternative routing path pr is



Electronics 2020, 9, 1187 11 of 20

calculated, it will firstly be parsed to get the information about the user and the destination server
(ips, ipd). However, for an s2e link failure, the (ips, ipd) will be obtained from the pr and alternative
server svra. Subsequently, for each switch in the routing path, if its ID sw already exists in the keys of
SI , the ips, ipd and pr will be appended to SI [sw]. Otherwise, that ID will be made as a new key in SI
and the ips, ipd and pr will be made as its value.

Algorithm 2 : Storing information

Input: routing path message pr, alternative server svra, affected flow a f

Output: store and update related information in SI ,LI

1: delete related information in SI and LI based in a f .ips, a f .ipd, a f .pr

2: if svra is None then
3: ips, ipd ← parse(pr)
4: else
5: ips, ipd ← parse(pr, svra)
6: end if
7: for sw in pr do
8: if sw in SI then
9: SI [sw].append(ips, ipd, pr)

10: else
11: SI [sw] = (ips, ipd, pr)
12: end if
13: if (l_sw,sw) in LI then
14: LI [l_sw, sw].append(ips, ipd, pr)
15: else
16: LI [l_sw, sw] = (ips, ipd, pr)
17: end if
18: end for

In addition, for convenience, a link is denoted by (l_sw, sw), where l_sw and sw are the switches
that the link connects. For each link in the routing path, if a link (lsw, sw) exists in the keys of LI ,
the ips, ipd and pr will be appended to LI [(l_sw, sw)]. Otherwise, (l_sw, sw) will be made as a new key
in LI and the ips, ipd and pr will be made as its value.

Taking advantage of this dictionary, when finding the flows affected by the network failure,
REVERT only needs to get the failure location. Then it can obtain the information of the affected flows
from SI and LI . Hence, no matter how many users are served by the data center or which network
topology is being used, for finding all affected flows, the query will only be carried out once. In the
preceding example, compared with the commonly used methods, this dictionary decreases the time of
query from 4 ∗ m ∗ n to 1, which effectively saves time and resources.

3.1.4. Selecting Alternative Routing Paths

For an affected flow, in order to achieve the result that the calculated recovery routing path has
low path cost while link load balancing is realized, the fitness of the recovery routing path is defined
as l f = ∑

eni ,nj∈p
γl ∗ lni ,nj + γc ∗ cni ,nj . γl and γc are the coefficient of the cost cni ,nj and the load ratio

lni ,nj , respectively. After that, the problem of calculating recovery path for an affected flow can be
formulated as follows.

Minimize:

∑
eni ,nj∈p

γl ∗ lni ,nj + γc ∗ cni ,nj (1)



Electronics 2020, 9, 1187 12 of 20

Subject to:
tbni ,nj − ubni ,nj ≥ bk (2)

0 ≤ ubni ,nj ≤ tbni ,nj (3)

In order to achieve high network load balancing and low cost, Equation (1) tries to minimize
the total load ratio and path cost for the affected flow. Equations (2) and (3) ensure the bandwidth
requirement of the kth flow.

In order to solve the above problem, a routing algorithm based on Genetic Algorithm (GA) is
used and shown in Algorithm 3. Once the routing algorithm starts, the Depth First Search (DFS)
algorithm will be used to choose n paths (p1, p2, ..., pn) between the source and destination of the
affected flow as the initial population paths. Each path is called an individual. To satisfy the availability
of each individual, each path in paths must meet the bandwidth of the affected flow and cannot have
redundancy loop.

Algorithm 3 : Routing algorithm based on GA.

Input: G = (V, E, S), source address src_ip and destination address dst_ip.
Output: routing path pr

1: paths← dfs(ips, ipd);
2: opt_num← 0;
3: last_max_f ← 0;
4: while (opt_num < limit_num) and (max_f_d_value > limit_value) do
5: paths.fitness← calc_fitness(paths);
6: new_paths = [ ];
7: max_f_path← find_max_f_path(paths);
8: max_f_d_value← |max_ f _d_value− last_max_ f |;
9: new_paths.append(max_f_path);

10: while len(new_paths) < n do
11: s_paths← select_paths(paths);
12: if random(0, 1) < PC then
13: s_paths← cross_paths(s_paths);
14: s_paths← remove_loop(s_paths);
15: end if
16: if random(0, 1) < PM then
17: s_paths← mutate_paths(s_paths);
18: s_paths← remove_loop(s_paths);
19: end if
20: new_paths.append(s_paths);
21: end while
22: opt_num← opt_num + 1;
23: last_max_f ← max_f_path;
24: end while
25: pr ← find_max_f_path(new_paths);

The fitness of each path is calculated by the function calc_ f itness (paths) using fk =

1/ ∑
eni ,nj∈pk

(γc ∗ cni ,nj + γl ∗ lni ,nj). In order to save the best individual, the path with maximum fitness

is found out and appended to the new population. The Tournament Selection strategy is used to select
two paths s_paths (for example, p1, p2). These two paths will cross at a probability PC. When cross
individuals, the same nodes of that two paths (except the source and destination nodes) are firstly



Electronics 2020, 9, 1187 13 of 20

found out. Then one of those same nodes will be chosen as the location of crossover. At last, the two
sub-paths of p1 and p2 after that node will be exchanged. Therefore, two new paths n_p_1 and n_p_2
are obtained to form new paths s_paths. After crossing paths, there may be redundancy loops in
the new paths. In order to remove redundancy loops, the crossed paths s_paths are checked and all
redundancy loops are removed from s_paths.

Subsequently, For each path in s_paths, it will mutate at a probability PM. One node of that path
(except the source and destination nodes) is randomly selected as the mutate location. Then the next
hop of that node will be mutated to another one and the path from the next hop to the destination
node will be calculated by DFS. After that, the mutated path is also checked to remove all redundancy
loops. After crossover and mutation, the generated paths will be appended to new_paths. Then the
selection, crossover and mutation will be executed again until the length of new_paths is equal to n.

The selection, crossover and mutation will be executed circularly until the number of iterations
(opt_num) is equal to the predefined value (limit_num) or the difference between the maximum fitness
of current iteration and last iteration (max_ f _d_value) reaches the predefined value (limit_value).

4. Evaluation

To validate REVERT, it has been implemented as a module of the RYU controller. In this section,
we mainly focus on the evaluation of REVERT. The overall performance of REVERT is evaluated,
in terms of the ability of recovering three kinds of network failures, recovery time, link usage and load
balancing degree.

4.1. Evaluation Metrics

4.1.1. Recovery Time

When a failure occurs, the failure detection method will spend TFF (the time of finding failures)
to find that failure. Then the switch will spend TSF (the time of sending failures) to send a message
containing information about the failure to the controller. Upon receiving the message, the controller
will firstly spend TFAF (the time of finding affected flows) to find all flows affected by that failure.
Then the controller begins to recover all affected flows one by one. Assume that there are n affected
flows, for the kth affected flow, the controller needs to spend Tcrp,k (the time of calculating recovery
path) to calculate recovery path p and spend TMM,k (the time of making a message by a controller)
to send FlowMod messages to all switches in that path p. When the switch vi receives the FlowMod
message, it will spend TUPDATE (the time of updating flow entries in switch) to update its flow entries
to execute the FlowMod message. Thus, the total recovery time of recovery can be defined as

T = Tf f + Ts f + Tf a f +
n

∑
k=1

(Tcrp,k + Tmm,k) +
n

∑
k=1

Tupdate (4)

However, in Equation (4), the length of Tf f , Ts f and Tupdate will be affected by the failure detection
method, the hardware of the switch and the transmission delay of the path between the switch and
controller. Therefore, Tf f , Ts f and Tupdate will not be affected by the recovery scheme. Thus, in the
evaluation, those parameters are not considered as the main parameters. We mainly measure the total

calculation time by using Ttotal_calc = Tf a f +
n
∑

k=1
(Tcrp,k + Tmm,k) and take it as a major parameter to

evaluate REVERT.

4.1.2. Link Usage and Load Balancing Degree

In the evaluation, the path cost and network load balancing were considered as important factors.
Therefore, the mean link utilization lm and the standard deviation of link utilizations are used to
evaluate the path cost and load balancing degree (LBD) of the network. Here, LBD is defined as
Equation (5):



Electronics 2020, 9, 1187 14 of 20

LBD =

√√√√ 1
n ∑

eni ,nj∈E
(lni ,nj − lm)

2 (5)

where n is the number of links in the network. It can be seen that as LBD becomes smaller, better
network load balancing can be achieved.

4.2. Simulation Setting

Mininet was used to simulate REVERT. The Fat-Tree topology which contains 22 switches, 16 servers
and 100 users was created. All switches in that topology are OpenFlow 1.3 enabled switch. Mininet ran
on a computer with a quad core CPU named Intel i5-3470, 4 GB memory, 1 TB hard disk and Ubuntu
14.04 LTS as its operation system. Meanwhile, the RYU controller ran on another computer connected
to the computer which runs Mininet. In the simulation, D-ITG was utilized for simulating a large
number of requests from different users to the server cluster.

4.3. Evaluation Results

4.3.1. Ability of Recovering Three Kinds of Network Failures

In this evaluation, whether REVERT can recover three kinds of network failures, especially for
the s2e link failure was evaluated. In the evaluation, sixteen servers constitute three server clusters.
One hundred users randomly access those server clusters via UDP connection. In order to evaluate
whether REVERT can recover the s2e link failure, the link between the switch (s3001) and the server
(s1) was shut down.

The traffic of three affected flows was measured and shown in Figure 4. In that figure, all affected
flows were served by s1 before the s2e link failure occurs. Thus, from 0 ms to 100 ms, the rates of those
affected flows were about 400 kb/s. At 100 ms, the link between s3001 and server s1 was shut down.
Therefore, the traffic of those three flows was 0. Then the self-healing method started to recover those
affected flows. Thus, at 150 ms, the affected flow 1 was recovered and its traffic increased from 0 to
about 130 kb/s. Meanwhile, the affected flow 2 and flow 3 were also recovered at 160 ms and 170 ms.

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

Time(ms)

T
ra

ffi
c 

(M
b/

s)

 

 

flow−1

flow−2
flow−3

Figure 4. Traffic during s2e link failure.

In Figure 4, due to the fact that the affected flow 1, flow 2 and flow 3 were recovered one by
one, the traffic of those three flows was recovered one after another. For flow 1, it was recovered at
150 ms. After recovery, the server which provides service for the user was changed from server s1 to



Electronics 2020, 9, 1187 15 of 20

server s2. Meanwhile, for flow 2 and flow 3, the chosen recovery servers were server s3 and server s4,
respectively.

Table 3 shows the performance comparison of recovering the switch failure, intra-topo link failure
and s2e link failure. All the mechanisms listed in that table can recover switch failure and intra-topo
link failure. However, except REVERT, all other mechanisms cannot recover s2e link failures. Therefore,
the failures in SDDCNs are classified into three kinds and the problem of recovering s2e link failure is
introduced in this paper. A self-healing method is presented to recover those three kinds of failures.
Thus, REVERT can recover switch failure, intra-topo link failure and s2e link failure.

Similarly, Figures 5 and 6 show the traffic during intra-topo link failure and switch failure. In those
figures, the affected flows were recovered by REVERT. Thus, those two figures show that REVERT can
also recover intra-topo link failure and switch failure.

From the above simulation, we can see that REVERT can successfully recover the s2e link failure,
intra-topo link failure and switch failure.

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

Time(ms)

T
ra

ffi
c 

(M
b/

s)

 

 

flow−1

flow−2
flow−3

Figure 5. Traffic during intra-topo link failure.

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

Time(ms)

T
ra

ffi
c 

(M
b/

s)

 

 

flow−1

flow−2
flow−3

Figure 6. Traffic during switch failure.



Electronics 2020, 9, 1187 16 of 20

Table 3. Comparison of ability of recovering three kinds of failures.

Reference Switch Failure Intra-Topo Link Failure s2e Link Failure

[20] 3 3 7

[21] 3 3 7

[22] 7 3 7

[23] 7 3 7

[24] 3 3 7

[25] 7 3 7

[26] 3 3 7

[27] 3 3 7

[28] 3 3 7

[29] 3 3 7

[30] 7 3 7

[31] 3 3 7

[32] 3 3 7

[33] 3 3 7

REVERT 3 3 4

4.3.2. Recover Time

As described in Section 4.1.1, for recovering a network failure, the total recovery time contains the
time of detecting failure, calculating recovery path and implementing FlowMod messages. Among those
times, the time of detecting failure will be affected by the failure detection method, the hardware of
the switch and the transmission delay of the path between the switch and the controller. Meanwhile,
the time of implementing FlowMod messages will also be determined by the hardware of the switch.
Therefore, the time of detecting failure and implementing FlowMod messages are not the main factor
of this mechanism. Hence, in this evaluation, we capture the time of calculating recovery path of the
controller to evaluate the performance of the self-healing system more exactly.

Figure 7 shows the path calculation time for different kinds of failures. In Figure 7, for an affected
flow, the mean path calculation time of intra-topo link failure was about 11.4 ms. While for s2e link
failure, the calculation time for an affected flow was about 11.7 ms. Meanwhile, for switch failure,
it will cost 12.2 ms to recover an affected flow.

1 2 3 4 5
Number of affected flows

10

20

30

40

50

60

P
at

h 
ca

lc
ul

at
io

n 
tim

e 
(m

s)

switch failure

s2e link failure

intra-topo link failure

Figure 7. Path calculation time of different failures.

From that figure, we can see that the calculating time will increase along with the increase of
number of affected flows. The reason is that when a failure is found out, the self-healing method will
first find the affected flows. Then the recovery path will be calculated and the FlowMod messages will
be sent out to switches. Among that, the time of finding failure is constant in the evaluation. Thus,



Electronics 2020, 9, 1187 17 of 20

when the number of affected flows increases, the time of calculating the recovery path and sending
FlowMod messages will also increase. Hence, the calculation time will increase with the increasing of
the affected flows.

For the switch failure, the calculation time is larger than that of intra-topo link failure and s2e
link failure. This is caused by the fact that when a switch failure occurs, the self-healing method
will find the faulty links which connect to this faulty switch. Thus, the switch failure will also be
treated as link failure. However, comparing with link failure, switch failure will cost more time to
find the faulty link. Therefore, the switch failure will cost more time to recover. Meanwhile, due to
the fact that comparing with intra-topo link failure, s2e link failure needs to find an alternative server,
the calculation time of s2e link failure is larger than intra-topo link failure. Yet, no matter which kind
of failure it is, the calculation time will stay in millisecond level.

4.3.3. Link Usage and Load Balance Degree

In this evaluation, we try to evaluate the performance when using different routing algorithms.
The routing algorithm based on GA algorithm (REVERT-G for short), the routing algorithm which
achieves high network load balancing and low link cost based on Dijkstra (REVERT-DL for short) and
the routing algorithm used to find the path with minimum link cost based on Dijkstra (REVERT-D for
short) were utilized as the routing algorithm in REVERT. The simulation ran with different numbers
of requests. The link utilization before the failure was firstly measured. Then after the failure was
recovered, the mean link utilization was measured again and its LBD is also calculated.

As shown in Figure 8, for different numbers of flows, after the failure was recovered, the link
utilization of REVERT-D is smallest while the link utilization of REVERT-DL is biggest. Meanwhile,
after recovering the network failures using REVERT, the link usages are bigger than the original
link usages. That is caused by the fact that the hop counts of the rerouting paths are bigger than
the original routing path. Especially, when using REVERT-D, the link usages are nearly same with
the original link usages. However, REVERT-G and REVERT-DL may cause more link usages than
REVERT-D, as shown in Figure 8. The reason is that when using REVERT-G and REVERT-DL to
calculate rerouting paths, the LBD is also considered, which makes the hop counts of rerouting paths
bigger than REVERT-D. However, no matter which routing algorithm was used in the self-healing
method, the mean link utilization was nearly same after recovery. For example, when the number of
flows was 300, after recovering failure, the link utilization of REVERT-G, REVERT-D and REVERT-DL
were 0.594, 0.589 and 0.599, respectively. Thus, from this evaluation, we can see that the differences of
link utilization of REVERT-G, REVERT-D and REVERT-DL are small.

100 200 300 400
Number of flow

0.0

0.2

0.4

0.6

0.8

Lin
k 

us
ag

e

0.165

0.383

0.581

0.776

0.178

0.395

0.594

0.788

0.18

0.385

0.589

0.78

0.204

0.396

0.599

0.784

original link usage
REVERT-G
REVERT-D
REVERT-DL

Figure 8. Comparison of link usage.



Electronics 2020, 9, 1187 18 of 20

Figure 9 shows the changes of LBD when using different routing algorithms. In Figure 9, the star
markers stand for the LBD before failure. The roundness markers, triangle markers and square markers
represent for the calculated LBD of REVERT-G, REVERT-D and REVERT-DL after recovering failure.
In Figure 9, when the number of flows increased from 50 to 350, the four LBD curves also increased.
However, when the number of flows was bigger than 400, the LBDs started to decrease. This is because
when the network load is high (about above 80% in this case), every link will be assigned a number of
traffic to carry. This means that the link utilizations of every link will be high. Thus, the LBD of those
three routing algorithms will be nearly the same.

50 100 150 200 250 300 350 400 450

Number of flows

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

L
B

D

original LBD
REVERT-G
REVERT-D
REVERT-DL

Figure 9. Comparison of load balancing degree.

For the three routing algorithms, the LBD of REVERT-G is smaller than that of REVERT-D and
REVERT-DL after recovery. Meanwhile, the LBD of REVERT-D is biggest. For example, when the
number of flows was about 300, the LBD of REVERT-G, REVERT-D and REVERT-DL were 0.1014, 0.1573
and 0.1277, respectively. It shows that the REVERT-G can achieve better load balancing performance
than REVERT-D and REVERT-DL.

5. Conclusions

In this paper, the failures of SDDCNs are classified into three kinds which contain switch
failure, intra-topo link failure and s2e link failure. Then the problem of recovering s2e link failure is
proposed. Subsequently, the REVERT used to recover all kinds of failures in SDDCNs is proposed and
demonstrated. REVERT has been implemented as a module of the RYU controller. Some evaluation
metrics including the ability of recovering all these kinds of network failures, recovery time, link usage
and load balance degree are stated and measured to evaluate REVERT. The mean path calculation
time for one traffic affected the s2e link failure is about 18.04ms. Although the mean link usages
increase after recovering the network failures, the increased value is slight and acceptable. For instance,
when there are more than 200 flows in the network, the mean link usages only slightly increases by
about 1.83 percent. According to the evaluation results, REVERT can recover switch failure, intra-topo
link failure and s2e link failure successfully.

Author Contributions: Conceptualization, Y.C.; Formal analysis, Y.C.; Investigation, Y.C.; Methodology, Y.C. and
Q.Q.; Writing–original draft, Y.C.; Writing–review and editing, Q.Q., G.S., C.G. and S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of China under
Grant No. 2019YFB1803500, National Natural Science Foundation of China (NSFC) under the Grant No. 61902085,
Fundamental Research Funds for the Central Universities under the Grant No. 2682019CX63, Guizhou Provincial
Science and Technology Plan under the Grant No. [2020]1Y267, and Scientific Research Foundation for Introduced
Talents of Guizhou University under the Grant No. (2019)52.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2020, 9, 1187 19 of 20

References

1. Di, S.; Kondo, D.; Cappello, F. Characterizing cloud applications on a Google data center. In Proceedings of
the 2013 42nd International Conference on Parallel Processing, Lyon, France, 1–4 October 2013; pp. 468–473.

2. Dehury, C.K.; Sahoo, P.K. Failure Aware Semi-Centralized Virtual Network Embedding in Cloud Computing
Fat-Tree Data Center Networks. IEEE Trans. Cloud Comput. 2020. [CrossRef]

3. Marahatta, A.; Wang, Y.; Zhang, F.; Kumar, A.; Tyagi, S.K.S.; Liu, Z. Energy-Aware Fault-Tolerant Dynamic
Task Scheduling Scheme for Virtualized Cloud Data Centers. Mob. Netw. Appl. 2019, 24, 1063–1077.
[CrossRef]

4. Zhang, M.; Mysore, R.N.; Supittayapornpong, S.; Govindan, R. Understanding lifecycle management
complexity of datacenter topologies. In Proceedings of the 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’19), Boston, MA, USA, 26–28 February 2019; pp. 235–254.

5. Sun, G.; Zhou, R.; Sun, J.; Yu, H.; Vasilakos, A.V. Energy-efficient provisioning for service function chains
to support delay-sensitive applications in network function virtualization. IEEE Internet Things J. 2020,
7, 6116–6131. [CrossRef]

6. Wang, S.; Bi, J.; Wu, J.; Vasilakos, A.V.; Fan, Q. VNE-TD: A virtual network embedding algorithm based on
temporal-difference learning. Comput. Netw. 2019, 161, 251–263. [CrossRef]

7. Tank, G.P.; Dixit, A.; Vellanki, A.; Annapurna, D. Software-Defined Networking: The New Norm
for Networks. Available online: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf (accessed on 27 May 2020).

8. Bao, X.; Liang, H.; Liu, Y.; Zhang, F. A Stochastic Game Approach for Collaborative Beamforming in
SDN-Based Energy Harvesting Wireless Sensor Networks. IEEE Internet Things J. 2019, 6, 9583–9595.
[CrossRef]

9. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.;
Zhu, M.; et al. B4: Experience with a globally-deployed software defined WAN. ACM SIGCOMM Comput.
Commun. Rev. 2013, 43, 3–14. [CrossRef]

10. Cui, Y.; Yan, L.; Li, S.; Xing, H.; Pan, W.; Zhu, Z.; Zheng, X. SD-Anti-DDoS: Fast and efficient DDoS defense
in software-defined networks. J. Netw. Comput. Appl. 2016, 68, 65–79. [CrossRef]

11. Lee, S.S.W.; Li, K.Y.; Chan, K.Y.; Lai, G.H.; Chung, Y.C. Path layout planning and software based fast failure
detection in survivable OpenFlow networks. In Proceedings of the 2014 10th International Conference on
the Design of Reliable Communication Networks (DRCN), Ghent, Belgium, 1–3 April 2014; pp. 1–8.

12. Rehman, A.U.; Aguiar, R.L.; Barraca, J.P. Fault-Tolerance in the Scope of Software-Defined Networking
(SDN). IEEE Access 2019, 7, 124474–124490. [CrossRef]

13. Feng, S.X.; Wang, Y.; Zhong, X.X.; Zong, J.R.; Qiu, X.S.; Guo, S.Y. A Ring-based Single-link Failure Recovery
Approach in SDN Data Plane. In Proceedings of the 2018 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2018), Taipei, Taiwan, 23–27 April 2018; pp. 1–8.

14. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. In-band control, queuing, and failure recovery
functionalities for OpenFlow. IEEE Netw. 2016, 30, 106–112. [CrossRef]

15. Ramos, R.M.; Martinello, M.; Rothenberg, C.E. Slickflow: Resilient source routing in data center networks
unlocked by openflow. In Proceedings of the 38th Annual IEEE Conference on Local Computer Networks
((LCN), Sydney, Australia, 21–24 October 2013; pp. 606–613.

16. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. OpenFlow: Meeting carrier-grade recovery
requirements. Comput. Commun. 2013, 36, 656–665. [CrossRef]

17. Sgambelluri, A.; Giorgetti, A.; Cugini, F.; Paolucci, F.; Castoldi, P. OpenFlow-based segment protection in
Ethernet networks. J. Opt. Commun. Netw. 2013, 5, 1066–1075. [CrossRef]

18. Zhang, S.; Wang, Y.; He, Q.; Yu, J.; Guo, S. Backup-resource based failure recovery approach in SDN data
plane. In Proceedings of the 2016 18th Asia-Pacific Network Operations and Management Symposium
(APNOMS), Kanazawa, Japan, 5–7 October 2016; pp. 1–6.

19. Tomassilli, A.; Di Lena, G.; Giroire, F.; Tahiri, I.; Saucez, D.; Perennes, S.; Turletti, T.; Sadykov, R.;
Vanderbeck, F.; Lac, C. Poster: Design of survivable SDN/NFV-enabled networks with bandwidth-optimal
failure recovery. In Proceedings of the 2019 IFIP Networking Conference (IFIP Networking), Warsaw, Poland,
20–22 May 2019.

http://dx.doi.org/10.1109/TCC.2020.2984604
http://dx.doi.org/10.1007/s11036-018-1062-7
http://dx.doi.org/10.1109/JIOT.2020.2970995
http://dx.doi.org/10.1016/j.comnet.2019.05.004
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn- newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn- newnorm.pdf
http://dx.doi.org/10.1109/JIOT.2019.2930073
http://dx.doi.org/10.1145/2534169.2486019
http://dx.doi.org/10.1016/j.jnca.2016.04.005
http://dx.doi.org/10.1109/ACCESS.2019.2939115
http://dx.doi.org/10.1109/MNET.2016.7389839
http://dx.doi.org/10.1016/j.comcom.2012.09.011
http://dx.doi.org/10.1364/JOCN.5.001066


Electronics 2020, 9, 1187 20 of 20

20. Chu, C.Y.; Xi, K.; Luo, M.; Jonathan Chao, H. Congestion-aware single link failure recovery in hybrid
SDN networks. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM),
Hong Kong, China, 26 April–1 May 2015; pp. 1086–1094.

21. Li, J.; Hyun, J.H.; Yoo, J.H.; Baik, S.; Won-Ki Hong, J. Scalable failover method for data center networks using
OpenFlow. In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS),
Krakow, Poland, 5–9 May 2014; pp. 1–6.

22. Kempf, J.; Bellagamba, E.; Kern, A.; Jocha, G.; Takacs, A.; Sköldström, P. Scalable fault management for
OpenFlow. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa,
ON, Canada, 10–15 June 2012; pp. 6606–6610.

23. van Adrichem, N.L.M.; van Asten, B.J.; Kuipers, F.A. Fast recovery in software-defined networks.
In Proceedings of the 2014 Third European Workshop on Software Defined Networks, Budapest, Hungary,
1–3 September 2014; pp. 61–66.

24. Achleitner, S.; Bartolini, N.; He, T.; La Porta, T.; Tootaghaj, D.Z. Fast Network Configuration in Software
Defined Networking. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1249–1263. [CrossRef]

25. Xu, A.; Bi, J.; Zhang, B.; Xu, T.; Wu, J. USTR: A High-Performance Traffic Engineering Approach for the
Failed Link. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 1–8.

26. Borokhovich, M.; Schiff, L.; Schmid, S. Provable data plane connectivity with local fast failover: Introducing
openflow graph algorithms. In Proceedings of the 3rd Workshop Hot Topics Software Defined Networking
(HotSDN), Chicago, IL, USA, 22 August 2014; pp. 121–126.

27. Geng, H.; Yao, J.; Zhang, Y. Single Failure Routing Protection Algorithm in the Hybrid SDN Network.
Comput. Mater. Contin. 2020, 64, 665–679. [CrossRef]

28. Nguyen, K.; Minh, Q.T.; Yamada, S. A software-defined networking approach for disaster-resilient WANs.
In Proceedings of the 2013 22nd International Conference on Computer Communication and Networks
(ICCCN), Nassau, Bahamas, 30 July–2 August 2013; pp. 1–5.

29. Kim, H.; Schlansker, M.; Santos, J.R.; Tourrilhes, J.; Turner, Y.; Feamster, N. Coronet: Fault tolerance for
software defined networks. In Proceedings of the 2012 20th IEEE International Conference on Network
Protocols (ICNP), Austin, TX, USA, 30 October–2 November 2012; pp. 1–2.

30. Kitsuwan, N.; Slyne, F.; McGettrick, S.; Payne, D.; Ruffini, M. A Europe-wide demonstration of fast network
restoration with OpenFlow. IEICE Commun. Express 2014, 3, 275–280. [CrossRef]

31. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. Enabling fast failure recovery in OpenFlow
networks. In Proceedings of the 2011 8th International Workshop on the Design of Reliable Communication
Networks (DRCN), Krakow, Poland, 10–12 October 2011; pp. 164–171.

32. Astaneh, S.A.; Heydari, S.S. Optimization of SDN flow operations in multi-failure restoration scenarios.
IEEE Tran. Netw. Serv. Manag. 2016, 13, 421–432. [CrossRef]

33. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. Fast failure recovery for in-band OpenFlow
networks. In Proceedings of the 2013 9th International Conference on the Design of Reliable Communication
Networks (DRCN), Budapest, Hungary, 4–7 March 2013; pp. 52–59.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNSM.2018.2874051
http://dx.doi.org/10.32604/cmc.2020.09912
http://dx.doi.org/10.1587/comex.3.275
http://dx.doi.org/10.1109/TNSM.2016.2580590
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Our Proposal
	Contributions

	Related Work
	Failure Detection
	Failure Recovery

	REVERT: A Network Failure Recovery Method for SDDCNs
	Detailed Design of REVERT
	Overall Architecture of REVERT
	Recovering Network Failures
	Storing Information and Finding Affected Flows
	Selecting Alternative Routing Paths


	Evaluation
	Evaluation Metrics
	Recovery Time
	Link Usage and Load Balancing Degree

	Simulation Setting
	Evaluation Results
	Ability of Recovering Three Kinds of Network Failures
	Recover Time
	Link Usage and Load Balance Degree


	Conclusions
	References

