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Abstract: The Internet of Things (IoT) is poised to impact several aspects of our lives with its fast
proliferation in many areas such as wearable devices, smart sensors and home appliances. IoT devices
are characterized by their connectivity, pervasiveness and limited processing capability. The number
of IoT devices in the world is increasing rapidly and it is expected that there will be 50 billion devices
connected to the Internet by the end of the year 2020. This explosion of IoT devices, which can
be easily increased compared to desktop computers, has led to a spike in loT-based cyber-attack
incidents. To alleviate this challenge, there is a requirement to develop new techniques for detecting
attacks initiated from compromised IoT devices. Machine and deep learning techniques are in this
context the most appropriate detective control approach against attacks generated from IoT devices.
This study aims to present a comprehensive review of IoT systems-related technologies, protocols,
architecture and threats emerging from compromised IoT devices along with providing an overview
of intrusion detection models. This work also covers the analysis of various machine learning and
deep learning-based techniques suitable to detect IoT systems related to cyber-attacks.

Keywords: IoT security; IoT protocols; intrusion detection system; machine learning; deep learning;
cyber-attacks

1. Introduction

The recent development in communications and information technologies, such as the Internet
of Things (IoT), has extraordinarily surpassed the traditional sensing of nearby environments.
IoT technologies have facilitated the development of systems that can improve life quality. IoT is
one of the fastest-growing technologies in computing, with an estimated 50 billion devices by the
end of 2020 [1]. It has been estimated that, by the year 2025, the IoT and related applications
have a potential economic impact of $3.9 trillion to $11.1 trillion per year [2]. The IoT devices can
become smart objects by taking advantage of its core technologies like communication technologies,
pervasive and ubiquitous computing, embedded devices, Internet protocols, sensor networks,
and Artificial Intelligence (Al)-based applications [3].

The ubiquitous interconnection of physically distributed IoT devices extends the computation
and communication to other IoT devices with different specifications [4]. Multiple types of sensors,
embedded in these devices, enable them to gather real-time data from the physical devices remotely.
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The collected data from the devices allows us to make intelligent decision systems as well as effectively
managing IoT environments. However, connecting the commonly used real-world devices to the
Internet also raises concerns about cybersecurity threats [5,6]. Therefore there is a requirement to
design and develop intelligent security solutions for the protection of IoT devices and against attacks
generated from compromised IoT devices.

1.1. Motivation

While IoT technologies play a vital part in improving real-life smart systems, like smart cities,
smart homes, smart healthcare, the large scale and ubiquitous nature of IoT systems has introduced
new security challenges [5-7]. Furthermore, since IoT devices generally work in an unattended
environment, an attacker may physically access these devices with malicious intent [8,9]. Also,
because IoT devices are connected usually over wireless networks, eavesdropping can be used to
access private information from a communication channel [10,11]. On top of these security challenges,
IoT devices cannot afford the implementation of advanced security features because of their restricted
energy and computation resources. Due to the interconnected and interdependent settings of the
IoT, new attack surfaces are emerging very regularly [12,13]. Thus, IoT systems are more vulnerable
as compared to traditional computing systems. This necessitates research in specific detective and
preventive techniques for IoT systems to protect against IoT devices based threats.

For protecting IoT systems against cyber threats, another line of defense should be developed in
IoT networks. Intrusion Detection Systems (IDSs) fulfill this purpose [14,15]. Various surveys have
attempted to describe machine learning-based IDSs for protection against IoT networks or compromised
IoT devices. The surveys cover research work on IDSs for cloud-based IoT systems [16], Wireless sensor
networks [17-19], cyber-physical systems [20], and mobile ad hoc networks (MANETs) [21-23]. However,
traditional IDS methods are less effective or insufficient for the security of IoT systems because of
their peculiar characteristics mentioned above, in particular, limited energy, ubiquitous, heterogeneity,
limited bandwidth capacity and global connectivity. Machine Learning (ML) and Deep Learning
(DL) based techniques have recently gained credibility in a successful application for the detection of
network attacks including IoT networks. This is because ML /DL based methods can capture benign
and anomalous behavior in IoT environments. IoT devices and network traffic can be captured and
investigated to learn normal patterns. Any deviation from these normal learned patterns can be used to
detect anomalous behavior. Furthermore, ML /DL based methods have been tested to predict new or
zero-day attacks. Hence, ML /DL based algorithms provide robust security protocols for designing the
security of IoT devices and networks.

Various surveys have discussed different techniques for designing IDS for IoT systems, but most
of the aforementioned surveys did not address the implementation of ML or DL techniques as detection
mechanisms in IoT networks and their lightweight devices in a comprehensive manner. Some of
these studies published in [24-29] revealed that the focus was on studying the issues in IoT security
generally and their classification in different layers related to applications, network, encryption and
authentication, and access controls. A comprehensive study covering a detailed review of ML and DL
based techniques for IDSs in IoT networks still needs further systematic analysis and investigation,
which is a major focus of this study.

1.2. Scope of This Survey

This survey includes six important areas related to IDSs for IoT systems and networks: (1) IoT
architectures and technologies; (2) IoT threats and attack types; (3) IDS architectures and their design;
(4) an explanation of ML and DL techniques applied in the design of IDSs; (5) a description of various
datasets available to researchers for evaluation of their proposed IDS; and (6) future research challenges
and directions.
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1.3. Main Contribution

In this paper, a detailed review of network threats from IoT networks and their devices with
corresponding ML and DL based attack detection techniques is presented. Table 1 summarizes a
comparison of our survey with the other surveys conducted on IDSs in IoT networks. As described in
the table, this survey covers all important aspects on the subject of ML and DL based techniques used
for IDS in IoT networks and their systems. The table also shows that other surveys partially cover
some of the aspects and there is no single paper that explains all the aspects. The key contributions of
this survey are described as follows:

o Discussion of IoT architectures and IoT Protocols, covering their technologies, frequency bands,
and data rates.

o Explanation of vulnerabilities, threat dimensions and attack surfaces of IoT systems, including
attack types related to IoT protocols, which are discussed in detail.

e Review of ML- and DL-based IDSs, involving their design choices, pros, cons and detection
methods, which are covered in detail.

e Discussion of the datasets available for network and IoT security-related research, covering the
advantages and limitations of each enumerated with details.

e  Explanation of the applications of ML and DL techniques for developing IDSs in IoT networks
and their systems.

e  Presentation of the current research challenges and their future directions for research in this field.

The organization of the paper is presented as follows. In Section 2, recent studies conducted
related to the anomaly and intrusion detection in IoT networks are discussed. In Section 3, an overview
of IoT systems is presented covering IoT architecture and reference models and IoT protocols. Section 4
describes various attacks and threats against IoT systems. Following this, Section 5 discusses IDS
architecture, its design choices and various detection methods, including their ML and DL techniques
described in Sections 6 and 7, respectively. Section 8 describes briefly the datasets that are available
and used for testing IDS. Finally, the future challenges and paper’s conclusion are provided in
Sections 9 and 10, respectively.

2. Current Reviews

Various survey studies have been carried out in the field of IoT security by describing
vulnerabilities in IoT systems. However, most of the existing studies on IoT security have not mainly
focused on the applications of ML /DL techniques for IoT security. Table 1 summarizes a comparison
of our survey with the other surveys conducted on IDSs in IoT networks. The comparison discusses
the contributions of each survey related to the design of IoT-based IDSs.

Table 1. A comparison of this survey with others in terms of developing IoT-based Intrusion Detection

Systems (IDSs).
IoT IDS Aspects
Survey Ref A I.oT IoT IoT I]g:slilg): IoT ID’S-ML IoT IQS-DL IoT
rchitecture Protocols Threats Choices Techniques Techniques Datasets
[30] v v v v X X X
[16] X X v v X X
[31] X X v X X X X
[19] X X X v X X X
[21] X X v v X X X
[22] X X v v X X X
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Table 1. Cont.

IoT IDS Aspects
Survey Ref A I.oT IoT IoT I]g:sli]g): IoT ID'S-ML IoT IQS-DL IoT
rchitecture Protocols Threats Choices Techniques Techniques Datasets

[23] X X v v v v X
[32] X v v X X X X
[33] X v v v X X X
[34] X X v X v X X
[35] X X X X v v v
[36] X X v X v v v
[37] v X X v v v v
[38] X X v v X X X

This Survey v v v v v v v

In [32], the authors studied the challenges of IoT security at the communication layer. A study
in [33] focused on reviewing IDSs for IoT networks. The work in [34] covered a brief discussion of the
ML technique’s relevance in the context of IoT security and privacy. Moreover, they identified limited
bandwidth, computation power and lack of adequate storage as bottlenecks in any implementation of
ML-based security solutions for IoT networks. There are other studies [35,36], which discussed
the feasibility of both ML and data mining techniques to detect intrusions in IoT networks by
implementing these techniques in IDSs either through detecting anomalies or classification of traffic.
In [21], the authors highlighted differentials between IDSs running over wired networks and those
running over wireless infrastructure, especially IoT networks. Due to fundamental architectural
variations, the application of ML techniques in IoT IDSs needs specific treatment related to the type of
attacks, underlying protocols (both in communications and networks), and application layer.

Another study published in [22] discussed the implementation of IDS in the context of
MANETs. The authors described that there are three different types of IDS architectures feasible
in MANETS. First architecture can be a layered architecture organized in multiple hierarchical layers.
Second architecture can be a flat one for deploying in a distributed and cooperative environment.
While the third one can be a hybrid of both using mobile agents. Another study [23] discussed various
Intrusion Detection algorithms related to IDS implementation in MANET. According to the authors,
these IDS algorithms can be categorized in various categories based on the underlying principle used
for the detection of an attack. These principles can either be a rule, statistics, heuristics, signature, state,
reputation score, or route used. These techniques were later classified further as anomaly detection,
misuse, signature-based, or hybrid techniques. There were other classification criteria proposed by the
authors [23] like real-time/offline, attack types and effectiveness of detection (scalability, reliability,
timeliness, etc.).

Another survey presented in [30], the authors explained a classification of IDS for Wireless Sensor
Networks (WSN) based on the deployment model of the IDS agent. The deployment model can be
either distributed, central, or a hybrid mode, which is suggested as the best-suited model for WSNs.
A similar study [31] carried out a classification of WSNs based on IDS using the criteria of detection type
used by the IDS. The classes identified included anomaly detection, misuse detection and detection
based on specifications. Another aspect of cloud-based IoT environment was discussed in [16],
where the authors studied and classified various cloud-based IDSs affecting Confidentiality, Integrity,
and Availability (CIA) of cloud computing-based IoT networks. They explained Hypervisor-based
IDS, Host-based IDS (HIDS), Network-based IDS (NIDS) and Distributed IDS. In [30], the authors
presented a survey on IoT IDS with a focus on an IDS architecture. The survey covered existing
IoT protocols, standards and technologies, IoT security threats, detection types and concludes by
suggesting proposed IoT IDS architecture.
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The authors in [39], proposed a novel multi-stage anomaly detection technique based on
Boruta Firefly Aided Partitioning Density-Based Spatial Clustering of Applications with Noise
(BFA-PDBSCAN). The authors claimed that their proposed technique produced better results in
comparison to the related techniques of Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN).
In [40], the authors proposed a hybrid data processing model for network anomaly detection that
utilizes Grey Wolf Optimization (GWO) and Convolutional Neural Network (CNN) techniques.
The authors stated that their model achieved better accuracy and detection rate in comparison to
the other state-of-the-art IDSs. In [41], an anomaly detection method based on a deep autoencoder
was used to detect attacks of IoT botnets. The method comprises extracting statistical features from
behavioral snapshots of normal IoT device traffic sequences and training of a DL based autoencoder
on the extracted features. The reconstruction error for traffic observations is then compared with a
threshold to classify them as normal or anomalous. The authors evaluated the proposed detection
method on the BASHLITE and Mirai botnets dataset generated using commercial IoT devices. In a
recent survey paper published in [37], learning-based NIDSs for IoT systems were discussed in an
overview of ML-based NIDSs for IoT systems.

3. IoT System Environment

The adoption of IoT throughout real-world applications, such as home automation, industrial
automation and city automation, resulted in a plethora of micro computation devices and
energy-efficient communication technologies, specifications and protocols. IoT systems have been
widely employed in applications of military, agriculture, power systems, education and commerce.
Diverse areas of applications resulted in the realization of various devices, communication standards
and protocols. The IoT system paradigms illustrate its various applications, where the access network
technology is presented in Figure 1 that shows a loose clustering of various IoT communication
technologies and protocols to the corresponding network.

&Y NB-IoT
BLE <((( »>> LTE-MTC
— ﬂ Long Range
Li-Fi Wireless Sensor VSAT
RFID Short Range Wireless
QR Codes Sensor Network
ar ofaWan
1V
Yup?
N/ Wireless Private Area
LTE-A Internet Network
DASH7
—
VSAT _Fiber Coax

Medium Range Wireless
Sensor Network

Wireless Private Area
Network

Figure 1. IoT system environment—applications and related access networks and protocols.
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3.1. IoT Architecture

The IoT architecture consists of physical objects integrated into a communication network and

supported by computational equipment to deliver smart services to users. The IoT system should be
capable of connecting billions of heterogeneous devices through the Internet, so there is a need for a
layered and flexible architecture. There are numerous architectures and reference models proposed by
various authors and organizations but those have not yet converged to a formally recognized reference

model [3-7,42-44]. The most common architectures and reference models (the terms “architecture”
and “reference model” used interchangeably by the authors) are explained as follows:

A 3-layer architecture. The most common and basic model is a 3-layer architecture comprising of
the perception, network and application layers [3,4,43], as depicted in Figure 2, the perception
layer is also called ‘the device layer’ that includes physical devices and sensors. The network
layer is also named ‘the transmission layer’, which should securely transmit the telemetry data of
sensors to processing and data analytical systems. The application layer offers global management
of applications using the systems at the network layer.

International Telecommunication Union (ITU) recommended Reference Model for IoT. ITU
recommends a reference model for IoT that comprises four layers, along with security and
management capabilities linked to the layers [45]. The layers are as follows: device layer, network
layer, application support layer, service support and application layer, as shown in Figure 3.
IoT-A Architectural Reference Model proposed by the European Commission (FP7).
The European Commission within the Seventh Framework Program (FP7) supported the project
IoT-A proposed by Martin Bauer et al. [6]. The IoT-A model attempts to design an architecture
that could meet the requirements of the industry and researchers. It offers high-level architectural
perspectives and views for building IoT systems. The architecture comprehensively describes
the structuring and modeling of IoT business process management, IoT services, cross-service
organization and virtual entities, information and functional viewpoints, in an abstract way [46].
Amongst these various views, a functional view of IoT architecture is depicted in Figure 4.

An IoT Reference Architecture developed by Web Service Oxygen (WSO2). WSO2,
an open-source technology provider, has proposed an Architectural Reference Model based
on its skills in the IoT solutions development. Figure 5 depicts the WSO2 recommended
architecture. It consists of five layers: (1) Client/external communications—Web/Portal,
Dashboard, Application Programming Interface (APIs), (2) Event processing and analytics
(including data storage), (3) Aggregation/bus layer—Enterprise Service Bus (ESB) and message
broker, (4) Relevant transports—XMPP/CoAP/AMQP/HTTP/MQTT, etc. and (5) Devices [47].
The model includes the cross-cutting layers that have (1) a device manager, and (2) an identity
and access management system.

An IoT Reference Architecture suggested by Cisco: Cisco introduced a seven-layered IoT
reference model [48]. The model and its levels are illustrated in Figure 6. The authors described
that control information flows from level 7 to level 1 in a control pattern. The flow of information
is the reverse in a monitoring pattern and it is bidirectional in most systems.
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Figure 5. Web Service Oxygen (WSO2) IoT reference architecture [47].
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Figure 6. Cisco IoT reference model [48].

3.2. IoT Protocols

Several protocols and specifications inherited from the TCP/IP model, some technologies are
specifically developed for IoT systems. IEEE 802.15.4 (transmission and communication specification
standards) is not alone in the paradigm of IoT specific technologies and standards. In Table 2,
a description of the IoT technologies with respective frequency bands and supported data rates
and area coverage.
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Table 2. IoT enabling technologies, their frequency bands and data rates.

Technology Frequency Bands Data Rate Physical Coverage
WiFi 802.11 2.5GHz, 5 GHz <1 Gbps up to 50 m
WiFi HaLow 900 MHz 0.3-234 Mbps up to 1 km
White-Fi 54-790 MHz 26.7-568.9 Mbps up to 100 m
Bluetooth 2.4 GHz 100 Kbps up to 100 m
Bluetooth LE 2.4 GHz <1 Gbps up to50 m
Z-Wave 686 MHz, 908 MHz, 2.4 GHz 40K up to 100 m
ZigBee 868 MHz, 915 MHz, 2.4 GHz 20 kbps to 250 kbps 10-75m
ISA100.11a 868 MHz, 915 MHz, 2.4 GHz 20 kbps to 250 kbps up to 600 m
MiWi 868 MHz, 915 MHz, 2.4 GHz 20 kbps to 250 kbps 20-50 m
Thread 868 MHz, 915 MHz, 2.4 GHz 20 kbps to 250 kbps up to 100 m
WirelessHART 868 MHz, 915 MHz, 2.4 GHz 20 kbps to 250 kbps 30-100 m
LTE-A Cellular bands 1 G (up), 500 M (down) up to 50 km
GSM Cellular bands 150 Mbps up to 50 km
LTE-Cat M Cellular bands up to 1 Mbps 15 km
NB-IoT Cellular bands <180 kbps 15 km
LoRaWAN 169/433/868/780/915 MHz ISM 300 bit to 100 kbit/s 2.5-15km
NFC 13.56 MHz up to 424 kbps <20 cm
DASH?7 433/868/915 MHz ISM/SRD 9.6-166.667 kbit/s up to 5 km
nWave Sub-1 GHz ISM 100 bit/s 10-30 km
SigFox 868/902 MHz ISM 100 bit/s 12-30 km

4. JoT-Based Threats and Attacks

IoT systems suffer from various security risks as compared to conventional computing systems
due to several reasons [15,47]. First, IoT systems are highly diverse with regards to devices, platforms,
communication means and protocols. Second, IoT systems comprise “things” not planned to be
connected to the Internet, where control devices are used to link physical systems. Third, there are
no well-defined boundaries in IoT systems, which regularly change due to the mobility of users and
devices. Forth, IoT systems, or part of them, would be physically insecure. Last but not least, due to
the limited energy of IoT devices, it is usually very hard to deploy advanced security techniques and
tools on IoT devices.

An IoT network often contains hundreds of nodes with assigned functions ranging from sensing of
light, temperature and noise to associated control systems to regulate lighting and heating, ventilation,
and air conditioning (HVAC) systems, etc. All these sensors and control systems communicate through
different network protocols like Bluetooth, WiFi, ZigBee, etc. An IoT gateway is used to connect these
devices to the Internet. Being composed of layers of standards, services and technologies, the IoT
environment has privacy and security concerns at each of these layers. While it seems that the IoT
environment has similar security concerns to the Internet, cloud and mobile communication networks,
there are distinct characteristics that set IoT environments, along with the applications of contemporary
security controls [10]. These can share data, computing capacity limitation and a large number of
networked IoT devices.

One instance of the susceptibility of IoT devices to attacks was demonstrated in September
2016, where an IoT botnet built from the Mirai malware—possibly the largest botnet on record—was
responsible for a 620 Gbps attack directed towards Brian Krebs’s security blog [11]. Mirai followed
a simple strategy, where it tried a list of 62 common user credentials to get access to digital video
recorders, home routers and network-enabled cameras, which generally had fewer defenses than other
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IoT devices. Later, in the same month, the French webhost OVH (On Vous Héberge) was attacked by
the Mirai-based attack, which broke the record for the largest recorded distributed denial of service
(DDoS) attack peaking at 1.1 Tbps [12]. The attack was made possible due to default and weak security
configurations. Similarly, in [49], the authors described the relative ease of compromising various IoT
devices, due to flaws in protocol implementations.

The rapid proliferation of IoT based devices is likely to make such networks susceptible to
attacks against privacy and security aspects. In [13], the authors identified various security issues
in IoT networks built with commercially available IoT devices like sensors. One example cites a
smart watering system that is capable of measuring environmental variables like temperature and
humidity, etc. An actuator module was employed for functionality implementation with a web-based
user interface. The system was built on an Arduino Uno. The authors described the exposure
of such network to spoofing attacks through a software-enabled access point (SoftAP), where an
attacker managed all IoT devices in a network to shut down for a while as the SoftAP broadcasts
de-authentication packets.

Due to the limited processing capabilities of IoT devices, the hacker made all IoT devices
vulnerable in the network to connect to the SoftAP as it appeared to have a stronger signal than
the actual access point (AP) with the same service set identifier (SSID). This allowed the compromise
of all network communications to eavesdropping and man in the middle (MiTM) attacks. Such attack
scenarios built a case for the deployment of IDSs in IoT networks to discover vulnerabilities of IoT
devices. The idea of IoT revolves around the intelligent integration of a real physical environment
with the Internet to enable interactivity. For this reason, IoT environments have interconnections
and dependencies with multiple heterogeneous environments. This exposes each IoT system to
cyber threats from each connected environment [50,51]. IoT environments face threats from multiple
dimensions both from physical and virtual domains. Figure 7 illustrates multiple threat dimensions of
an IoT environment that would be exploited.

e DoS/ DDoS D o Attack Against Privacy
e Bluesnarfing/ — //\ e CSRF
Bluejacking * ) ® XSS
e Eavesdroppin |\ User Interface/ %@ e SQL Injection
e Malware Application Cloud e Attack Against Data
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Figure 7. IoT environment threat dimensions.
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Though IoT Security threats can be broadly divided into cyber and physical domains, our survey
is mainly concerned with cyber threats, which can take the form of either active or passive attacks.
Passive Attacks are characterized by a lack of any alteration to information or its flow, thereby only
compromising the confidentiality and privacy of communications. In some cases, a passive attack
can enable location tracking of IoT devices [52-54]. Active Attacks involve active alteration and
modification of information and its flow, but are not limited to device settings, control messages and
software components.

One active attack is when the IoT system is used as a vector to launch massive DDoS against
Internet systems. IoT systems are a suitable vector for these attacks because of their large numbers and
comparative ease of their compromise, due to poor security practices and weak defense mechanisms.
Mirai can be used as an example of a botnet attack through for compromising IoT systems [11,55,56].
IoT systems face many threat dimensions from multiple directions, including user interface,
cloud services, other interconnected IoT systems associated to sensors and network services [12],
as shown in Figure 7. A discussion of these dimensions is presented in the following subsections.

4.1. User Interface

Most use cases of I0T systems involve the provision of services to users by IoT systems through
some sort of a user interface (mobile, desktop or web application). The case of smart home appliances
can be controlled by users through mobile applications. The rapid proliferation of smartphones has
provided malicious actors to disguise malicious applications and malware as benign utility mobile
applications and publish them through applications to store without being detected [57,58]. Also,
smartphones can sometimes be hacked through platform vulnerabilities of these devices like Android
vulnerabilities. This leads to exposing all information stored on the phone with the possibility of
malware compromise. Eavesdropping, location tracking, Denial of Service (DoS)/DDoS, bluejacking
and bluesnarfing are attacks enabled through user interface platforms [59-61].

4.2. Cloud Services

Though Cloud services and IoT systems lie at two ends of the resource availability spectrum,
the two can complement each other to produce an excellent blend of technologies. Cloud services are
characterized by ubiquitous access to computing power and storage, etc., which can offset the resource
limitations of IoT systems [62]. The potential of IoT systems can be maximized through integrated use
with cloud services to conserve energy and provide all types of services without being constrained
by storage and processing power limitations [63]. Likewise, cloud services can benefit from large
deployments of IoT systems through integrated applications [64]. Such a distributed architecture
opens up vulnerable points for many attacks at multiple layers, as explained below.

e  Authorization Attacks. Through the exploitation of vulnerabilities in data security mechanisms,
an attacker may be able to gain unauthorized access to information on both cloud and IoT systems.

o Integrity Attacks. Such attacks enable an attacker to compromise the integrity of data through
spoofing and bypass the authorization controls to gain direct access to databases.

e Compromise of Visualization platform. A vulnerability in the virtualization platform can be
exploited by an attacker to bypass security and isolation controls between the host and the guest
operating system (OS), resulting in privilege escalation and pivoting attacks [65].

o Confidentiality Attacks. IoT systems, like wearable devices, are used to monitor health-related
data of highly confidential nature. Similarly, smart home devices capture sensitive private data
of the users. Privacy and confidentiality concerns overshadow the advantages of cloud services.
Moreover, multi-tenancy and geographical location of cloud services pose a serious threat to the
confidentiality of data through privilege escalation and hacking [66].



Electronics 2020, 9, 1177 12 of 45

4.3. Connections of Multiple IoT Systems

Various IoT systems are designed to work autonomously and interact with other IoT systems,
such as sensors and actuators of smart cars and smart homes, without requiring human involvement.
Such an interaction is aimed at achieving an autonomous and collaborative functionality. Smart cars
and smart homes can communicate with each other and provide interdependent services and functions.
For instance, [67] described such a scenario where sensing increased temperature by a temperature
sensor, coupled with sensing of unplugging of a smart plug, the windows of the room are automatically
opened. The window opening actuator would be reachable for an attack as it may manipulate the
temperature sensing device through its interface and in turn that compromises the actuator [67].
This example highlights the fact that the weakest part of interdependent IoT systems can compromise
other parts as well.

A large number of interconnected devices in IoT systems increases the vulnerability and also the
impact of any attack, where one compromised device can lead to the compromise of billions of devices.
Such a scenario can impact any externally connected networks and systems also. One study [68]
demonstrated that an experimental malware attack against Philips Hue smart lamp was so successful
that it compromised all such lamps in the network, despite the presence of reliable cryptographic
authentication mechanisms against malicious firmware updates. Similar attacks could provide the
control of lights of an entire city or their use in DDoS against outside targets [68].

Various types of sensors are an essential part of IoT systems like GPS, Radio-Frequency
Identification (RFID), temperature gauge and IP cameras. This also includes sensors and actuators
embedded in autonomous vehicles and the internet of vehicles (IOVs). These physical devices are
vulnerable to physical attacks and manipulation by malicious actors. Another component of IoT
systems susceptible to such physical attacks is the actuator part, which performs some function based
on readings of sensor devices. Both actuators and sensors would be subjected to DoS attacks through
flooding, eavesdropping, location tracking, cloning and spoofing attacks [69-71].

An IoT system consists of several interconnected devices using either wireless or wired networks.
A large network linked to devices would have weak security profiles, where sensors and actuators
are vulnerable to a multitude of attacks. WSNss provide information to external entities without any
restriction. When they are integrated with conventional networks services, they cause regression in
the security of conventional networks [72,73].

4.4. Protocols Level Attacks

IoT systems are different from traditional Internet protocols, which require lightweight protocols
to address issues of limited energy, data rate and computing power. A detailed description of IoT
protocols based attacks can be found in [74]. Attacks of IoT technologies are presented with threat
types in Table 3.

Table 3. Summary of attacks against main IoT technologies (C: Confidentiality, I: Integrity, A: Availability).

Threat

Technology/Protocol Attack Threat Category

Tag Disable Jamming A

Tag Modification Unauthorized Acgess and nl10d1f1cat10n of critical C1
information

Cloning Tags Counterfeiting and spoofing C A

RFID Reverse Engineering Counterfeiting and spoofing C A
Eavesdropping Unauthorized Access of critical information C
Snooping Unauthorized Access of identity and data C

Skimming Imitates the original RFID tag CA




Electronics 2020, 9, 1177 13 of 45

Table 3. Cont.

Technology/Protocol Attack Threat C::ler;::y
Replay Attack Deceiving readers CA
Relay Attacks man-in-the-middle LA
EM Interference Jamming A
Fake RFID tag queries illicit Tracing and Tracking C A
Cryptograph Decipher attack Password Decoding C1I
blocker tag Attack DoS Attack A
Sniffing sniffing the keys C
Replay attack MiTM C1I
ZigBee Killerbee Packer Manipulation Attack Device Spoofing C
Killerbee - zbassocflood Crash the device A
Eavesdropping MiTM C1I
ZED Sabotage Attack DoS A
FMS/KoreK/PTW/ AARI’ Injection/Dictionary Key Retrieving Attacks C
ttack
ChopChop/ Fragmentation/Caffe Latte/Hirte Keystream Retrieving Attacks C1I
Authentication related Attacks DoS A
WiFi Association related Attack DoS A
Flooding related attacks DoS A
Honeypot MiTM C1I
Evil Twin/Rogue AP MiTM C1I
Bluebugging Espionage C1I
Bluesnarfing Espionage and DoS CA
Bluetooth Sniffing Attacks Interception C
Hijacking DoS and spoofing A, C, Identity
Fuzzing DoS A
Spoofing Spoofing Identity
Interception Eavesdropping C
Data corruption through Interception DoS LA
NFC Data Modification through interception MiTM 1
Data Insertion MiTM I
NFC Data Exchange Format (NDEF) attacks Identity Theft and Non repudiation C, Identity

4.5. Radio-Frequency Identification (RFID)

Because the communication between the reader and RFID tags is made through an unprotected

wireless channel, the transmitted data is exposed by unauthorized readers. RFID systems face different
security threats as compared to the security threats encountered by traditional wireless systems [75].
Various hacking techniques against RFID are discussed as follows:

Tag Disable. An attacker may remove the tag, delete the tag memory by sending a kill command,
remove the antenna, give a high energy wave to a tag, and use a Faraday cage to block
electromagnetic waves.

Tag Modification. An attacker modifies or deletes valuable data from the memory of the tag.
Cloning Tags. An attacker imitates or clones the tags after skimming the tag’s information.

Reverse Engineering. Using reverse engineering, an attacker can make a copy of a tag, and using
tag examination, the attacker may get confidential data stored within a tag.

Eavesdropping. RFID systems working in ultra high frequency (UHF) are more vulnerable to
this threat. An attacker gathers the information shared between a valid tag and valid reader.
Snooping. An attacker introduces an unauthorized reader to interact with the tag.

Skimming. An attacker snoops data shared between a legitimate reader and legitimate tag.
Replay Attack. An attacker spies to collect information about the IoT device or node replays
eavesdropped information to achieve deception.

Relay Attacks. An attacker places an illegitimate device between the tag and the reader to
intercept, modify and forward information directly to other systems.
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e  Electromagnetic (EM) Interference. An attacker creates a signal in the same range as the reader
to preclude tags from communicating with readers.

o  Fake RFID Tag Query. An attacker sends queries and gets the same response from a tag at various
locations to determine the location of a specific tag.

o  Cryptograph Decipher Attack. An attacker decodes encryption algorithms by launching violent
attacks and gets the plain text by deciphering the intercepted cryptography.

e Blocker tag Attack. Using a blocker tag, an attacker attempts to restrict the reader from
reading tags.

4.6. Zigbee Protocol

The Zigbee protocol is one of the most popular IoT protocols used for communication in IoT
devices because of its low cost, low power consumption and scalability. While the importance of
security was considered during the design of Zigbee, some trade-offs have been kept to bring the cost
of devices down and make them scalable at a low cost. Some of the standard security measures could
not be implemented which ultimately resulted in security vulnerabilities. The major security threats
against Zigbee networks are enumerated below.

e  Sniffing. Zigbee networks are exposed to sniffing attacks since they do not implement encryption
techniques. The attacker can capture some packets to execute malicious activities using some
software tools like KillerBess’s zbdump tool [76].

o Replay Attack. If an attacker is able to intercept the packets, the attacker can sniff raw packets of
a network and could re-send the captured data as normal traffic [76].

e  Attaining the Link or Network key. Since keys need to be reinstalled on the air when its objects
require reflashing, an attacker can obtain the ZigBee network or link keys. Also, physical attacks
can be used to obtain the key, where the keys can be extracted from ZigBee devices’ flash memory
when the device is physically accessed [77,78].

o Eavesdropping. An attacker can eavesdrop a ZigBee network and redirect its packets using an
MiTM attack.

e ZED Sabotage Attack. Authors in [79] proposed an attack against the ZigBee protocol called
the ZigBee End-Device (ZED). The purpose of the attack is to make the ZED unavailable by
transmitting a particular signal periodically to wake up the device to drain its battery.

4.7. Wireless Fidelity (WiFi)

A detailed review of attacks against various versions of the 802.11 security mechanism (i.e., WPA,
WPA2, WEP) is explained in [80]. The most common WiFi attacks are described below.

e  Attacks Related to Retrieving Key. An attacker would monitor specific packets and then crack
the key process offline. The common attacks in this category are Pyshkin, Tews, and Weinmann
(PTW) attacks, Fluhrer, Mantin, and Shamir (FMS) attack, KoreK Family Attacks, Dictionary
Attack and address resolution protocol (ARP) Injection [80].

e Attacks Related to Retrieving Keystream. An attacker only required to monitor for specific
packets and then go on to perform the key cracking process offline. The common attacks in
this category are PTW attacks, FMS attack, KoreK Family Attacks, Dictionary Attack and ARP
Injection [80].

e DoS or Availability Attacks. This category of attacks includes those attacks that result in the
unavailability of some service or network that is commonly called a DoS attack. These attacks
usually target either a specific user or device, or try to exhaust network resources (e.g., the network
router or Access Point), resulting in corrupting services for all users in that network. These attacks
mostly depend on the broadcast of forged 802.11 management messages, which are easy to launch
in versions of the WiFi standards up to 802.11n, as the management messages are transmitted
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unguarded [81]. Attacks in this category include: Disassociation Attack, Block ACK flood,
Authentication Request Flooding Attack, Deauthentication Broadcast Attack, Fake Power Saving
Attack, Beacon Flooding Attack, Probe Request and Response Flooding Attacks. A survey of DoS
attacks in 802.11 is covered in [82].

4.8. Bluetooth

Most of the issues found in Bluetooth are related to the pairing process. Attacks can be launched
during the pairing process stages, like before the completion of the pairing process and after the pairing
of devices is completed [83]. For instance, based on information collected after pairing, attackers
can launch man-in-the-middle attacks. A review of Bluetooth security issues is explained in [83-85].
The common attacks against Bluetooth are discussed below.

e  PIN Cracking Attack. This type of attack is performed during the pairing of the device and the
process of authentication. An attacker collects the random number (RAND) and the Bluetooth
Device Address (BD_ADDR) of the targeted device using some frequency sniffer tool. Then,
a brute-force algorithm (for example, E22 algorithm) is applied to check all possible combinations
of the PIN with the data collected earlier until the correct PIN is determined [84].

e MAC Spoofing Attack. An attack is launched during the process of link keys generation and
before encryption is established. Devices manage to authenticate each other using generated
link-keys. In this, attackers can imitate another user. Attackers can also dismiss connections or
even alter data [84].

e Man-in-the-Middle (MIM) Attack. MIM attacks are launched when devices are trying to
pair [86]. After the attack is launched, devices share messages unknowingly [58]. During this time
authentication is performed without the shared secret keys [58]. When the attack is successful,
the two devices are paired to the attacker [57,58], while they believe the pairing was successful.

e Bluebugging. An attacker exploits vulnerabilities of old devices firmware to spy on phone calls,
send and receive messages, and connect to the Internet without legal users’ knowledge.

e  Bluesnarfing. An attacker gets unauthorized access to devices to retrieve information and redirect
the incoming calls.

o  BluePrinting Attack. This attack is launched to capture the device model, manufacturer,
and firmware version of the device. This attack will work only if the target device’s BD_ADDR
is known.

o  Fuzzing Attack. In a fuzzing attack, a device is forced to behave abnormally by an attacker
through sending malformed data packets to Bluetooth radio of the device.

e  Brute-Force BD_ADDR Attack. Since the first three bytes of BD_ADDR are fixed and known
publicly, the brute-force attack is launched to scan on the last three bytes [84].

e  Worm Attacks. In this attack, an attacker sends a malicious software or Trojan file to available
vulnerable Bluetooth devices. Examples of these attacks are Sculls” worm, Cabir worm and
Lasco worm.

e DoS attacks. These attacks target the physical layer or above layers in the protocol stack.
Some typical DoS attacks are battery exhaustion, BlueChop, BD_ADDR duplication, BlueSmack,
Big NAK (Negative Acknowledgement) and L2CAP guaranteed service.

4.9. Near Field Communication (NFC)

Although the communication range of NFC is restricted to a few centimeters, the International
Organization for Standardization (ISO) standard does not guarantee secure communication.
The common attacks against NFC technologies are briefly mentioned below [87].

o Eavesdropping. By using powerful and bigger antennas than those of mobile devices,
NFC communications can be received or intercepted by an attacker in the vicinity of the devices.
This allows an attacker to eavesdrop an NFC communication across larger distances.
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Data Corruption. An attacker can modify data transmitted over an NFC interface. If the attacker
alters the data into an unrecognized format, this may result in DoS attacks.

Data Modification. An attacker alters the actual data using amplitude modulations of
data transmissions.

Data Insertion. Malicious and undesirable data can be inserted in the form of messages into the
data during the data exchange between two devices.

NFC Data Exchange Format (NDEF) attacks. An attacker would exploit partial signatures,
record composition attacks and establish trust [88].

4.10. IEEE 802.15.4

IEEE 802.15.4 is a technical standard, used by several IoT protocols, which describes the operation

of low-rate wireless personal area networks (LR-WPANS). It stipulates the PHY layer and MAC for
LR-WPAN . The IoT protocols based on IEEE 802.15.4 include 6LowPAN, ZigBee, Wireless HART,
ISA 100.11a, MiWi, Thread and SubNetwork Access Protocol (SNAP). These protocols extended the
standard by developing the upper layers, which are not covered in IEEE 802.15.4. The common attack
types related to the IEEE 802.15.4 standard are explained in [89-91].

Radio interference Attack. An attacker transmits high transmission powered radio interference
signals over all channels of the related frequency band.

Symbol Flipping/ Signal Overshadowing Attack. An attacker injects wrong data into a network
by converting a legitimate data frame into an altered frame comprising information of the
attacker’s choice.

Steganography Attack. Adversaries would use a hidden channel to exchange information about
the launching of new attacks in the network.

Node-Specific Flooding. In this, the emission of packets is used to cause degradation throughput
IoT networks by flooding massive fake data.

Back-Off Manipulation. An attacker transmits unnecessary packets to the victim and due to
excessive packet reception, the targeted nodes’ power sources are ultimately exhausted.

Battery Life Extension (BLE) Pretense. An attacker transmits unnecessary packets to the victim
and due to excessive packet reception, the targeted nodes’” power sources are ultimately exhausted.
Random Number Generator (RNG) Tampering. An attacker uses RNG in a way that guarantees
that the back-off periods chosen by the adversary are much smaller than those selected by
legitimate nodes.

Back-Off Countdown Omission. This type of attack implicates the complete exclusion of the
random back-off countdown by a malicious attacker.

Clear Channel Assessment (CCA) Manipulation/ Reduction/Omission. An attacker gains
channel access more frequently and quickly than it is done by legitimate network nodes.
Same-Nonce Attack. An attacker obtains ciphertext keys to gather valuable information about
transmitted data.

Replay-Protection Attack. In this type of attack, frames with large sequence numbers are sent by
attackers to targeted legitimate nodes. This results in dropping data frames with smaller sequence
numbers from other legitimate nodes.

Acknowledgment (ACK) Attack. An attacker sends back a false ACK on behalf of the receiver
with the correct expected sequence number to the sender. This prohibits data retransmission
by misleading the sender into believing that the frame has been delivered to the receiver
successfully [89].

Guaranteed Time Slot (GTS) Attack. GTS attacks are initiated against the network by exploiting
the GTS management scheme.

Personal Area Networks Identifier (PANId) Conflict Attack. An attacker can abuse the conflict
resolution procedure by sending fake PANId conflict notifications to the targeted PAN coordinator
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to start conflict resolution, thus temporarily preventing or delaying communications between the
PAN coordinator and member nodes.

o Ping-Pong Effect Attack. This attack causes packet loss and service interruption, dropping node
performance, and increasing consumption of energy and network load.

e Bootstrapping Attack. An attacker forces a targeted network node to become unrelated with its
PAN at a time of the attacker’s choosing by initiating any of the MAC or PHY layer attacks with
the ultimate aim of causing DoS.

e Steganography Attack. An attacker hides information within the MAC and PHY frame fields
of the IEEE 802.15.4 protocol [89]. Data can be hidden in IEEE 802.15.4 networks by using the
PHY header field of PHY frames. Similarly, Steganography attacks would also be launched by
hiding information within the MAC fields. Steganography attacks form a hidden channel between
cooperating attackers in the network, which opens up a large number of prospects for adversaries.

4.11. Routing Protocol for Low Power and Lossy Network (RPL) Attack

The RPL protocol has been designed to allow point to point, multiple-point to point, and point
to multiple-point communication. It is a distance-vector routing protocol based on IPv6. The RPL
devices work on a specific topology that joins tree and mesh topologies called Destination Oriented
Directed Acyclic Graphs (DODAG) [74,92]. Attacks against routing protocol can cause communication
failures within IoT systems [93]. The interconnection of IoT systems to the Internet multiplies the
vulnerabilities exponentially through exposure to innumerable attack vectors. The main attacks against
RPL are discussed as follows:

e Sinkhole Attack. An attacker may announce a favorable route or falsified path to entice many
nodes to redirect their packets through it.

e  Sybil Attack. An attacker may use different identities in the same network to overcome the
redundancy techniques in scattered data storage. Also, this can be used to attack routing algorithms.

e  Wormhole Attack. An attacker disturbs both traffic and network topology. This attack can be
launched by generating a private channel between two attackers in the network and transmitting
the selected packets through it.

e  Blackhole Attack. An attacker maliciously advertises itself as the shortest path to the destination
during the path-discovering mechanism and drops the data packets silently.

e  Selective Forward Attack. It is a variant of the Blackhole attack, where an attacker only rejects a
specific subpart of the network traffic and forwards all RPL control packets. This attack is mainly
targeted to disturb routing paths; however, it can also be used to filter any protocol [74].

e Hello flooding attack. An attacker can announce itself as a neighbor to many nodes, even the
complete network by broadcasting a “THELLO” message with a strong powered antenna and a
favorable routing metric. This is done by an attacker in order to deceive other objects to send their
packet through it [94].

4.12. Internet Protocol (IPv6) and Low-Power Wireless Personal Area Networks (6LoWPAN) Based Attacks

6LoWPAN was designed to meet the communication requirements of connecting resource-
constrained, low-powered objects and IPv6 networks. To achieve this, (LoOWPAN uses fragmentation
at the adaptation layer. The main attacks against 6LoOWPAN are explained as follows:

e Fragmentation Attack. IoT object communicating in IEEE 802.15.4 has a Maximum Transmission
Unit (MTU) of 127 bytes, as opposed to in IPv6, which has a minimum MTU of 1280 bytes. This is
done using a fragmentation mechanism. Since fragmentation is performed without using any
type of authentication, an attacker can inject fragments among a fragmentation chain [95].

e  Authentication Attack. In the absence of an authentication mechanism in 6LowPAN, any malicious
object can join the network and get legitimate access [92].
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e Confidentiality Attack. In the absence of an encryption technique in 6loWPAN, attacks affecting
confidentiality, like eavesdropping, spoofing and Man in the Middle can be launched.

5. Intrusion Detection System (IDS)

Most IDSs have a common structure that includes: (1) a data gathering module collects data,
which possibly contains evidence of an attack, (2) an analysis module detects attacks after processing
that data, and (3) a mechanism for reporting an attack. In the data gathering module, the input data
of each part of IoT systems can be gathered and examined to find normal behavior of interaction,
thereby detecting malicious behavior at the early stages. The Analysis module can be implemented
using various techniques and methods, however, ML and DL based methods are more suitable and
dominant for data examination to learn benign and anomalous behavior based on how IoT devices and
systems interact with one another in IoT environments. Furthermore, ML /DL methods can predict
new attacks, which are often different from previous attacks, because ML /DL methods can intelligently
predict future unknown attacks through learning from existing legitimate samples [12]. Figure 8 shows
the components of typical IDS based on ML/DL methods.

5.1. Design Choices of ML/DL Based IDS

As depicted in Figure 9, the main differences in the design choices for IDSs depends on the
following factors:

o  Detection methods. It could be signature-based, anomaly-based or hybrid-based detection.
e  Architecture. It can be classified as centralized and distributed architecture.

e Data source. It would be host-based, network-based, or hybrid-based data inputs.

e Time of detection. It can be online or offline detection.

e  Environment. It would be wired, wireless, ad-hoc networks.
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Figure 8. Role of Machine Learning/Deep Learning (ML/DL) Based IDS for IoT system.
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Figure 9. Taxonomy of design choices of IDS for IoT system.

5.2. Detection Methods of IDSs

The detection methods used for IDSs can be divided into four methodological types [33], as shown
in Figure 9 and explained below.

5.2.1. Signature-Based Detection Techniques

Signature-based detection techniques contain a repository of attack signatures and compares the
network traffic or system actions against this repository of signatures. As soon as any match is found,
a detection alert is raised. Though sufficiently accurate against known attacks for which signatures
exist in the repository, this technique cannot detect zero day (new) attacks. Even if it is not effective
against mutations of an existing attack [54,96,97].

Some research, like [98], proposed means to overcome this deficiency of signature-based
techniques through the use of an Artificial Immune System (AIS). This technique designed detectors
relying on signatures/patterns of attacks using the model of immune cells, which can detect if a packet
is normal or malicious through its classification as self or non-self element. The system has the capacity
for the adoption of new patterns from continuous monitoring of the system. However, the feasibility
of such a detection technique in a resource-constrained IoT environment is questionable.

The authors in [99] resolved this predicament of resource constraints in signature-based IDS
through utilizing a separate Linux machine with an adapted version of the Suricata-based signature
IDS. However, the authors did not provide any clues of updating attack signatures. The authors in [100]
extended the work published in [99] by proposing modifications in signature matching techniques.
Another research by [101] tackled processing power constraints of IoT systems through the use
of auxiliary shift values with a multiple pattern detection algorithm, which enables a reduction
in the number of matching operations required between attack signatures and network traffic
packets. The system used signature repositories of the open-source IDS (Snort) and the open-source
antivirus (ClamAV).
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5.2.2. Anomaly-Based Detection Techniques

Anomaly-based detection techniques rely on a baseline normal behavior profile for the monitored
environment [97,102]. This normal baseline is then used for comparison of system actions at any
given moment. Any deviations out of bounds of the allowed threshold are reported by raising an
alert without providing any classification for the type of attack detected. There are also attempts of
using machine learning models that learn normal and attack events as behavioral detection models,
but building normal profiles are better than learning normal and attack events that can not include
new attack events in real-world networks. In comparison with signature-based detection techniques,
anomaly-based detection techniques are more effective in discovering new attacks. One drawback of
this technique is the difficulty in building the normal behavior baseline profile, which gives rise to
increased false positive rates [20,103,104]. Anomaly-based detection techniques rely on ML algorithms
to build a baseline normal profile of monitored systems. The use of such ML techniques in resource
and energy-constrained IoT environments is still a challenge, due to high computational resources
needed to train and validate ML techniques.

5.2.3. Specification-Based Detection Techniques

The basic principle of both anomaly-based detection and specification-based detection techniques
is the same, where the normal behavior of a system is profiled through some means and is compared
against current system actions to detect out of range deviations. However, in anomaly-based
techniques, normal behavior is learned through ML, whereas for specification-based techniques
it needs to be manually specified through a repository of rules and associated ranges of deviations by a
human expert [105]. This allows for lowering the false-positive rates as compared to the anomaly-based
detection techniques [20]. Having the advantage of not requiring any learning phase after specifying a
rule set [105], these techniques suffer from lack of adaptability to varied environments and are liable to
errors in specifications [19].

5.2.4. Hybrid-Based Detection Techniques

Hybrid-based detection techniques employ a mix of the earlier mentioned techniques to offset
the shortcomings and optimize the advantages of detecting existing and new attacks. The authors
in [106] proposed SVELTE, which is an IDS for IP-connected IoT systems that use RPL as a routing
protocol in 6LOWPAN networks. This IDS was designed using a hybrid of anomaly and signature
based detection techniques to obtain a balance between storage and processing requirements of each
of these two techniques. They tried to balance the storage cost of the signature-based detection and
computing cost of the anomaly-based techniques.

6. Machine Learning (ML) Techniques for IDS

As discussed in the previous section, apart from specification-based detection, all types of
detection techniques rely on some sort of ML algorithm for the training phase of the IDS. In this
section, an overview of different ML techniques used in IoT environment based IDSs is presented.
Table 4 gives a brief overview of ML methods, their advantages and limitations along with reference
to related research work conducted. In the end, Table 5 summarizes research works conducted to
propose IDSs using various ML methods, as detailed below. Figure 10 illustrates the most common
ML techniques used for designing IDSs in IoT networks.
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Figure 10. A taxonomy of ML Techniques for IoT-based IDSs.

6.1. Naive Bayes (NB) Classifier

This algorithm employs Bayes’ theorem to predict the probability of occurrence of an event based
on previous observations of similar events [107]. In ML scenarios, this can be used for classification
of normal and abnormal behaviors based on previous observations in supervised learning mode.
The NB classifier is a commonly used supervised classifier known for its simplicity. NB calculates
posterior probability and based on that a labeling decision is made to classify unlabeled traffic as
normal or anomalous. An independent set of features of the observed traffic like, status flags, protocol,
latency, are used to forecast the probability of traffic being normal or otherwise. Being simple and
easy to implement an algorithm, various IDSs have employed an NB classifier to identify anomalous
traffic [108-111]. It requires very few samples for training [112] and can classify in both binary and
multi-label classification. However, it fails to take into account interdependencies between features for
classification purposes, which affect its accuracy [113].

6.2. K-Nearest Neighbor (KNN)

KNN does not require any parameters for its working. Euclidean distance is used to measure the
distance between neighbors [114]. Figure 11 shows the basic principle behind the KNN classification
algorithm, used to classify a new data instance into already observed classes based on its relative
distance to either of the classes. The green squares depict the normal behavior class and red triangles
show the abnormal behavior class, any newly observed unknown instance (blue hexagon) can
now be classified based on the number of maximum nearest neighbors from either of the classes.
Accordingly, this new instance is classified as a known class. k is the number of nearest neighbors used
for classification.

The classification will change with the value of k. For k = 1, the red hexagon will be classified
as an abnormal class, but for k = 2 and k = 3, it will be classified as a normal class. Hence,
obtaining the optimal value of k through testing is vital for the accuracy of this algorithm [115].
Some researches [116-118] have used KNN based classification for anomaly and intrusion detection in
general and IoT based network intrusion detection in particular [119,120] with reasonable accuracy
in detecting User to Root (U2R) and Remote to Local (R2L) attacks. While KNN is simple to use,
determining the optimal value of k and identifying missing nodes are time-consuming and costly in
terms of accuracy.

6.3. Decision Trees (DTs)

Decision Trees (DTs) work by extracting features of the samples in a dataset and then organizing
an ordered tree based on the value of a feature. Every feature is represented by a node of the tree and
its corresponding values are represented by the branches originating from that node. Any feature node
that optimally divides the tree in two is considered the origin node for the tree [121]. Various metrics
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are utilized for identification of the origin node, which optimally divides the training datasets like the
Gini index [122] and Information Gain [123].
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Figure 11. K-Nearest Neighbor (KNN) classification principle.

Figure 12 illustrates decision tree nodes. DT algorithms involve two processes, namely induction
and inference, aimed at building the model and then carrying out the classification [124]. During the
induction process, construction of a DT starts with adding nodes and branches. Initially, these nodes
are unoccupied, and then through a process of feature selection through information gain and other
measures, a feature is selected that is deemed to split the training dataset samples. This feature is then
assigned as the origin vertex of the DT.

The process continues to select feature root nodes, to minimize the overlapping between different
classes found in the training dataset. Resultantly, the accuracy of classifier increases in identifying
distinct instances of a class. In the end, the leaves of each sub-DT are identified and classified
according to their corresponding classes. After the construction of DT, the inference process can start,
where any unknown instances of classes with features can be classified through iterative comparison
with constructed DT. After the acquisition of a matching leaf node, the classification process for
the new sample is completed [124]. In context of intrusion detection DTs have potential for use as
classifier [125,126]. However, aspects of bigger storage requirements and computational complexity
must be considered [124]. In the IoT environment, research published in [127] used DT to detect DDoS
attacks through analysis of network traffic for identifying malicious sources.

6.4. Support Vector Machines (SVMs)

SVM is another type of classifier that works through the creation of a hyperplane in the feature
set of two or more classes. The splitting hyperplane is found through a maximum distance of the
nearest data point of each compared class [128], as shown in Figure 13. SVMs are most appropriate for
the use case where classes containing large feature sets are required to be classified based on a fewer
number of data samples [35,129,130]. Based on statistical learning [128], SVMs are ideal for anomaly
detection where classification between normal and abnormal classes is required. SVMs are highly
scalable due to simplicity and are capable of performing tasks like anomaly-based intrusion detection
in real-time including online learning [131-133]. In [134], authors use an optimized version of SVM to
propose “Sec-IoV”, a multi-stage model for anomaly detection, for detection of anomalous traffic in
vehicle-to-vehicle (V2V) communications in Internet of Vehicles (IoV) networks.
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Figure 13. Depiction of Support Vector Machines (SVM) hyperplane splitting.

Another advantage of using SVM is its use of lesser storage/memory. The use of SVM-based IDSs
in an IoT system has been evaluated in various research studies [135-137], where SVM showed more
accurate results than other ML algorithms including DTs, NB and Random Forest. However, the use of
optimal kernel function in SVM, which is used to separate the data when it is not linearly separable,
remains a challenge to achieve the desired classification speed.

6.5. Ensemble Learning (EL)

EL works by building on strengths of various classifiers, through a combination of their results
and then generating a majority vote out for classification, as shown in Figure 14. This improves
classification accuracy through a combination of various homogeneous/heterogeneous classifiers’
outputs [138,139]. EL is based on the study [140], where it was found that every ML classification
algorithm depends on the application and associated data for its accuracy. Hence, no ML algorithm can
be described as “one size fits all solution” and for generalized applications, EL like combinations may
be best suited for maximizing accuracy through a reduction in variance and avoiding overfitting [141].

The accuracy of EL leads to the cost of increased time complexity, due to the use of multiple
classifiers in parallel [142,143]. The efficacy of EL for intrusion detection has been examined in
various studies [144-146]. The feasibility of EL under limited resource environments like IoT has been
studied [147] with a generalized application lightweight EL framework being proposed for online
anomaly detection in IoT networks. This study showed that such an EL algorithm produced better
and accurate results than each member classifier individually [147].
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Figure 14. Working of an ensemble classifier.

6.6. Random Forest (RF)

RFs can be categorized as a supervised ML algorithm. An RF is built using multiple DTs to
predict more accurate and error resistant classification results [148,149]. Randomly constructed DTs are
trained to output classification results based on majority voting [148]. Though DTs can be considered
as components of RF, there are two distinct classification algorithms due to the reason that contrary to
DTs, which build a rule-set during training for subsequent classification of new samples, RF builds
a rule-subset using all member DTs. This results in a more robust and accurate output, which is
resistant to overfitting and requires substantially fewer inputs and does not require the process of
feature selection [35]. As proposed by some studies [150,151], RF is suitable for anomaly and intrusion
detection in IoT networks. Moreover, another study [152] has shown RF to be better than KNN,
artificial neural network (ANN) and SVM at DDoS detection in IoT networks because it requires fewer
input features and can bypass heavy computations required for feature selection in real-time IDS [153].

6.7. k-Means Clustering

It is an unsupervised algorithm, which is based on the discovery of k clusters in the data samples.
Each instance of sample data is assigned to a particular cluster based on its features. The samples are
distributed over k clusters according to their features using the estimation of centroids as per squared
Euclidean distance. Recalculation of centroids of each cluster is then performed through taking the
mean of data points allocated to that cluster, as shown in Figure 15. The process continues iteratively
until no modifications to the clusters can be made [154,155]. Selection of an appropriate value of k and
the assumption that the sample dataset will be equally distributed over the k clusters act as limitations
for the k-means clustering algorithm. Previous studies presented in [156,157] suggest the suitability of
k-means clustering for anomaly detection through calculating feature similarity. The authors [158]
suggested combining DT with k-means clustering for anomaly detection in IoT networks to improve
the performance.

6.8. Principle Component Analysis (PCA)

PCA is not an anomaly detection technique, but it is commonly used as a feature selection
or a feature reduction technique from a large dataset. The selected feature sets can then be used
along with some other ML classifiers to detect anomalies in an IoT network. The PCA technique
transforms a large set of variables into a reduced set of features without losing much of the information.
Various research works [159-162] used a combination of PCA with various classifiers to detect
anomalies in IoT networks.
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Table 4. Taxonomy of ML based methods for IoT systems security.

ML Method

Attack Types Handled

Pros

Cons

KB [108,109,111,113]

HTTP attacks (Buffer
overflow, Shell attacks) [111],
DoS, Probe, R2L [109]

-It requires very few samples for
training [112].

-It can classify in both binary and
multi-label classification.

-It shows robustness to
irrelevant features.

It fails to take into account
interdependencies between features
for classification purposes, which
affect its accuracy [113].

KNN [116-120]

U2R, R2L,Flooding attacks,
DoS, DDoS

-Simple to use.

Determining optimal value of K and
identifying missing nodes
are challenging.

DT [125-127]

DDoS [127], U2R, R2L [125]

-Easy and simple to use method.

-It requires bigger storage

-It is computationally complex
-It is easy to use only if few DTs
are used.

SVM [131-133]

Scan, DDoS (TCP, UDP
flood), smurf, portsweep

-SVMs are highly scalable due to
simplicity and are capable of
performing tasks like anomaly-based
intrusion detection in real-time
including online learning.

-SVMs are considered suitable for data
containing a large number of

feature attributes.

-SVMs use lesser storage and memory.

-The use of optimal kernel function
in SVM, which is used to separate
the data when it is not linearly
separable, remains a challenge to
achieve desired classification speed.
-It is difficult to understand and
interpreting SVM-based models.

EL [144-146,163]

DoS, Probe, R2L, U2R attacks

-It is robust to overfitting.
-Performs better than a single classifier.
-It reduces variance.

-Increased time complexity, due to
the use of multiple classifiers
in parallel

-It produces a more robust and accurate
output which is resistant to overfitting.

-Since RF constructs several DTs, its

RF [150,151] DoS, Probe, R2L, U2R -It requires substantially fewer inputs use may be impractical in real-time
and does not require the process of applications requiring large dataset.
feature selection.

-It is less effective as compared to

K-Means [157,158,164] DoS, Probe, R2L, U2R -k-Means clustering does not require supervised learning technique,

labeled data.

in particular detecting
known attacks.

PCA [159-162]

Used in combination with
other ML methods

-PCA is suitable where the dataset
involves large set of variables as PCA
transforms it to reduced set of features
without losing much of information.
-Can reduce the complexity in the data.

-It is not an anomaly detection
method, it must be used with some
other ML methods to design a
security model.
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Table 5. Comparison of studies that used ML and DL techniques in IoT Security.
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Study Machine Learning Deep Learning Dataset Threat Detected
NBC KNN DT SVM EL RF K-Means RNN CNN AE RBM DBN EDLN GAN

[110,111] v - - v - - v v - - - - - KDD9%9 Anomaly Detection
[116] - v - - - - - - - - - - - KDD99 apache2 udpstorm processtable mailbomb
[125] - - - - - - - v v - - - - ADFA-LD and ADFA-WD Adduser Meterpreter Webshell
[129] - - - v - - - - - - - - - DARPA dataset Probe attack, U2R attack
[143] - - - - v - - - - - - - - KDD99 Network Traffic anomaly detection
[150] - - - - - v - - - - - - - Boot-strapped Worms, Buffer overflows
[157] - - - - - - v - - - - - - KDD99 -
[165] - - - - - - - v - - - - - ISCX2012 PROBE attacks or non-PROBE attacks
[166] - - - - - - - v v - - - - Android Malware Genome project Malware
[167] - - - - - - - - - - - - - Outlier Detection DataSets Anomaly detection
[168] - - - - - - - - - v - - - KDD -
[169] - - - - - - - - - - - - v NSL-KDD -

[170]

500 samples for dataset

Anomaly detection
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7. Deep Learning (DL) Techniques for IDSs

DL algorithms outperform ML algorithms in applications involving large datasets. DL becomes
most relevant in IoT security applications as IoT environments are characterized by the production of
vast amounts and a variety of data [171]. Furthermore, DL is capable of the automatic modeling of
complex feature sets from the sample data [171]. Another advantage of DL algorithms is their ability
to allow deep linking in IoT networks [172]. This enables automatic interactions between IoT-based
systems in the absence of human intervention [171] to perform assigned collaborative functions.

Because of their ability to extract hierarchical feature representations in complex deep architecture,
DL can be classified as a branch of ML algorithms that uses multiple non-linear layers of processing
to extract feature sets. These feature sets are then used for abstraction and pattern detection after
necessary transformations [173]. As shown in Figure 16, DL can be used in a generative mode with
unsupervised learning, discriminative mode using supervised learning, or a hybrid approach by
combining both modes.

D

: S

or 1o D

y \4 A\ 4
Supervised Unsupervised Hybrid
Learning Learning Techniques
\ 4
| CNN | |RNN| | DBN| | AE | [RBM| |EDLN| GAN

Figure 16. Taxonomy of potential DL techniques for IoT IDS.

In this section, various major DL based techniques used for designing an IDS are discussed.
Table 5 below summarizes research studies conducted to propose IDS using various DL-based
methods. Details about each research work along with the DL technique is explained in respective
sub-sections below.

7.1. Recurrent Neural Networks (RNNs)

RNN is a discriminative DL algorithm, which is best suited in environments where data is to be
processed sequentially. Unlike other neural networks, its output is dependent on back-propagation
instead of forward propagation [173-175]. A temporal layer is incorporated in an RNN for analyzing
data sequentially followed by learning about multi-dimensional differences in unrevealed units of
recurrent components [165]. Modifications to these unrevealed units are then made corresponding to
data encountered by the neural network, causing continuous updates and the manifestation of the
current state of the neural network.

The current unrevealed state of the neural network is processed by an RNN algorithm through
the estimation of succeeding hidden states as triggering of a previously unrevealed state. A simple
explanation of RNN functioning is described in Figure 17. Here, outputs from neurons are sent back
as feedback to the neurons of the previous layer. Because IoT environments are characterized by the
generation of large amounts of sequential data like network traffic flows, RNNs become relevant in IoT
security applications, especially network intrusion detection. Previous research [176] has proposed
the use of an RNN for network intrusion detection through analysis of network traffic behavior and
reported obtaining useful results, particularly time series-based threats. Another recent research [177]
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proposes an IDS that uses cascaded filtering stages in which deep multi-layered RNN are applied for
each filter. RNNs are then trained to detect common attacks launched in IoT environments, like R2L,
Dos, U2R and Probe.

Long short-term memory (LSTM) network architectures, which are a specialized form of RNN,
have also been used in the designing of IDS. The main attribute of LSTM based RNN:Ss is to persist
information or cell state for later use in the network. This feature makes them appropriate for
performing analysis of temporal data that changes over time. Thus, LSTM networks are preferred
to solve problems related to anomaly detection in time-series sequence data. Various forms of RNN,
including LSTM based RNNs, have been used for anomaly and intrusion detection in IoT networks by
researchers in [178-183]. While RNNs have demonstrated promising results in predicting time series
data, the detection of anomalous traffic using these predictions is still challenging.

oeqpsay

Input Layer Hidden Layer Output Layer

Figure 17. Illustration of recurrent neural network algorithm.
7.2. Convolutional Neural Network (CNN)

CNN is also a discriminative DL algorithm, which was designed to minimize the number of data
inputs required for a conventional artificial neural network (ANN) through the use of equivariant
representation, sparse interaction and sharing of parameters [184]. Thus CNN becomes more scalable
and requires less time for training. There are three-layer types in a CNN, namely convolutional layer,
pooling layer and activation unit, as shown in Figure 18. The convolutional layers use various kernels
for convoluting data inputs [185]. The pooling layers downsize samples, thus minimizing the sizes of
succeeding layers. It involves two techniques: Max pooling and average pooling, where the former
chooses a maximum value for every cluster of past layers after distributing the input among distinctive
clusters [186,187].

The average pooling, on the other hand, calculates the average values of every cluster in the
previous layer. The activation unit is able to trigger an activation function on every feature in the feature
set in a non-linear fashion [187]. CNN is best suited for highly efficient and fast feature extraction
from raw data but at the same time CNN requires high computational power [188]. Hence using
CNN on resource-constrained IoT devices for their security is highly challenging. This challenge is
somewhat addressed through distributed architecture where a lighter version of Deep NN is trained
and implemented on-board with only a subset of vital output classes, whereas, the high computational
power of the cloud is used to perform the complete the training of the algorithm [166]. Their use in IoT
environment security was discussed in previous research published in [189,190] for malware detection.
In [40], authors propose a hybrid data processing model for network anomaly detection that utilizes
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Grey Wolf Optimization (GWO) and CNN techniques. Authors claim to have achieved better accuracy
and detection rate in comparison to other state-of-the-art IDS.
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Figure 18. Illustration of convolution neural network working.

7.3. Deep Autoencoders (AEs)

It is an unsupervised algorithm designed for the reproduction of its input at its output through
the use of a decoder function and a hidden layer containing the definition of a code utilized for
the representation of input [184]. The other function in an AE neural network is called the encoder
function and is responsible for the conversion of the acquired input into code. During training,
reconstruction errors must be minimized [191]. One use case for AE is feature extraction from the
datasets. However, these suffer from the requirement of high computational power. Deep AEs have
been used for the detection of network-based malware in previous research with better accuracy than
SVM and KNN [167]. Kitsune [41] is one such study where an ensemble of deep auto-encoders was
used to implement an online lightweight IDS for IoT environments based on unsupervised learning
and anomaly detection where authors demonstrate better accuracy as compared to other ML and
DL techniques.

7.4. Restricted Boltzmann Machine (RBM)

It is an unsupervised learning-based algorithm and builds a deep generative and undirected
model [168]. There are no two nodes in any layer of an RBM that have any connection with each other.
Visible and hidden layers are the two types of layers making up an RBM. Known input parameters
are contained in the visible layer, while the unknown potential variables are included with several
layers forming the hidden layer. Working hierarchically, features extracted from a dataset are then
passed on to the next layer as latent variables. RBMs were used in various research work [192,193] for
network/IoT intrusion detection systems. The challenge of implementing RBMs is that it needs high
computational resources while implementing it on low-powered IoT devices. Furthermore, Single RBM
lacks the capability of feature representation. However, this limitation can be overcome by applying
two or more RBM stacked to form a Deep Belief Network (DBN).

7.5. Deep Belief Network (DBN)

Being formed by stacking two or more RBMs, DBN can be considered as unsupervised learning
based generative algorithms [194]. They perform robustly through unsupervised training for each
layer separately [165]. Initial features are extracted in the pre-training phase for each layer, followed
by a fine-tuning phase where the application of a softmax layer is executed on the top layer [170]. It is
mainly composed of two layers, i.e., visible layer and hidden layer, as shown in Figure 19. Though the
study in [188,195] discussed malicious attack detection using DBNs with comparatively better results
than ML algorithms, no evidence of applicability in the IoT environment was reported in the literature.
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Figure 19. Illustration of deep belief network working.

7.6. Generative Adversarial Network (GAN)

It is a hybrid DL method that uses both generative and discriminative models at the same time for
training [196]. Distributions of the dataset and samples is obtained by the generative model predictions
about the authentic origination of a given sample from a training dataset and are made by the
discriminative model [196]. As shown in Figure 20, both generative and discriminative models work as
adversaries where the generative model attempts deception through the generation of a sample using
random noise. On the other hand, the discriminative model attempts to authenticate real training data
samples from deceptive samples generated by the generative model. Here, D(x) represents a binary
classification giving output as real or fake (generated). The measure of correct/incorrect classification
determines the accuracy and performance of both the models in an inversely proportional fashion.
This results in models updating in each iteration [191]. The study published in [169] discussed the
utility of the GAN algorithm for detecting anomalous behavior in IoT environments with promising
results due to their ability to counter zero-day attacks through the generation of samples mimicking
zero-day attacks, thereby causing the discriminator to learn different attack scenarios. However,
the challenge with using GAN is that its training is difficult and it produces unstable results [196,197].
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Figure 20. Illustration of generative adversarial network (GAN) working.

7.7. Ensemble of DL Networks (EDLNs)

As discussed earlier, the ensemble of various ML classifiers proves more effective than individual
ML classifier results. Similarly multiple DL algorithms can be used in parallel through organizing
in an ensemble to produce better results than each component DL algorithm. EDLNs can have any
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combination of a discriminative, generative, or hybrid type of DL algorithms. Best suited for solving
complex issues, EDLNs perform better in uncertain environments with a high number of features.
A heterogeneous EDLN has classifiers from the different genres, whereas a homogeneous EDLN has
classifiers from the same genre. Both compositions are aimed at increasing efficiency and producing
accurate results [198]. Application of EDLN for IoT security requires further study and research,
to evaluate the possibility of improving the performance and accuracy of the IoT security system [12].
Table 6 illustrates common attack types handled by corresponding DL methods along with reference to
related research. Table 6 also describes advantages and limitations of each suggested DL method. Later,
Table 5 below covers the comparison of work conducted on ML and DL techniques on IoT Security.

Table 6. Taxonomy of DL based methods for IoT systems security.

DL Technique Attack Types Handled Pros Cons
-R2L, DoS, U2R and o . .
Probe [177] ;Ee;et Sl:gf:g;: de 21:1{1()91:2:?5 where data is The major challenge in the use of RNNs is
-Botnet [176] P el 4 handling the issue of vanishing or

RNNs [176-183]

-In particular suitable to
detect anomalies in time
series data [179-183]

-In some cases, IoT system environment
produces sequential data, hence RNNs are
suitable in IoT security.

exploding gradients, which hinders
learning of long data sequences.

CNNis [189,190]

Malware attacks

-CNN is best suited for highly efficient and
fast feature extraction from raw data.
-Since CNN can automatically learn
behavior from raw network security data,
they have potential application in

IoT security.

-CNN requires high computational power;
thus using CNN on resource-constrained
IoT devices for their security is

highly challenging.

Deep
Autoencoders [41,167]

-Malware attacks
-Botnet attacks [41]

-AEs have been successfully used for
feature extraction and
dimensionality reduction.

-AEs are computationally heavy.

-May not produce desired results if the
training dataset is not representative of the
testing dataset.

RBM [192,193]

-R2L, DoS, U2R and Probe

- Feedback function of RMBMs facilitates
extraction of important attributes which are
then used to capture the behavior of IoT
traffic.

-RBMs needs high computational resources
while implementing it on low-powered
IoT devices.

-Single RBM lacks the capability of feature
representation.

DBNis [188,195]

-R2L, DoS, U2R and Probe

-Suitable for vital feature extraction with
training on unlabeled data.

-DBN’s require high computational costs.

GAN [191]

-Botnet (Mirai, Bashlite),
Scanning, MiTM

-Ability to detect zero-day attacks
-Generating a sample needs only one pass

-Its training is difficult and it produces
unstable results.

through the model.

-Ensemble of DL classifiers can achieve
better model performance

-EDLNSs perform better in uncertain
environments with a high number

of features.

-Malware, DoS, Botnet,
MiTM

- EDLNSs are computationally heavy

EDLNS [41,198] and complex

8. Datasets Available for IoT Security

Evaluating the effectiveness of any IDS entails a reliable and current dataset that contains present
benign and anomalous activities. Most of the earlier research in IDS relied on the KDD99 [199] dataset
due to the absence of other datasets for about two decades. However, analysis suggests that the KDD99
dataset negatively affects the IDS results in [199,200] and [201]. Numerous research efforts have been
undertaken to address the weaknesses of KDD99 and other datasets that appeared after that. A brief
description of the most common datasets for evaluating IDS is presented below.

o KDD99. This is a modification of the DARPA funded DARPA98 dataset that initiated from an
IDS program conducted at MIT’s (Massachusetts Institute of Technology) Lincoln Laboratory
for evaluating IDSs that differentiate between inbound normal and attack connections. Later on,
this dataset was used in the International Knowledge Discovery and Data Mining Tools
Competition [202] after some filtering, resulting in what is known as the KDD CUP 99 dataset [199].
This dataset has been used by most of the researchers for the last two decades now. The absence
of alternatives has resulted in several works directed on the KDD CUP 99 dataset [199] as
a widespread benchmark for the accuracy of the classifier.
numerous weaknesses, which discourage its use in the current context, including its age,

However, KDD-99 possesses



Electronics 2020, 9, 1177 32 of 45

highly skewed targets, non-stationarity between training and test datasets, pattern redundancy,
and irrelevant features.

e NSL-KDD. NSL-KDD is an effort by the researchers who published their work in [199] to
overcome the weaknesses of KDD-99. It is a more balanced resampling of KDD-99 where the
emphasis is laid on examples that are expected to be missed by classifiers trained on the basic
KDD-99. However, as their authors acknowledge themselves, there are still weaknesses in the
dataset, like its non-representation of low footprint attacks [200].

e The DEFCON dataset. DEFCON-8 dataset, generated in 2000, comprises of port scanning and
buffer overflow attacks. Another version, the DEFCON-10 dataset, generated in 2002 uses bad
packets, FTP by telnet protocol, administrative privilege, port scan and sweeps attacks [203].
The traffic produced during the Capture the Flag (CTF) competition is dissimilar from network
traffic of the real world because it primarily consists of attack traffic as opposed to usual
background traffic, therefore its applicability for evaluating IDS is limited. The dataset is mostly
used to assess alert correlation techniques [204,205].

o The Center of Applied Internet Data Analysis (CAIDA)—2002-2016 datasets [203,206].
This organization has three different datasets: (1) the CAIDA OC48, covering various types of
data observed on an OC48 link, (2) the CAIDA DDOS, which comprises of one-hour DDoS attack
traffic that happened in August 2007, and (3) the CAIDA Internet traces 2016, which is passive
traffic traces from CAIDA’s Equinix-Chicago monitor on the high-speed Internet backbone [207].
These datasets are specific to certain events or attacks and are anonymized with their protocol
information, payload, and destination. These are not effective benchmarking datasets because
of several shortcomings, as discussed in [207], like the unavailability of ground truth about the
attack instances.

e The LBNL dataset contains anonymized traffic, which is comprised of only header data.
The dataset was generated at the Lawrence Berkley National Laboratory, by gathering real
outbound, inbound and routing traffic from two edge routers [206]. It lacked the labeling process
and also no extra features were created [206].

o The UNSW-NB1S5 is a dataset developed at UNSW Canberra by the researchers of [208] for the
evaluation of IDS. The researchers used the IXIA PerfectStorm tool to generate a mixture of attack
and benign traffic, at the Australian Center of Cyber Security (ACCS) over two days, in sessions
of 16 and 15 h. They generated a dataset of size 100 GB in the form of pcap files with a substantial
number of novel features. NB15 was planned as a step-up from the KDD99 dataset discussed
above. It covers 10 targets: one benign, and nine anomalous, namely: DoS, Exploits, Analysis,
Fuzzers, Worms, Reconnaissance, Generic, Shell Code and Backdoors [208]. However, the dataset
was designed based on a synthetic environment for producing attack activities.

e  The ISCX datasets [207]. The Canadian Institute for Cybersecurity has been working on the
generation of numerous datasets that are used by independent researchers, universities and
private industry around the world. A few datasets relevant to our work are IPS/IDS dataset on
AWS (CSE-CIC-IDS2018), IPS/IDS dataset (CICIDS2017), CIC DoS dataset (application-layer),
ISCX Botnet dataset, ISCX IDS 2012 dataset, ISCX Android Botnet dataset, and ISCX NSL-KDD
dataset. Their latest dataset related to our work is CICIDS2017. This dataset covers benign
and the most up-to-date common attacks, which is comparable to the real-world data [209].
The CICIDS2017 consists of multiple attack scenarios, with realistic user-related background
traffic produced by using the B-Profile system. For this dataset they built the abstract behavior
of 25 users based on the FTP, SSH, HTTP, HTTPS and email protocols. However, the ground
truth of the datasets, which would improve the reliability of the labeling process, was not shared.
Moreover, applying the idea of profiling, which was used to produce these datasets, in real
networks could be problematic due to their intrinsic complexity [209].

e  The Tezpur University IDS (TUIDS) dataset [206]. This dataset was generated by the professors
from Tezpur University, India. This dataset features DoS, Probing, Scan, U2R and DDoS attack
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scenarios, performed in a testbed. However, the flow level data does not contain any new features
other than those produced by the flow-capturing process [209].

o  BoT-IoT [209] The BoT-IoT dataset was created by designing a realistic network environment in
the Cyber Range Lab of The center of UNSW Canberra Cyber. The environment incorporates a
combination of normal and botnet traffic. Researchers also present a testbed setting for handling
the existing dataset shortcomings of capturing complete network information, correct labeling,
and the latest and complex attack diversity. In their work, the authors also evaluate the reliability
of the BoT-IoT dataset using different ML and statistical techniques for forensics purposes in
comparison to the other datasets discussed above. The dataset’s source files are provided in
different formats, including the original pcap files, the generated argus files and CSV files. The files
were separated, based on attack category and subcategory, to better assist in the labeling process.
The dataset contains OS and Service Scan, DoS, DDoS, Data exfiltration and Keylogging attacks.
Based on the protocol used, the DDoS and DoS attacks are further organized [209].

e IoTPoT Dataset [210]. This dataset was generated through honeypots, so there was no process for
manual labeling and anonymization; however, it has restricted view of the network traffic since
only attacks launched at the honeypots could be observed. Authors claim that IoTPoT examines
Telnet-based attacks against different IoT devices running on different CPU architectures such as
MIPS, ARM and PPC. During 39 days of operation, authors recorded 76,605 download attempts of
malware binaries from 16,934 visiting IP. Authors further claim that none of these binaries could
have been detected by existing honeypots that handle the Telnet protocol, such as telnet password
honeypot and honeyd, because these honeypots are not capable of handling different incoming
commands initiated by the attackers [210].

e N-BaloT Dataset. The most recent dataset, specifically related to the evaluation of IDS for IoT
networks is generated by the authors [41] as part of their research work on online network IDS.
They generated and collected traffic from two networks: one, an IP camera video surveillance
network where they launched eight different types of attacks that affect the availability and
integrity of the video uplinks; two, an IoT network comprising of three PCs and nine IoT devices,
out of which one was infected with the Mirai botnet malware. A detailed explanation of the attacks
and network topologies is available in their published papers [41]. The authors compiled a dataset
of extracted feature vectors for each of these nine attacks. The attack types include: OS Scan,
Fuzzing, Video injection, ARP MiTM, Active Wiretap, SSDP flood, SYN DoS, SSL Renegotiation
and Mirai.

9. Challenges and Future Research Directions

A large number of studies and research works have been published related to IDSs for IoT.
However, there are still a large number of open research challenges and issues, particularly in the use
of ML and DL techniques for anomaly and intrusion detection in IoT. The challenge is that there exists
no standard mechanism that guarantees validation of the proposed systems or method. The research
works mostly demonstrate evaluation of their proposed systems based on synthesized datasets and
address one specific problem which may not work in the real world on real data and in the presence of
other problems. As evident from this and other similar studies conducted on state of the art in IDS
for 10T, it is very difficult to design an IDS which covers, at least, the most important aspects of an
effective IDS, that is it is deployable, online, scalable, works effectively on real data and satisfies all
stakeholders requirements. Instead, most of the published work share evaluation results tested on
contrived datasets, cover a single or some part of the system, and show results using biased parameters.

Furthermore, a proof of completeness and accuracy of any proposed IDS is very hard to define
or accomplish. Thus, one of the conclusions from this study is that it is very hard to design a
comprehensive IDS, which can offer good accuracy, scalability, robustness and protection against all
types of threats. Below, some of the major issues and challenges that researchers face today and in
the future are described. Since the IoT security measures are still not matured, there is enormous
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scope for future research in this area, particularly in anomaly and intrusion detection using ML and
DL techniques.

The most recent challenges related to anomaly and intrusion detection in IoT networks are

discussed in the following:

To test and validate proposed NIDS, a good quality dataset related to IoT IDS is very essential.
Such a dataset should possess a reasonable size of network flow data covering both attack and
normal behavior with the corresponding label. Furthermore, in order to capture normal behavior,
normal traffic data from each type of IoT device is required, other than the attack data for testing
the NIDS. However, as discussed in the previous section, most of the publicly available datasets
lack in providing the required features, like missing labels, incomplete network features, missing
raw pcap files and are difficult to comprehend and/or have incomplete CSV files. Moreover,
datasets available only capture normal behavior of a specific type of IoT devices, which restricts
training of IDS on those devices only. Creating a dataset that can address these issues in a real
environment will be a challenge and a potential area of research.

Developing an online and real-time, anomaly-based IDS for IoT networks is very challenging.
This is because such an IDS would require to learn a normal behavior first to detect abnormal or
malicious behavior. The learning phase assumes that there is no noise or attack traffic during this
period which cannot be guaranteed. Such an IDS may generate false alarms if these issues are
not addressed.

As also described in this paper, most of the anomaly-based NIDS tries to construct a model
that captures the profile of all possible behavior or patterns of normal traffic. This, however,
is extremely challenging because it has been proven that such models tend to bias towards the
dominated class, that is, normal class, resulting in high false-positive rates. Furthermore, it is
also not possible to capture all possible normal observations that may be generated in a network,
particularly in a heterogeneous environment of IoT networks, which increases false-negative
rates. Completely avoiding or minimizing false-positive rates and false-negative rates in NIDS is
another research challenge.

It would be interesting to develop models trained on specific types of devices. These models
can be applied to IDSs in other organizations using a similar type of device. This will assist
other organizations, which can deploy these models and thus save time that would have been
required to collect the data and train the IDSs. It will also help in detecting malicious loT devices,
which are already compromised because their behavior would be different from normal behavior
captured by trained models. Developing such models is a challenging task and a potential area
for future research.

Different stages involved in the design and implementation of NIDS, like data-preprocessing and
feature reduction, model training and deployment, in particular, ML and DL based NIDS, increase
computational complexity. Thus designing an efficient NIDS that is light on computational
requirements is another challenge and area for future research.

Feature selection and dimensionality reduction methods used for proposed IDSs are suitable to
work on a specific type of normal traffic and to detect a particular type of attacks which may
not work once the environment of normal or attack sequences change a bit, especially under a
fast-changing environment of IoT devices and networks. Thus, dynamic and computationally
efficient mechanism for feature selection which can work under all types of normal and attack
traffic is a potential research challenge.

DL and ML-based techniques and algorithms are being widely used for training a model on a
large dataset. This has facilitated in effective handling of cyber-attacks. However, with regards
to the use of DL and ML algorithms for attack detection in IoT networks, some challenges need
the attention of researchers; for example, resource constraints issue with IoT devices limits the
use of DL/ML algorithms [163] for protection of IoT networks. Another challenge with the use



Electronics 2020, 9, 1177 35 of 45

of ML/DL techniques in large and distributed networks, like that of IoT networks, is that they
face scalability issues, for example in terms of various scenarios and choices of IDS deployment.
One possible solution to limitations of individual DL or ML algorithms suggested by some of the
authors [211] is the use of an ensemble of ML /DL algorithms that performed better in comparison
to an individual ML algorithm; however, such algorithms were computationally expensive and
thus resulted in network latency issues, which cannot be afforded in critical systems involving
risks to human lives, like health and autonomous or internet of vehicles (IoVs) systems.

e  The techniques of semi-supervised learning, transfer learning and reinforcement learning (RL) are
still not well explored and experimented for designing an IDS for IoT security in order to achieve
important objectives like real-time, fast training and unified models for anomaly detection in IoT
and thus are potential areas of future research. Moreover, it would be an interesting research area
to use RL in combination with DL because their combined use can be beneficial in IoT network
scenarios involving large data dimensionality and non-stationary environments.

10. Conclusions

During the last decade, the use of IoT devices has increased exponentially in all walks of life due
to its capacity of converting objects from different application areas into Internet hosts. At the same
time, users’ privacy and security are threatened due to IoT security vulnerabilities. Therefore, there is
a requirement to develop more robust security solutions for IoT. Machine and deep learning-based
IDS is one of the key techniques for IoT security. In this work, a survey of ML and DL based
Intrusion Detection techniques used in IDS for IoT networks and systems is presented. The IoT
architecture, protocols, IoT systems vulnerabilities, and IoT protocol-level attacks have been discussed
in detail. Then, this paper surveyed various research work available in the literature, which suggested
IDS methodology for IoT or proposed attack detection techniques for IoT that could be part of an
IDS, specifically about various ML and DL techniques available for IDS in IoT and their use by the
researchers. Also, a review of various datasets available for IoT security-related research is elaborated.
This work attempts to provide the researchers with the summarized but comprehensive and useful
insight into the various security challenges currently being faced by IoT systems and networks and
possible solutions, with a focus on intrusion detection, based on ML and DL based methods.
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